
Lightweight Polytypic Staging of DSLs in Scala?

Alexander V. Slesarenko

Keldysh Institute of Applied Mathematics, Moscow, Russia,
avslesarenko@gmail.com,

WWW home page: http://pat.keldysh.ru/~slesarenko/

Abstract. This paper describes Lightweight Polytypic Staging, - a new
approach to the implementation of deep embedding of DSLs. We use the
notion of polytypic DSL, – the DSL which is designed and implemented
by means of polytypic (data-generic) programming techniques.
We show how to combine various lightweight techniques available in
the Scala language (techniques based on expressive type system of the
language). In particular, we use polytypic (data-generic) programming,
polymorphic embedding, Lightweight Modular Staging (LMS) and lan-
guage virtualization.
The combination of polytypic programming and staging gives us new
opportunities for optimizations by transformation. It is traditional in
polytypic programming to implement a user-defined data type by first,
providing an isomorphic representation of the type built out of sums of
products and second, by defining semantics of domain primitives only for
sums of products. In polytypic staging context we introduce an isomor-
phism lifting, – a transformation that automatically lifts isomorphisms
out of the domain code and separates the domain semantics from the
user-defined views.
The implementation is based on the Scala-Virtualized compiler (an ex-
tension to facilitate deep DSL embedding) which makes the staging al-
most transparent to the DSL user (non-staged and staged code looks
literally the same). We show how to apply polytypic staging to a partic-
ular domain by describing an implementation of the corresponding DSL.
The domain is nested data parallelism and the DSL is the nested data
parallel language embedded in Scala. The paper is organized around the
specific DSL, but our implementation pattern should be applicable to
any polytypic DSL in general.

Keywords: Generic programming, Polytypic programming, Polytypic
staging, Nested Data Parallelism, Multi-stage programming, Domain-
specific languages, Language Virtualization

1 Introduction

A long-standing trend in software development for parallel computing is the
reduction of complexity, namely the development of easy-to-use languages and

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

Lightweight Polytypic Staging of DSLs in Scala 229

libraries [8,9,24], encapsulation of complexity in an implementation of system
software [21], creation of interactive working environments [1].

In particular, it was shown [28,26] that a combination of a DSL approach
and program staging is a promising direction of work where sufficient perfor-
mance optimizations of staged code were achieved by exploiting domain-specific
semantics. So staging is a key point of DSL optimizations.

But what if the DSL for our domain can be naturaly implemeted by using
polytypic (generic) programming techniques? How can we stage generic code?
Interestingly, this is the case when we consider nested data parallelism (NDP)
as the domain. In our previous work[27] we developed an embedded polytypic
DSL for expressing nested data parallel algorithms in Scala language by using
generic programming [12] (polytypic programming [17]) techniques.

In this paper, we describe an attempt to stage our polytypic DSL, hence we
term this as polytypic staging. The implementation is lightweight in a sence that
it is based on an expressive type system of the Scala language. In section 5 we
briefly compare the lightweight staging approach with a traditional multi-stage
programming [29].

The idea behind our approach that is proposed here is based on a combina-
tion between Lightweight Modular Staging (LMS) [25] and polytypic (datatype-
generic) programming. The idea is that by writting programs using a polymor-
phic embedding style [14], programs can be interpreted in two modes: simulation
and code generation. In the simulation mode programs are given an unoptimized
(and slow), but straightforward implementation which is good for testing. In
code generation mode, a fast, optimized implementation is generated at run-
time. Datatype-generic programming techniques are then applied to allow the
library to be specialized with user-specific datatypes (built out of arrays, sums
and products) by providing isomorphic views types [15]. Term rewriting tech-
niques can be applied on the staging (code generation) phase to perform generic
and domain specific optimizations.

For domain specific foundations we rely on a series of publications [19,4,20]
on the nested data parallelism model. The model of NDP was first formulated in
the early 90’s [3], but still is not widely used in practice, although there is a series
of publications and a publicly available implementation [5]. On the other hand,
many techniques and technologies [2,7,14,23,25], which we use as a foundation
of our approach, appeared only in recent years so it is an interesting research
question to restate the problem and implement the model in a new environment.

We propose our implementation of NDP as a DSL embedded in the Scala-
Virtualized as the host language and packaged as a library. We compare it with
Parser Combinators library which also has limited expressiveness and inherent
composability, while still having a wide range of applications in different problem
domains.

From the DSL point of view, we regard our previous implementation as shal-
low embedding as oppose to deep embedding that is described in this paper and
which is consistent with our previous work.

In summary, this paper makes the following main contributions:

230 A. V. Slesarenko

1. We extend our previously published work [27] by introducing type-directed
Lightweight Polytypic Staging technique (LPS).

2. We describe how to extend the Lightweight Modular Staging (LMS) frame-
work by making it polytypic (datatype-generic) over a family of type con-
structors: sum, product and array.

3. We show how our framework is able to support user-specific data types by
providing isomorphic representations.

4. We show how the combination of polytypic programming and staging tech-
niques gives us new opportunities for optimizations by transformation by
introducing isomorphism lifting, – a transformation that automatically lifts
isomorphisms out of domain code and separates domain semantics from user-
defined views.

5. We show how to apply Lightweight Polytypic Staging to a special problem
domain of nested data parallelism.

In this paper we also describe some aspects of the design and implementation
of the Scalan library. 1

1.1 The DSL

We start with some examples of the DSL to illustrate the basic ideas of the NDP
domain from user’s perspective.2

Consider the definition of sparseVectorMul in Fig. 1. We represent a sparse
vector as an array of pairs where the integer value of the pair represents the
index of an element in the vector and the float value of the pair represents the
value of the element (compressed row format). Having this representation, we
can define a dot-product of sparse and dense vectors as a function over arrays.

trait PArray[A]

type VectorElem = (Int,Float)

type SparseVector = PArray[VectorElem]

type Vector = PArray[Float] // dense vector

type Matrix = PArray[SparseVector] // sparse matrix

def sparseVectorMul(sv: SparseVector, v: Vector): Float =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

def matrixVectorMul(matr: Matrix, vec: Vector): Vector =

for (row <- matr) yield sparseVectorMul(row, vec)

Fig. 1. Sparse Matrix Vector Multiplication

1 The complete code is available at http://github.org/scalan to supplement the paper.
2 We extensively use Scala listings in the paper and assume familiarity with the lan-

guage [22]. We only show parts of the code relevant to our discussion and refer to
our previous paper [27] for details of the library design and more samples.

Lightweight Polytypic Staging of DSLs in Scala 231

Instead of using the ordinary Array[T] type we use an abstract PArray[T]

trait and by doing that, first, make the code abstract, and second, express our
intent for a parallel evaluation.

When it comes to multiplying a sparse matrix with a dense vector, we can
reuse our previously defined parallel function sparseVectorMul to define a new
parallel function matrixVectorMul. This is the essence of nested data parallelism,
on the one hand, we are able to nest one parallel map inside another parallel
map and, on the other hand, it supports flattening that makes it possible to
automatically transform any nested code into flat form which is good for execu-
tion. And that is the reason why we need staging in this domain in a first place,
to be able to perform transformations.

We are free up to a family of product, sum and PArray type constructors (see
Fig. 2) to define data types and in fact it is our responsibility as a programmer
to define them properly. It is our choice here to represent sparse matrix as a
parallel array of sparse vectors and not dense ones (as they can have consider-
ably different memory usage characteristics). But what the polytypic DSL gives
us is that for any data type we define it provides us with the specialized under-
lying data structure that is built in a generic way from the type definition (see
section 2.4).

A,B = Unit | Int | Float | Boolean // base types

| (A,B) // product (pair of types)

| (A|B) // sum type where (A|B) = Either[A,B]

| PArray[A] // nested array

Fig. 2. Family of element types

We can also use a parallel function inside its own definition i.e. recursively.
Fig. 3 shows how the QuickSort recursive algorithm can be expressed in the
NDP model.

The DSL is purely functional, sequential and deterministic. The program can
be thought of as being executed by the vector virtual machine where each array
primitive is executed as one data-parallel step. We express parallelism (what
we want to be executed in parallel and what we don’t) by using types of an
input data (PArray in this case), intermediate data (i.e. subs which has type
PArray[PArray[Int]]) and also by using combinators over parallel data types
(map, partition).

Note how partition increases the nesting level so that we can express the
idea that both partitions should be executed in parallel using map. And then
results are combined back in a flat array by concat which has the following type

def concat[A:Elem](a: PA[PA[A]]): PA[A]

232 A. V. Slesarenko

trait PArray[T] {

def partition(flags:PA[Boolean]):PA[PA[T]]

}

type PA[A] = PArray[A]

def qsort(xs: PA[Int]): PA[Int] = {

val len = xs.length

if (len <= 1) xs

else {

val pivot = xs(len / 2)

val less = xs map { x ⇒ x < pivot }

val subs = xs.partition(less)

val sorted = subs map { sub ⇒ qsort(sub) }

concat(sorted)

}

}

Fig. 3. Parallel QuickSort

The point is that concat is a constant-time operation, and that is possible
because the representation of the type PA[PA[A]] is specially choosen to support
this. You can look at the Fig. 7 and probably guess how concat is implemented.

The implicit annotation A:Elem expresses a requirement that the type pa-
rameter A should be an instance of the type-class Elem[A] [7], which means, as
we will see later, that A is either built by using products, sum, and PArray con-
structors, or it is a user-specific data type isomorphic to some B:Elem. It is not
just any user defined Scala type but any Scala type can be made into type-class
Elem by providing an isomorphism.

We systematically use the techniques described in [7] to implement polytyp-
ism in our DSL. In particular, in the section 2 we will see how we can define
generic functions once and for all instances of the type-class Elem.

1.2 Adding More Types

If we limit the typing capabilities of the DSL to just the types shown in Fig. 2
we still be possible to cover many practical cases. It is limitied approach though,
since we cannot define recursive data types in this way due to the limitations
imposed by the Scala language itself. And it is not convenient for the user.

To both overcome this limitation and increase typing capabilities of the DSL
we make it possible to extend the family of types shown in Fig. 2 with any user-
specific type defined in Scala. The key point is to be able to make any such type
U an instance of type-class Elem. The idea is to define a canonical3 isomorphism
(iso for short) between U and some existing instance A:Elem. This finally ensures

3 Canonical isos are special because they are uniquely determined by the types in-
volved, that is, there is at most one canonical iso between two polymorphic type
schemes.

Lightweight Polytypic Staging of DSLs in Scala 233

that every user-specific type is represented by an isomorphic view type [15]. It
suffices to define a function on view types (and primitive or abstract types such
as Int and Boolean) in order to obtain a function that can be applied to values
of arbitrary data types.

Consider as an example the definition of the Point type shown in Fig. 4.
Given a user-specific type (Point in this case) all we need to do is to define an
instance of Iso[A,B] type-class (see IsoPoint) witnessing that Point is canonically
representable in terms of already defined instances of the Elem type-class.

case class Point(x: Int, y: Int)

implicit object IsoPoint extends Iso[(Int, Int), Point] {

def to = (p: (Int, Int)) ⇒ Point(p._1, p._2)

def from = (p: Point) ⇒ (p.x, p.y)

}

def distance(p1: Point, p2: Point): Float = {

val dx = p2.x - p1.x

val dy = p2.y - p1.y

sqrt(dx * dx + dy * dy)

}

def minDistance(ps: PArray[Point]): Float =

min(for (p <- ps) yield distance(Point(0,0), p))

case class Circle(loc: Point, r: Int)

implicit object IsoCircle extends Iso[(Point, Int), Circle] {

def from = (c: Circle) ⇒ (c.loc, c.r)

def to = (c: (Point, Int)) ⇒ Circle(c._1, c._2)

}

Fig. 4. User-specific data type

Once the Point type is made an instance of the Elem type-class via isomor-
phism it can in turn be used to both define other user-specific types and partic-
ipate in the isomorphims definitions for those types as it is shown in Fig. 4. We
describe the design of these features in section 4.

In our polytypic staging framework we are able to give both evaluation and
staging interpretation of all the examples discussed so far. This is described in
sections 3 and 4.

1.3 Outline

This paper is organized as follows. Section 2 briefly introduces the theoretical
foundations and techniques we use in our impelemtation. Section 3 shows the
design of the polytypic staging framework. Section 4 describes our handling of
user-specific data types by extending the polytypic staging framework with the
generic views on data types. Related work and conclusions are given in Section 5.

234 A. V. Slesarenko

2 Foundations of our approach

2.1 Polymorphic Embedding of DSLs

It is well known that a domain specific language (DSL) can be embedded in an
appropriate host language [16]. When embedding a DSL in a rich host language,
the embedded DSL (EDSL) can reuse the syntax of the host language, its module
system, typechecking(inference), existing libraries, its tool chain, and so on.

In pure embedding (or shallow embedding) the domain types are directly
implemented as host language types, and domain operations as host language
functions on these types. This approach is similar to the development of a tradi-
tional library, but the DSL approach emphasizes the domain semantics: concepts
and operations of the domain in the design and implementation of the library.

Because the domain operations are defined in terms of the domain semantics,
rather than the syntax of the DSL, this approach automatically yields compo-
sitional semantics with its well-known advantages, such as easier and modular
reasoning about programs and improved composability. However, the pure em-
bedding approach cannot utilize domain semantics for optimization purposes
because of tight coupling of the host language and the embedded one.

Recently, polymorphic embedding - a generalization of Hudaks approach - was
proposed [14] to support multiple interpretations by complementing the func-
tional abstraction mechanism with an object-oriented one. This approach intro-
duces the main advantage of an external DSL, while maintaining the strengths
of the embedded approach: compositionality and integration with the existing
language. In this framework, optimizations and analyses are just special inter-
pretations of the DSL program.

Considering advantages of the polymorphic embedding approach we employ
it in our design. For details we refer to [14]. Conside the following example

type Rep[A]

trait PArray[A]

type SparseVector = PArray[(Int,Float)]

type Vector = PArray[Float]

def sparseVectorMul(sv: Rep[SparseVector], v: Rep[Vector]) =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

On the DSL level we use product, sum and PArray type constructors and
express domain types as Scala’s abstract types (see SparseVector). Moreover,
we lift all the functions over abstract type constructor Rep. This is important
because later we can provide concrete definitions yielding specific implementa-
tions.

Our sequential implementation (we call it simulation) is implemented by
defining Rep as

type Rep[A] = A

And in our staged implementation (we call it code generation) is implemented
by defining Rep as

type Rep[A] = Exp[A]

Lightweight Polytypic Staging of DSLs in Scala 235

where Exp is a representation of terms evaluating to values of the type A. Later
we will see how it is defined in LMS framework.

The ultimate goal is to develop a polymorphically embedded DSL in the Scala
language in such a way that the same code could have two different implementa-
tions with equivalent semantics. And thus we would benefit from both simulation
(evaluation for debugging) and code generation (for actual data processing).

2.2 Generic programming

In addition to the polymorphic embedding technique, we also need a couple of
others that were recently developed in the area of generic programming. We shall
briefly overview them here starting with the notion of Phantom Types [6,11].4

Consider the definition of a data type (in a Haskell-like notation) shown in
Fig. 5.

data Type τ =

RInt with τ = Int

| RChar with τ = Char

| RPair (Type α) (Type β) with τ = (α, β)
| RList (Type α) with τ = [α]

Fig. 5. Type descriptors as phantom types

Types defined this way have some interesting properties:

– Type is not a container type: an element of Type Int is a runtime represen-
tation of type Int; it is not a data structure that contains integers.

– We cannot define a mapping function (α→ β) → (Type α → Type β) as for
many other data types.

– The type Type β might not even be inhabited: there are, for instance, no
type descriptors of type Type String

It has been shown [11] that phantom types appear naturally when we need to
represent types as data at runtime. In our DSL we make use of phantom types
to represent types of array elements as runtime data (see Fig. 10) and staged
values (see section 3).

Runtime type representations have been proposed as a lightweight founda-
tion of generic programming techniques [10]. The idea is to define a data type
whose elements (instances) represent types of data that we want to work with.
A Generic Function is one that employs runtime type representations and is
defined by induction on the structure of types.

4 We could have used a more general notion of GADT [18] but we stick with phantom
types as they are simplier and well enought for our presentation.

236 A. V. Slesarenko

Consider again the definition of the data type Type in Fig. 5. An element
rt of type Type τ is a runtime representation of τ . For example, following is a
representation of type String.

rString :: Type String

rString = RList RChar

A generic function pattern matches on the type representation and then takes
the appropriate action.

data Bit = 0|1

compress :: forall τ.Type τ → τ → [Bit]

compress (RInt) i = compressInt i

compress (RChar) c = compressChar c

compress (RList ra) [] = 0:[]

compress (RList ra) (a : as) = 1 : compress ra a ++ compress (RList ra) as

compress (RPair ra rb) (a, b) = compress ra a ++ (compress rb b)

We assume here that two functions are given
compressInt :: Int → [Bit]

compressChar :: Char → [Bit]

2.3 Generic programming in Scala

Generic functions can be encoded in Scala using an approach suggested in [23].
Fig. 6 shows the encodings in Scala for the above function compress.5

trait Rep[A]

implicit object RInt extends Rep[Int]

implicit object RChar extends Rep[Int]

case class RPair[A,B](ra:Rep[A], rb:Rep[B]) extends Rep[(A,B)]

implicit def RepPair[A,B](implicit ra:Rep[A], rb: Rep[B]) = RPair(ra,rb)

def compress[A](x:A)(implicit r:Rep[A]):List[Bit] = r match {

case RInt ⇒ compressInt (x)

case RChar ⇒ compressChar (x)

case RPair(a, b) ⇒ compress(x._1)(a) ++ compress(x._2)(b)

}

Fig. 6. Generic function in Scala

Traditionally, generic (polytypic) functions are defined for a family of types
built out of sums and products. We add PArray to the family of representation
types. Definition of a generic function should be given for each representation

5 The definition of compress for the case RList is straightforward and we leave it as
an exercise.

Lightweight Polytypic Staging of DSLs in Scala 237

type as shown in Fig. 6. For all other types it is usually required to give an iso-
morphic representation of the type in terms of the above fixed set of constructors.
We give an account of isomorphic representations in section 4.1.

In the impelementation of the DSL we use similar techniques and type rep-
resentations to implement array combinators as generic functions. But because
parallel arrays that we discuss here are all implemented using type-indexed data
types (also known as non-parametric representations) we follow a different pat-
tern to introduce generic functions in our library.

2.4 Type-indexed data types

A type-indexed data type is a data type that is constructed in a generic way from
an argument data type. It is a generic technique and we briefly introduce it here
adapted for our needs. For a more thorough treatment the reader is referred
to [13].

In our example, in the case of parallel arrays, we have to define an array type
by induction on the structure of the type of an array element.

Suppose we have a trait PArray[T] (to represent parallel arrays) and conve-
nience type synonym PA[T] defined as

trait PArray[A] // PArray stands for Parallel Array

type PA[A] = PArray[A]

For this abstract trait we want to define concrete representations depending
on the underlying structure of the type A of the array elements. As shown in Fig. 2
we consider a family of types constructed by the limted set of type constructors.

Thus, considering each case in the definition above, we can define a repre-
sentation transformation function RT (see Fig. 7) that works on types. It was
shown [4] how such array representations enable nested parallelism to be imple-
mented in a systematic way.

RT: * → *

RT [[PArray[Unit]]] = UnitArray(len:Int)

RT [[PArray[T]]] = BaseArray(arr:Array[T])

where T = Int | Float | Boolean

RT [[PArray[(A,B)]]] = PairArray(a: RT [[PArray[A]]],b:RT [[PArray[B]]])
RT [[PArray[(A|B)]] = SumArray(flags: RT [[PArray[Int]]],

a: RT [[PArray[A]]],
b: RT [[PArray[B]]])

RT [[PArray[PArray[A]]]] = NArray(values: RT [[PArray[A]]],
segments: RT [[PArray[(Int,Int)]]])

Fig. 7. Representation Transformation

Below we show how to use Scala’s case classes to represent structure nodes
of a concrete representation (UnitArray, BaseArray, etc.) and how to keep the

238 A. V. Slesarenko

data values (data nodes) unboxed in Scala arrays (Array[A]). A graphical illus-
tration of these representations is shown in Fig. 8. For details related to these
representations we refer to [4].

Fig. 8. Type-indexed representations of PArray

Consider as an example a representation of a sparse matrix rendered by
applying RT function to Matrix type. It is shown graphically in Fig. 9.

2.5 Type-indexed arrays in the DSL’s implementation

To employ the above techniques in the design of our DSL lets first represent the
type structure of an array element type by using the Scala encodings of generic
functions described above (see [27] for details).

Note, that in Scala we can equip type representations with generic functions
(replicate in this sample) by using inheritance. Moreover, we can use a concrete

Lightweight Polytypic Staging of DSLs in Scala 239

type VectorElem = (Int,Float)

type SparseVector = PArray[VectorElem]

type Matrix = PArray[SparseVector]

Fig. 9. Sparse matrix representation

array representation (PairArray) in the implementation for a particular type case
(pairElement). All these lead to a fully generic while still statically typed code.

To define generic (polytypic) functions over our arrays we first declare them
in the PArray trait

trait PArray[A] {

def length: Int

def map[R:Elem](f: A ⇒ R): PA[R]

/* and other methods */

}

And then we implement these abstract methods in concrete array classes
shown in Fig. 11. Note how the implementation changes depending on the type
of an array element. Each method declared in the PArray trait is a type indexed
function and each implementation in a concrete array class is an implementation
of the function for the particulay type case.

2.6 Lightweight Modular Staging (LMS)

So far, given a type A of an array element we know how to build a type-indexed
representation of the array using RT function thus yielding RT [[PA[A]]] type.
Next, we have seen how to encode in our DSL these array representations to-
gether with polytypic operations over them. These techniques are used in our
unstaged implementation of nested data parallelism (as described in [27]).

As it was mentioned before, the unstaged implementation is not intended to
be efficient, rather, it should be simple and straightforward, as it is supposed
to be used for debugging (in the aforementioned simulation mode). To enable

240 A. V. Slesarenko

type Elem[A] = Element[A] // type synonim

trait Element[A] { // type descriptor for type A

def replicate(count: Int, v: A): PA[A]

def fromArray(arr: Array[A]): PA[A]

}

class BaseElement[T] extends Element[T] {

def fromArray(arr:Array[T]) = BaseArray(arr)

def replicate(len:Int, v:T) = BaseArray(Array.fill(len)(v))

}

implicit val unitElem: Elem[Unit] = new UnitElement

implicit val intElem: Elem[Int] = new BaseElement[Int]

implicit val floatElem: Elem[Float] = new BaseElement[Float]

implicit def pairElem[A,B](implicit ea:Elem[A], eb:Elem[B]) =

new Element[(A,B)] {

def replicate(count: Int, v: (A,B)) =

PairArray(ea.replicate(count, v._1),

eb.replicate(count, v._2))

}

Fig. 10. Representation of the types of array elements

a parallel and efficient implementation, we employ a deep polymorphic embed-
ding technique, namely a particular instance of it known as Lightweight Modular
Staging (LMS) [25].

In the name, Lightweight means that it uses just Scala’s type system. Modular
means that we can choose how to represent intermediate representation (IR)
nodes, what optimizations to apply, and which code generators to use at runtime.
And Staging means that a program instead of executing a value, first, produces
other (optimized) program (in a form of a program graph) and then executes
that new program to produce the final result.

Consider the method matrixVectorMul in Fig. 1 and types Matrix, Vector

that were used in the declaration. In the LMS framework, in order to express
staging, we are required to lift some types using the type constructor Rep[_]

and use Rep[Matrix], Rep[Vector], etc. In fact, sparseVectorMul should have
been declared like this to enable polymorphic embedding

def sparseVectorMul(sv: Rep[SparseVector], v: Rep[Vector]): Rep[Float] =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

In the case of unstaged interpretation we define Rep as
type Rep[A] = A

which yields a unstaged implementation of the method above with the usual
evaluation semantics of the host language (i.e. Scala). On the other hand, LMS
is a staging framework and we want to build IR instead of just evaluating the
method. To achieve this, LMS defines Rep as shown in Fig. 12.

This, in effect, enables lifting of the method bodies too, so that its evaluation
yields a program graph. Lifting of expressions is performed when the code is

Lightweight Polytypic Staging of DSLs in Scala 241

type PA[A] = PArray[A] // convenience type synonim

trait PArray[A]

case class UnitArray(len: Int) extends PArray[Unit]{

def length = len

def map[R:Elem](f: Unit⇒ R) = element[R].replicate(len, f(()))

}

case class BaseArray[A:Elem](arr: Array[A]) extends PArray[A] {

def length = arr.length

def map[R:Elem](f: A ⇒ R) =

element[R].tabulate(arr.length)(i ⇒ f(arr(i)))

}

case class PairArray[A:Elem,B:Elem](a:PA[A],b:PA[B]) extends PArray[(A,B)]{

def length = a.length

def map[R:Elem](f: ((A,B)) ⇒ R) =

element[R].tabulate(length)(i ⇒ f(a(i),b(i)))

}

case class NArray[A:Elem](values: PA[A], segs: PA[(Int,Int)])

extends PArray[PArray[A]] {

def length = segs.length

def map[R:Elem](f: PA[A] ⇒ R): PA[R] =

element[R].tabulate(length)(i ⇒ {

val (p,l)= segs(i); f(values.slice(p,l))

})

}

Fig. 11. Polytypic PArray methods

compiled using the Scala-Virtualized compiler [2]. For example, consider the
following lines of code:

val x: Rep[Int] = 1

val y = x + 1

There is no method + defined for Rep[Int], but we can define it on DSL level
without providing any concrete implementation as follows

trait IntOps extends Base {

def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

When such a declaration is in the scope of x+1 then + is replaced by Scala
compiler with infix_+(x, toExp(1)). In a staging context infix_+ is defined so
that it generates an IR node of the operation

trait IntOpsExp extends BaseExp with IntOps {

case class IntPlus(x:Exp[Int],y:Exp[Int]) extends Def[Int]

def infix_+(x: Exp[Int], y: Exp[Int]) = IntPlus(x,y)

}

242 A. V. Slesarenko

trait BaseExp extends Base with Expressions {

type Rep[T] = Exp[T]

}

trait Expressions {

abstract class Exp[T]

case class Const[T](x: T) extends Exp[T]

case class Sym[T](n: Int) extends Exp[T]

abstract class Def[T] // operations (defined in subtraits)

class TP[T](val sym: Sym[T], val rhs: Def[T])

var globalDefs: List[TP[_]] = Nil

def findDefinition[T](d: Def[T]): TP[T] =

globalDefs.find(_.rhs == d)

def findOrCreateDefinition[T](d: Def[T]): TP[T] =

findDefinition(d).getOrElse{

createDefinition(fresh[T],d)

}

implicit def toExp[T](x: T): Exp[T] = Const(x)

implicit def toExp[T](d: Def[T]): Exp[T] =

findOrCreateDefinition(d).sym

}

Fig. 12. How Rep[T] is defined in LMS

Here IntPlus is an IR node that represents + in the program graph. Note
that infix_+ should return Rep[Int] while IntPlus extends Def[Int], so implicit
conversion

implicit def toExp[T](d: Def[T]): Exp[T] = findOrCreateDefinition(d).sym

which is defined in Expressions trait is called here thus providing graph building
machinery. We refer to [25] for detailed explanation of how the LMS works.

3 Polytypic Staging

We have shown that for each type A of array element we use the type repre-
sentation function RT to build type-indexed representation of PArray[A] type.
We also showed how we define PArray’s methods using polytypic techniques so
that once defined they work for all types in the family. Thus, emphasizing the
domain-specific nature of our library and considering its polytypic design we can
think of it as a polytypic DSL.

If we want to deeply embed our polytypic DSL in Scala by applying poly-
morphic embedding techniques in general and the LMS framework in particular
we need to answer the question: How are we going to lift the type-indexed types
along with the polytypic functions in the Rep world?. In this section we describe
the Polytypic Staging, our approach to a deep embedding of polytypic DSLs.
By design, our framework:

Lightweight Polytypic Staging of DSLs in Scala 243

1. is an extension of the LMS framework
2. respects the type-indexed representations described before
3. adds an additional dimension of flexibility to the LMS framework by making

it polytypic
4. behaves as core LMS in the non-polytypic case

3.1 Staged Values

To be consistent with the LMS framework, we do not change the original defi-
nition of Rep, but we need to make some extensions to account for a polytypic
case, they are shown on the following figure in italicized bold.

type Rep[T] = Exp[T]

abstract class Exp[+T] {

def Type: Manifest[T] = manifest[T] // in LMS

def Elem : Elem[T] // added in Scalan
}

case class Sym[T: Elem](val id: Int) extends Exp[T] {

override def Elem = element[T]

}

case class Const[+T:Manifest](x: T) extends Def [T]
def element[T] = implicitly[Element[T]]

These additions ensure that each staged value has a runtime type descriptor
that we use to implement polytypism. Whenever we construct a symbol we have
to provide implicitly or explisitly its type descriptor. We also treat constants as
definitions (more precisely as operations of arity 0), and we can do it without a
loss of generality since given a symbol we can always extract its right-hand-side
definition by using the Def extractor [22] defined in the core LMS framework.

object Def {

def unapply[T](e: Exp[T]): Option[Def[T]] = e match {

case s@Sym(_) ⇒ findDefinition(s).map(_.rhs)

case _ ⇒ None

}

}

Treating constants as definitions in our implementation of LMS means that any
lifted value of the type Rep[T] is always an instance of Sym[T] which simplifies
our implementation.

3.2 Staged Type Descriptors

In the staged context the descriptors of types of array elements shown in Fig. 10
remain unchanged. This means that we can keep our type representation schema
with one adaptation: we need to lift all the methods of the Element[T] trait.

Note that even after the lifting of the methods their bodies remain literally
the same. This is achieved first, by a systematic use of the Rep[T] type con-
structor in signatures of classes and methods and second, by using the Scala

244 A. V. Slesarenko

type Elem[A] = Element[A]

trait Element[A] {

def replicate(count: Rep[Int], v: Rep[A]): PA[A]

def fromArray(arr: Rep[Array[A]]): PA[A]

}

class BaseElem[T] extends Element[T] {

def fromArray(arr: Rep[Array[A]]) = BaseArray(arr)

def replicate(len: Rep[Int], v: Rep[A]) =

BaseArray(ArrayFill(len, v))

}

implicit val unitElem: Elem[Unit] = new UnitElem

implicit val intElem: Elem[Int] = new BaseElem[Int]

implicit val floatElem:Elem[Float]= new BaseElem[Float]

implicit def pairElem[A,B](implicit ea: Elem[A], eb: Elem[B]) =

new Element[(A,B)] {

def replicate(count:Rep[Int], v:Rep[(A,B)]): PA[(A,B)] =

PairArray(ea.replicate(count, v._1), eb.replicate(count, v._2))

}

Fig. 13. Staged type representations

idiom known as ”pimp my library” to add methods that work with values lifted
over Rep[T]. For example, consider expressions v._1 and v._2 in Fig. 13, whose
implementation is shown in Fig. 14.

def unzipPair[A,B](p: Rep[(A,B)]): (Rep[A],Rep[B]) = p match {

case Def(Tup(a, b)) ⇒ (a, b)

case _ ⇒ (First(p), Second(p))

}

class PairOps[A:Elem,B:Elem](p: Rep[(A,B)]) {

def _1: Rep[A] = { val (a, _) = unzipPair(p); a }

def _2: Rep[B] = { val (_, b) = unzipPair(p); b }

}

implicit def pimpPair[A:Elem,B:Elem](p: Rep[(A,B)]) = new PairOps(p)

case class Tup[A,B](a: Exp[A], b: Exp[B]) extends Def[(A,B)]

case class First[A,B](pair: Exp[(A,B)]) extends Def[A]

case class Second[A,B](pair: Exp[(A,B)]) extends Def[B]

Fig. 14. Staging methods using ’Pimp My Library’

We use the core LMS’s Def extractor to implement the staging logic. Given a
lifted pair (p: Rep[(A,B)]) we either successfully extract a Tup(a,b) constructor
and return the original constituents of the pair, or we emit the new IR nodes
thus deferring the tuple deconstruction until later stages. Figures above show

Lightweight Polytypic Staging of DSLs in Scala 245

how we implement our polytypic staging framework on top of the core LMS, but
as we will see in the next section, to lift type-indexed data type representations
of PArray[A] over Rep[_] and to stage type-indexed (polytypic) array methods
we still need to introduce some extensions above the core LMS.

3.3 Staged Type-Indexed Data Types

Polytypism in our DSL is focused around the PArray[A] trait (which on the DSL
level represents parallel arrays) and every value of the PArray[A] type has a
type-indexed representation that is built by induction on the structure of A. We
also extensively use a convenience type synonym PA defined as follows
trait PArray[A]

type PA[A] = Rep[PArray[A]]

Thus, in a staged context, PA is no longer a synonym of PArray and now it is
a synonym of a lifted PArray. In other words PA[T] is a lifted value of array
with elements of type T. It is not a key point in our implementation but the
introduction of PA[A] simplifies our presentation (and in fact greatly simplifies
the code of the library).

Let us use the code in Fig. 13 to describe how values of the type PArray

are staged (or lifted) in our polytypic staging framework. First, notice that the
replicate method of pairElem produces a value of the PA[(A,B)] type which is a
synonym of Rep[PArray[(A,B)]] and so it is a lifted PArray[(A,B)] and in LMS
such values are represented by symbols of type Sym[PArray[(A,B)]]. Thus having
a value of type PA[(A,B)] we can think of it as a value of some symbol of type
Sym[PArray[(A,B)]]. Next, recall that in LMS we get lifted values of the type
Rep[T] by the following implicit conversion (recall also that Rep[T] = Exp[T])

implicit def toExp[T](d: Def[T]): Exp[T] = findOrCreateDefinition(d).sym

The conversion is automatically inserted by the compiler, it converts any
definition to a symbol and builds a program graph as its side effect. We employ
this design by deriving all classes that represent parallel arrays from Def[T] with
appropriate T so that they can be first, converted to symbols and second, added
to the graph as array construction nodes. As an example see Fig. 13 where
PairArray is returned by the method replicate. The definitions to represent
arrays are shown in Fig. 15.6

Compare these classes with those shown in Fig. 11. and note how class signa-
tures became lifted either explicitly by using the Rep[T] constructor or implicitly
by redefining the PA[T] synonym as Rep[PArray[A]]. Moreover, the type repre-
sentation transformation function TR shown in Fig. 7 also remains almost the
same, but works with lifted types (see Fig. 16). This similarity is due to the
polymorphic embedding design of our approach where we want to give different
implementations to the same code.

Note, how we mix-in the PArray[A] trait into every graph node of the type
PADef[A]. In this way, when we stage (or lift over Rep) a type-indexed represen-
tation of PArray[T] we both create the data structure using our concrete array

6 Please, refer to the source code for the case of SumArray.

246 A. V. Slesarenko

abstract class PADef[A] extends Def[PArray[A]] with PArray[A]
case class UnitArray(len: Rep[Int]) extends PADef[Unit] {

def map[R:Elem](f: UnitRep ⇒ Rep[R]): PA[R] =

element[R].replicate(len, f(toRep(())))

}

case class BaseArray[A:Elem](arr: Rep[Array[T]]) extends PADef[A] {

def map[B:Elem](f: Rep[A] ⇒ Rep[B]) =

element[B].tabulate(arr.length)(i ⇒ f(arr(i)))

}

case class PairArray[A:Elem,B:Elem](a:PA[A],b:PA[B]) extends PADef[(A,B)]{

def map[R:Elem](f: Rep[(A,B)]⇒ Rep[R]): PA[R] = {

element[R].tabulate(length)(i ⇒ f(a(i),b(i)))

}

}

case class NArray[A:Elem](arr: PA[A], segments:PA[(Int,Int)])

extends PADef[PArray[A]] {

def map[R:Elem](f: PA[A] ⇒ R): PA[R] =

element[R].tabulate(length)(i ⇒ {

val Pair(p,l) = segments(i); f(arr.slice(p,l))

})

}

Fig. 15. Array classes as graph nodes (Defs)

classes and at the same time we build nodes of the program graph. This is an-
other key difference from the LMS framework. In the LPS design some nodes of
the graph can have a behavior.

The staged representation transformation (SRT) is shown in Fig. 16. The
function L is a mapping of types of concrete arrays to the types of staged values.

A graphical illustration of these representations in a form of a program graph
is shown in Fig. 17 where we use the following methods that allow us to construct
new arrays:

def fromArray[T:Elem](x: Rep[Array[T]]): PA[T] =

element[T].fromArray(x)

def replicate[T:Elem](count: Rep[Int], v: Rep[T]):PA[T]=

element[T].replicate(count, v)

By a staged context (when type Rep[A] = Exp[A]) it is possible to achieve
an effect of constant propagation and a limited form of partial evaluation by
applying domain-specific rewritings (see Section 4). Our experiments show that if
all the input data of the function is known at staging time, our rewriting method,
while simple enough, is able to fully evaluate the function. It is illustrated in
Fig. 17 where the array building expressions are evaluated to a type-indexed
representation of the resulting arrays and that representation only contains data
arrays in Const nodes and concrete array nodes form Fig. 15 that represent
PArray[A] values.

Lightweight Polytypic Staging of DSLs in Scala 247

L, SRT: * → *

L[[UnitArray(len: Rep[Int])]] = Rep[PArray[Unit]]

L[[BaseArray(
arr:Rep[Array[T]])]] = Rep[PArray[T]]

where T=Int|Float|Boolean

L[[PairArray(a:PA[A], b:PA[B])]] = Rep[PArray[(A,B)]]

L[[SumArray(flags:PA[Boolean],
a:PA[A], b: PA[B])]] = Rep[PArray[(A|B)]]

L[[NArray(
values:PA[A],

segs:PA[(Int,Int)])]] = Rep[PArray[PArray[A]]]

SRT [[PArray[Unit]]] = UnitArray(len:Rep[Int])

SRT [[PArrya[T]]] = BaseArray(arr:Rep[Array[T]])

where T = Int|Float|Boolean

SRT [[PArray[(A,B)]]] = PairArray(a:L[[SRT [[PArray[A]]]]],
b:L[[SRT [[PArray[B]]]]])

SRT [[PArray[(A|B)]]] = SumArray(

flags: L[[SRT [[PArray[Int]]]]],
a: L[[SRT [[PArray[A]]]]],
b: L[[SRT [[PArray[B]]]]])

SRT [[PArray[PArray[A]]]] = NArray(

values : L[[SRT [[PArray[A]]]]],
segments: L[[SRT [[PArray[(Int,Int)]]]]])

Fig. 16. Staged Representation Transformation

3.4 Staged Polytypic Functions

The same way as we lift the methods in the type descriptors (types derived from
Element[T] and shown in Fig. 13) we can lift the methods in the concrete array
classes (those derived from PArray[T] and shown in Fig. 15).

Compare this code with the non-staged version in Fig. 11 and note how the
signatures are all lifted over Rep and the bodies of the methods remain literally
unchanged. It is interesting that polymorphic embedding allows to share the
same code for unstaged and staged implementation even in the library itself
which makes the design very flexible.

As a not very trivial example of staging, we show in Fig. 18 a program graph
that we get by staging of the function sparseVectorMul. The Lambda(x,exp) is a
representation in the graph of a lambda abstraction where x is a symbol that
represents the variable and exp is a symbol that represent the body of the lambda
term.

248 A. V. Slesarenko

val rowInds = fromArray(Array(0, 1))

val rowVals = replicate(2, 0.5f)

val sparseRow = rowInds.zip(rowVals)

val matr = replicate(2, sparseRow)

Fig. 17. Array constructors and the resulting graph

4 User-Specific Data Types

4.1 Isomorphic Representations

In this section we describe how to add any user-specific data type to our frame-
work. The key point is to be able to make any such type U an instance of typeclass
Elem. The idea is to define isomorphism between U and some existing instance
A:Elem. We extend our family of array element types as it is shown in Fig. 19.

In other words, type U can be regarded as belonging to the type-class Elem if
there is an isomorphism between U and some A:Elem. Type Iso[A,B] is defined
like this

trait Iso[A,U] {

def eA: Elem[A] // type descriptor for A

def eU: Elem[U] // type descriptor that is built with this Iso

def from: U ⇒ A // unstaged morphisms

def to: A ⇒ U

def fromStaged: Rep[U] ⇒ Rep[A] // staged morphisms

def toStaged: Rep[A] ⇒ Rep[U]

}

The reason we have separate versions for unstaged and staged isomorphism
is that in a staged context we need to have an unstaged version of isos too.

Next, we need to extend the representation transformation for both unstaged
(defined in Fig. 7) and staged (defined in Fig. 16) versions. Corresponding ex-
tensions are shown in Fig. 20.

Lightweight Polytypic Staging of DSLs in Scala 249

Fig. 18. Program graph for sparceVectorMul

Remember, that for every type A we need a runtime type descriptor Elem[A]

to be able to create arrays of type PArray[A]. For the case of user-specific data
type U the type descriptor is shown below

implicit def viewElement[A,U](implicit iso: Iso[A,U]): Elem[U] =

new Element[U] {

def replicate(count: Rep[Int], v:Rep[U]): PA[U] =

ViewArray(iso.eA.replicate(count, iso.fromStaged(v)), iso)

}

We use the type descriptor of an representation type iso.eA to build an
actual array and wrap it with ViewArray to get type-indexed representation for
PArray[U] (see Fig. 20). If the descriptor iso.eA itself or in some part is a result of
viewElement (so it is built from user-specific type) then we have nested structure
of ViewArray wrappers. Isomorphism lifting transformation (see 4.3) is able to

250 A. V. Slesarenko

A,B = Unit | Int | Float | Boolean // base types

| (A,B) // product (pair of types)

| (A|B) // sum type where (A|B) = Either[A,B]

| PArray[A] // nested array

| U if exist Iso[A,U] for some A : Elem

Fig. 19. User-specific type as array element type

RT,L, SRT: * → *

RT [[PArray[U]]] = ViewArray(arr: RT [[PArray[A]]], iso: Iso[A,U])

if exists unique Iso[A,U] for some A:Elem

L[[ViewArray(arr: PA[A], iso:Iso[A,U])]] = Rep[PArray[U]]

SRT [[PArray[U]]] = ViewArray(arr: L[[SRT [[PArray[A]]]]], iso: Iso[A,U])

if exists unique Iso[A,U] for some A:Elem

Fig. 20. Representation transformation for user-specific types

eliminate this nesting, by combining corresponding morphisms (fromStaged in
this case).7

To complete our presentation of user-specific types we show an implementa-
tion of function map below. Notice the usage of the isomorphism in the body of
the function.

case class ViewArray[A,U](arr: PA[A], iso: Iso[A,U]) extends PArray[U] {

def map[R:Elem](f: Rep[U] ⇒ Rep[R]): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒ f(iso.toStaged(arr(i))))

}

}

4.2 Samples

Let us see how it works on a simple example. Consider user-specific data types
along with their isomorphic representations shown in Fig. 21. Given that def-
initions we can build for example an array of circles by applying one of the
constructor functions. (see Fig. 22)

4.3 Isomorphism lifting transformation

Given function f : U1 → U2 between two user-specific types, the isomorphims
lifting is a rewrite-based transformation that, when applied at graph generation

7 We claim, but have not yet proved this.

Lightweight Polytypic Staging of DSLs in Scala 251

case class ExpPoint(x: Rep[Int], y: Rep[Int]) extends Def[Point]

object ExpPoint {

class IsoExpPoint extends Point.IsoPoint {

override def fromStaged = (p: Rep[Point]) ⇒ (p.x, p.y)

override def toStaged = (p: Rep[(Int, Int)]) ⇒ ExpPoint(p._1, p._2)

}

}

case class ExpCircle(loc: Rep[Point], rad:Rep[Int]) extends Def[Circle]

object ExpCircle {

class IsoExpCircle extends Circle.IsoCircle {

override def fromStaged = (x: Rep[Circle]) ⇒ (x.loc, x.rad)

override def toStaged = (x: Rep[(Point, Int)]) ⇒
ExpCircle(x._1, x._2)

}

}

Fig. 21. Sample user-specific data types

val circles = replicate(2, Circle(Point(10, 20), 30))

Fig. 22. Isomorphisms lifted out from domain code

stage, transforms the function f in the composition toU2 ◦ f0 ◦ fromU1, where
f0 : U0

1 → U0
2 and U0

1 , U
0
2 - canonical isomorphic representations of the types U1

and U2 respectively.
To perform this transformation we need to combine isos in different ways.

Below we show a series of functions that build isos from isos.
For each instance A:Elem we have identity isomorphism

def identityIso[A:Elem]: Iso[A, A] = new Iso[A,A] {

def from = (x: A) ⇒ x

def to = (x: A) ⇒ x

def fromStaged = (x: Rep[A]) ⇒ x

def toStaged = (x: Rep[A]) ⇒ x

}

For each iso we can build its nested version

def nestIso[A,B](iso: Iso[A,B]) = new Iso[PArray[A], PArray[B]] {

252 A. V. Slesarenko

def from = (bs: PArray[B]) ⇒ bs map iso.from

def to = (as: PArray[A]) ⇒ as map iso.to

def fromStaged = (bs: Rep[PArray[B]]) ⇒ bs map iso.fromStaged

def toStaged = (as: Rep[PArray[A]]) ⇒ as map iso.toStaged

}

Given a pair of isomorphisms we can build their product

def pairIso[A1,B1,A2,B2](iso1: Iso[A1,B1], iso2: Iso[A2,B2]) =

new Iso[(A1, A2), (B1,B2)] {

def from = (b: (B1,B2)) ⇒ (iso1.from(b._1), iso2.from(b._2))

def to = (a: (A1, A2)) ⇒ (iso1.to(a._1), iso2.to(a._2))

def fromStaged = (b: Rep[(B1,B2)]) ⇒
(iso1.fromStaged(b._1), iso2.fromStaged(b._2))

def toStaged = (a: Rep[(A1, A2)]) ⇒
(iso1.toStaged(a._1), iso2.toStaged(a._2))

}

And we also can compose

def composeIso[A,B,C](iso2:Iso[B,C], iso1:Iso[A,B]) = new StagedIso[A,C]{

def from = (c: C) ⇒ iso1.from(iso2.from(c))

def to = (a: A) ⇒ iso2.to(iso1.to(a))

def fromStaged = (c: Rep[C]) ⇒ iso1.fromStaged(iso2.fromStaged(c))

def toStaged = (a: Rep[A]) ⇒ iso2.toStaged(iso1.toStaged(a))

}

Note that our staging framework is flexible enough so that we can build fully
generic isomorphism combinators on top of the existing polytypic framework
both for the unstaged and staged versions.

Given iso combinators we can use them to perform isomorphism lifting in our
polytypic staging framework. Since our staging framework is based on LMS we
can use its simple but powerfull enough rewriting method to implement required
transformations on the fly.

One of the benefits that we can get out of deep embedding is the ability
to perform domain-specific optimizations. For instance we can use the staging
time rewrites. Our method of rewriting is very simple and is based on the one
proposed in [25].

The method is based on the fact that every staged operation, which is rep-
resented by a graph node, in terms of the Scala language is represented by de-
scendants of the Def class. Every time a new definition is created it is converted
to the corresponding Exp by the special function shown in Fig. 23

The rewriting works using the following algorithm. If we can find the defi-
nition in the graph, we just return its symbol. Otherwise, we try to rewrite the
Def. If the result of rewrite is not defined then there is no rules that can be
applied so the definition is added to the graph. If the rewrite comes back with
a new symbol then we extract its definition from the graph (by using Def) and
go recursively with the new definition.

Lightweight Polytypic Staging of DSLs in Scala 253

implicit def toExp[T:Elem](d: Def[T]): Exp[T] = findDefinition(d) match {

case Some(TP(s, _)) ⇒ s

case None ⇒
var ns = rewrite(d)

ns match {

case null ⇒
val TP(res, _) = createDefinition(fresh[T], d)

res

case _ ⇒ ns match {

case Var(_) ⇒ ns

case Def(newD) ⇒ toExp(newD)

}

}

}

Fig. 23. Graph building and rewriting algorithm

Rewriting rules that perform isomorphism lifting are shown in Fig. 24.8

5 Conclusions and Related Work

In a traditional multi-stage programming the original program should be rewrit-
ten in a special quotation syntax to get a staged version where computation
and code generation is mixed and expressed explicitly by the programmer. In
this approach the compiler is able to statically ensure that the generated code
is type-safe. Moreover, the staged program is equivalent to original even though
it is partially evaluated at compile time. This compile time guarantees are the
most noticable advantages of multi-staged programming when compared with
our technique. On the other hand, the requirement to rewrite the original pro-
gram in the quotation syntax can be difficult to a non-experienced programmer.

In the lightweight staging approach, which is based on polymorphic embed-
ding, the staging itself is regarded as just a special interpretation of the domain
semantics in addition to the usual interpretation as evaluation. The same code
is interpreted in two different ways, so there is no need for rewriting to get a
staged version. The syntactic overhead of staging is minimal is this case. What
can be considered as disadvantage of the lightweight approach is that there is
no guarantees of correctness that come from the staging framework itself. It is
the responsibility of the author of the DSL to provide such a guarantees. It is
an interesting direction of further research to give a general characterisation of
correctness in lightweight staging context.

At the same time, lightweight staging based on polymorphic embedding by its
definition allows us to implement debugging by simulation. Given two equivalent

8 We only show the rules that demonstrate the usage of the iso combinators. Other
rules can be found in source code.

254 A. V. Slesarenko

override def rewrite[T:Elem](d: Def[T]) = d match {

case ViewArray(Def(ViewArray(arr, iso1)), iso2) ⇒ {

val compIso = composeIso(iso2, iso1); ViewArray(arr, compIso)

}

case NArray(Def(view@ViewArray(a, iso)), segs) ⇒ {

val nested = NArray(a, segs)

ViewArray(nested, nestIso(iso))

}

case PairArray(Def(v1@ViewArray(arr1, iso1)),

Def(v2@ViewArray(arr2, iso2))) ⇒ {

val pIso = pairIso(iso1, iso2)

val arr = PairArray(arr1, arr2)

ViewArray(arr, pIso)

}

case PairArray(Def(v1@ViewArray(arr1, iso1)), arr2) ⇒ {

val iso2 = identityIso

val pIso = pairIso(iso1, iso2)

val arr = PairArray(arr1, arr2)

ViewArray(arr, pIso)

}

case PairArray(arr2, Def(v1@ViewArray(arr1, iso1))) ⇒ {

val iso2 = identityIso

val pIso = pairIso(iso2, iso1)

ViewArray(arr, pIso)

}

case _ ⇒ super.rewrite(d)

}

Fig. 24. Isomorphism lifting rules

interpretations of the DSL, one - evaluation (which is simple), and another -
staged code generation (which can be quite involved), we can debug the program
in simulation mode using evaluation and then by applying staged interpretation
to the same code we can produce executable code to run with real data.

Our experience with embedding of the DSL for nested data parallelism (which
is a polytypic DSL) shows that our approach is

1. practical - allows for creation of high level expressive DSLs where staging is
almost transparent to the user

2. flexible - can be extended in various ways using power of the host language
Scala and user-specific data types

3. lightweight for the user - based on library approach rather than on host
language extension

Isomorphic representations or view types were proposed for Generic Haskell.
Our lifting transformation corresponds (in spirit) to bimap function described
in [15]. We have not proved it yet but there are reasons to believe that we will
be able to fully implement the lifting transformation as a set or rewrite rules.

Lightweight Polytypic Staging of DSLs in Scala 255

Clear separation of a domain code and isomorphisms in an intermediate
representation (IR graph) can be usefull for analisys and transformation as they
belong to the different domains with different algebraic properties.

In this paper we have described a new staging technique that can be used to
develop embedded DSLs for different polytypic domains, - the domains that ad-
mit specification and formalization in terms of generic (polytypic) programming.
To our best knowledge this the first attempt to state this problem explicitly.

Staging approach as it is described here is a front-end of the compiler tool-
chain. In polytypic context it opens up many questions both for research and
software engineering. That is also true for rewriting rules. Our experiments with
rewritings in NDP domain show that even simple rewriting strategy combined
with domain knowledge can exhibit radical optimizations not possible in the
context of general purpose language. We regard this questions as directions of
the future research.
Acknowledgments
The author expresses his gratitude to Sergei Romanenko, Andrei Klimov and
other participants of Refal seminar at Keldysh Institute for numerous useful
comments and fruitful discussions of this work.

References

1. Eclipse. http://eclipse.org/.
2. Philipp Haller Adriaan Moors, Tiark Rompf and Martin Odersky. Tool Demo:

Scala-Virtualized, 2011.
3. Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, Cambridge,

MA, USA, 1990.
4. Manuel M. T. Chakravarty and Gabriele Keller. An Approach to Fast Arrays in

Haskell, 2002.
5. Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele

Keller, and Simon Marlow. Data Parallel Haskell: a status report. In In DAMP
2007: Workshop on Declarative Aspects of Multicore Programming. ACM Press,
2007.

6. James Cheney and Ralf Hinze. Phantom types, 2003.
7. Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes as

Objects and Implicits. In n Proceedings of the 25th ACM International Conference
on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH/OOPSLA), October 2010.

8. Jeffrey Dean, Sanjay Ghemawat, and Google Inc. MapReduce: simplified data
processing on large clusters. In In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. USENIX Association,
2004.

9. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI: The Complete Reference (Vol.
2). Technical report, The MIT Press, 1998.

10. Ralf Hinze. A new approach to generic functional programming. In In The 27th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 119–132. ACM Press, 1999.

http://eclipse.org/

256 A. V. Slesarenko

11. Ralf Hinze. Fun with phantom types, 2003.
12. Ralf Hinze. Generics for the masses. SIGPLAN Not., 39:236–243, September 2004.
13. Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In SCI-

ENCE OF COMPUTER PROGRAMMING, pages 148–174, 2004.
14. Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-

morphic embedding of DSLs. In Proceedings of the 7th international conference on
Generative programming and component engineering, GPCE ’08, pages 137–148,
New York, NY, USA, 2008. ACM.

15. Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In In Tarmo Uustalu, editor, Proceedings 8th International
Conference on Mathematics of Program Construction, MPC’06, volume 4014 of
LNCS, pages 209–234. Springer-Verlag, 2006.

16. Paul Hudak. Building domain-specific embedded languages. ACM COMPUTING
SURVEYS, 28, 1996.

17. Patrik Jansson. Polytypic programming. In 2nd Int. School on Advanced Func-
tional Programming, pages 68–114. Springer-Verlag, 1996.

18. Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for gadts. In ICFP, pages
50–61, 2006.

19. Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell, 2008.

20. Gabriele Keller and Manuel M.T. Chakravarty. Flattening Trees, 1998.
21. NVIDIA. NVIDIA CUDA C Programming Guide. http://developer.download.

nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_

Guide.pdf, 2011.
22. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, Second

Edition. Artima, 2010.
23. Bruno C.d.S. Oliveira and Jeremy Gibbons. Scala for generic programmers. In

Proceedings of the ACM SIGPLAN workshop on Generic programming, WGP ’08,
pages 25–36, New York, NY, USA, 2008. ACM.

24. Aleksandar Prokopec, Tiark Rompf, Phil Bagwell, and Martin Odersky. A generic
parallel collection framework, 2010.

25. Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Proceedings of the ninth
international conference on Generative programming and component engineering,
GPCE ’10, pages 127–136, New York, NY, USA, 2010. ACM.

26. Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. Building-blocks for performance oriented
dsls. In DSL, pages 93–117, 2011.

27. Alexander Slesarenko. Scalan: polytypic library for nested parallelism in Scala.
Preprint 22, Keldysh Institute of Applied Mathematics, 2011.

28. Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi,
Michael Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. Optiml: An
implicitly parallel domain-specific language for machine learning. In Lise Getoor
and Tobias Scheffer, editors, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages 609–616, New York, NY, USA,
June 2011. ACM.

29. Walid Taha. A gentle introduction to multi-stage programming. In Domain-Specific
Program Generation, pages 30–50, 2003.

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

	Introduction
	The DSL
	Adding More Types
	Outline

	Foundations of our approach
	Polymorphic Embedding of DSLs
	Generic programming
	Generic programming in Scala
	Type-indexed data types
	Type-indexed arrays in the DSL's implementation
	Lightweight Modular Staging (LMS)

	Polytypic Staging
	Staged Values
	Staged Type Descriptors
	Staged Type-Indexed Data Types
	Staged Polytypic Functions

	User-Specific Data Types
	Isomorphic Representations
	Samples
	Isomorphism lifting transformation

	Conclusions and Related Work

