
Inverting Dynamic Programming

Nikolay Shilov

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences
Lavren’ev av. 6, 630090 Novosibirsk, Russia

shilov@iis.nsk.su

http://persons.iis.nsk.su/en/person/shilov

Abstract. We suggest and discuss a formalization of Dynamic Pro-
gramming. A methodological novelty consists in an explicit treatment
(interpretation) of ascending Dynamic Programming as least fix-point
computation (according to Knaster-Tarski fix-point theorem). This inter-
pretation leads to a uniform approach to classical optimization problems
as well as to problems where optimality is not explicit (Cocke - Younger
- Kasami parsing algorithm for example) and to problem of algorithm
inversion (i.e. computing inverse function).

Keywords: Dynamic programming, Tarsky-Knaster fixpoint theorem,
algorithm inversion

1 Introduction

We would like to continue study of algorithm inversion started in [11]. The
cited paper [11] is about a fake coin puzzle to be solved in three programming
paradigms: logic, functional and imperative. It can be considered as a case study
of algorithm inversion, since we start with logic algorithm, that answers the ques-
tion “Is balancing M times sufficient for detecting the fake coin?”, and finishes
with imperative algorithm, that effectively computes the minimal number of bal-
ancing that is sufficient for detection the fake; functional paradigm is used for
developing an intermediate functional algorithm that also computes the minimal
number of balancing, but inefficiently. Basically, the functional and the impera-
tive solutions of the puzzle are two (recursive and iterative) versions of dynamic
programming algorithm that inverts a logical program. In the present paper we
generalize background ideas to inversion of recursive dynamic programming.

1.1 Dropping Bricks from a High Tower

Let us start with the following Dropping Bricks Puzzle1.

1 When draft of this paper was ready, Prof. Teodor Zarkua (St. Andrew University
of Georgian Patriarch) informed the author that the problem is known already and
has been used for programming contests (check, for example, the problem at URL
http://acm.timus.ru/problem.aspx?space=1&num=1223). Recently a variant of the
problem has been added to Wikipedia article Dynamic Programming (available at
http://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle).

shilov@iis.nsk.su
http://persons.iis.nsk.su/en/person/shilov
http://acm.timus.ru/problem.aspx?space=1&num=1223
http://en.wikipedia.org/wiki/Dynamic_programming##Egg_dropping_puzzle

Inverting Dynamic Programming 217

Let us characterize mechanical stability (strength) of a brick by an inte-
ger h that is equal to the height (in meters) that is safe for the brick to
fall down, while height (h + 1) meters is unsafe (i.e. the brick breaks).
You have to define stability of bricks of a particular kind by dropping
them from different levels of a tower of H meters. (You may assume that
mechanical stability does not change after safe fall of a brick.) How many
times do you need to drop bricks for it, if you have 2 bricks in the stock?
What is the optimal number (of droppings) in this case?

Basically the question that we need to answer is how to compute the optimal
number of droppings GH , if the height of the tower is H, and you have 2 bricks in
the stock. In the next subsection we sketch descending Dynamic Programming
solution of the above problem as a gentle introduction to Dynamic Program-
ming approach to optimization, design its implementation in terms of functional
pseudo-code and conclude with historic remarks.

The rest of the paper is organized as follows. In the next section 2 we intro-
duce (what we call) a scheme of recursive Dynamic Programming and discuss
in brief how to improve efficiency of recursive Dynamic Programming by mem-
oization. In the section 3 we convert recursive Dynamic Programming into the
iterative form and interpret Dynamic Programming as a computation of the least
fix-point of an appropriate monotone functional. In turn we get an opportunity
to design, specify and verify a unified template for ascending Dynamic Program-
ming. Two examples of the template specialization are presented in section 4,
one of which is context-free parsing. In the section 5 we suggest an approach
how to invert algorithms that are based on Dynamic Programming. We discuss
some concluding remarks in the last section 6.

1.2 Recursive Method for Optimization Problems

Dropping Bricks Puzzle is a particular and explicit example of optimization
problems. Originally Dynamic Programming has been designed as a recursive
search (or construction) of an optimal program (or plan) that remains optimal
at every stage. For example let us consider below the puzzle.

Any optimal method (to define mechanical stability) should start with some
step (command) that prescribes to drop the first brick from some particular (but
optimal) level h. Hence the following equality should hold for this particular h:

GH = 1 + max{(h− 1), GH−h},

where (in the right-hand side)

1. ‘1+’ corresponds to the first dropping,
2. (h − 1) corresponds to the case when the first brick breaks after the first

dropping (and we have to drop the remaining second brick from levels 1, 2,
... (h− 1) in the sequence),

3. GH−h corresponds to the case when the first brick is safe after the first
dropping (and we have to define stability by dropping pair of bricks from
(H − h) levels in [(h+ 1)H]),

218 N. Shilov

4. ‘max’ corresponds to the worst in cases 2 and 3 above.

Since the particular value h is optimal, and optimality means minimality,
hence the above equality transforms to the next one:

GH = min
1≤h≤H

(1 + max{(h− 1), GH−h}) = 1 + min
1≤h≤H

max{(h− 1), GH−h}.

Besides we can add one obvious equality G0 = 0.
One can remark that sequence of integers G0, G1, ... GH , ..., that meet these

two equalities, is unique, since G0 is defined explicitly, G1 is defined by G0, G2

— by G0 and G1, GH — by G0, G1, ... GH−1. Hence it is possible to move
from the sequence G0, G1, ... GH , ..., to a function G : N→ N that maps every
natural H to GH and satisfies the following system of functional equations for
the objective function G:{

G(0) = 0
G(H) = 1 + min1≤h≤H max{(h− 1), G(H − h)} .

This system has unique solution as it follows from the uniqueness of the
sequence G0, G1, ... GH , ... Hence this system can be adopted as a recursive
definition of a function, i.e. a recursive algorithm presented by its functional
pseudo-code. This is an example of the first (historically) face of Dynamic Pro-
gramming — a recursive method for optimization problems.

Dynamic Programming was introduced as a recursive method for optimiza-
tion problems by Richard Bellman in 1950s [5]. At this time the noun program-
ming had nothing in common with more recent computer programming, but
meant planning (compare: linear programming). The adjective dynamic points
out that Dynamic Programming is related to change of state (compare: dynamic
logic, dynamic system). Functional equations for the objective function (like in
the above) are called after Richard Bellman Bellman equations as well as the fol-
lowing Bellman Principle of Optimality (that we have use already): an optimal
program (or plan) remains optimal at every stage.

2 Recursion & Memoization vs. Dynamic Programming

If to analyze the recursive Dynamic Programming methodology accumulated in
Bellman Principle and the above recursive solution for Dropping Bricks Puz-
zle, then it is possible to suggest the following scheme of recursive Dynamic
Programming.

Definition 1. Let scheme of recursive Dynamic Programming be the following
recursive program scheme [7,8]

G(x) = if p(x) then f(x) else g(x, (G(ti(x)), i ∈ [1..n(x)])), (1)

where functional symbol G : X → Y stays for the objective function, predicate
symbol p ⊆ X stays for (i.e. represents or is interpreted by) a known predicate,

Inverting Dynamic Programming 219

functional symbol f : X → Y stays for a known function, functional symbol
g : X∗ → X stays a known function with a variable (but finite) number of
arguments n(x), and all functional symbols ti : X → X, i ∈ [1..n(x)] stays for
known functions also.

It is well-known [8] that the recursive program scheme (with uninterpreted
symbols) is not equivalent to any standard program scheme (i.e. a flowchart with
uninterpreted symbols with fixed amount of memory), but can be translated to
a program scheme with stack. Let us remark that in this paper we consider the
scheme of recursive Dynamic Programming with interpreted symbols. Usually
this interpretation is explicit. For example, in Dropping Bricks Puzzle we have

G(H) = if H = 0 then 0 else (1 + min
1≤h≤H

max{(h− 1), G(H − h)}).

Let us compute a value of this function G for a particular argument by
exercising the above recursive algorithm in the left-recursive order:
G(4) = 1 + min1≤h≤4 max{(h− 1), G(4− h)} =
= 1 + min{max{0, G(3)} , max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1 + min{max{0, 1 + min{max{0, G(2)} , max{1, G(1)} , max{2, G(0)}}} ,

max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1 + min{max{0, 1 + min{max{0, 1 + min{max{0, G(1)} , max{1, G(0)}}} ,

max{1, G(1)} , max{2, G(0)}}} , max{1, G(2)} , max{2, G(1)} ,
max{3, G(0)}} = . . . = 3.

This exercise illustrates what is called a descending Dynamic Programming.
One can remark that in the above example we recompute values of G for

some arguments several times (G(2) and G(1) in particular). This observation
leads to an idea to compute function values for new argument values once, then
save them (in a hash-table for example), and use them on demand (i.e. instead
re-computation). This technique is known in Functional Programming as mem-
oization [4].

Some authors claim that Recursion + Memoization = Dynamic Program-
ming [4], but we do not think so due to the following reasons. The first one is
historical, since the foundational paper [5] did not discuss memoization at all.
The second counterargument relies upon observation that recursion in Dynamic
programming has a very special form (never nesting in particular). And finally,
there exists also an iterative form of Dynamic Programming, that we discuss
below.

Definition 2. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. For every argument value v ∈ X, such
that p(v) does not hold, let base be the following set bas(v) of values {ti(v) : i ∈
[1..n]}. For every argument value v let support be the set spp(v) of all argument
values that occur in the computation of G(v).

Proposition 1. Let us consider a function G : X → Y that is defined by in-
terpreted scheme (1) of recursive Dynamic Programming. For every argument
value v ∈ X, if the objective function G is defined for v, then spp(v) is finite

220 N. Shilov

and it is possible to pre-compute (i.e. compute prior to computation of G(v))
the support spp(v) according to the following recursive algorithm

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)

spp(y)). (2)

Proof. Correctness of the recursive algorithm 2 can be proved by induction on
recursion depth in computation of G(v). Ii G(v) is defined then finiteness of
spp(v) follows from König’s lemma, since bas(u) is finite for every argument
value u where bas is defined. �

Definition 3. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. Let us say that a function SPP : X →
2X is an upper support approximation, if for every argument value v, the fol-
lowing conditions hold:

– v ∈ SPP (v),

– spp(u) ⊆ SPP (v) for every u ∈ SPP (v),

– if spp(v) is finite then SPP (v) is finite.

In the case when support or its upper approximation is easy to compute, it
makes sense to use iterative ascending Dynamic Programming instead of recur-
sive descending Dynamic Programming with memoization.

Ascending Dynamic Programming comprises the following steps.

1. Input argument value v and compute SPP (v). Then compute and save values
of the objective function G for all argument values u that are in SPP (v)
such that p(u). For example, in Dropping Bricks Puzzle, if we would like to
compute value G(H), then spp(H) = [0..H] and the unique argument value
of this kind is 0, and, hence, the unique function value that should be saved
is G(0); one can save this value as element G[0] of integer array G[0..H].

2. Expand the set of saved values of the objective function by values that
can be immediately computed on base of the set of saved values: for ev-
ery u ∈ SPP (v), if G(u) is not computed yet, but for every w ∈ bas(u)
value G(w) has been computed and saved already, then compute and save
G(u) = g(u, (G(ti(u)), i ∈ [1..n])). For example, in Dropping Bricks Puz-
zle, if values G(0), ... G(K) have been saved in array G[0..H] in elements
G[0], ... G[K] (where 0 ≤ K < H), one can compute value G(K + 1) =
1 + min1≤kleqK max{(k − 1), G(H − k)} and save it G[K + 1].

3. Repeat step 2 until the moment, when you save the value of the objective
function for the argument value v. For example, Dropping Bricks Puzzle, step
2 should be executed H times and terminate after saving G[H] in G[0..H].

Let us observe that the ascending Dynamic Programming has not a recursive
form but the iterative one.

Inverting Dynamic Programming 221

3 Computing the Least Fix-Point

Let us formalize iterative ascending Dynamic Programming by means of im-
perative pseudo-code annotated by precondition and postcondition [6,3], i.e. by
triples in the following form {B}A{C}, where A is an algorithm in pseudo-code,
B — is a logical precondition, and C — is a logical postcondition. A triple
{B}A{C} is said to be valid (or that the algorithm A is partially correct with
respect to precondition B and postcondition C), if every terminating exercise of
A for input data that satisfy B, the output data satisfy C.

Formalization of the ascending Dynamic Programming follows.
\\Precondition:
{D is a non-empty set of argument values,

S and P are ‘‘trivial’’ and ‘‘target’’ subsets in D,

F : 2D →2D is a call-by-value total monotone function,

ρ : 2D×2D →Bool is a call-by-value total function

monotone on the second argument}
\\Template:
var Z:= S, Z1 : subsets of D;

repeat Z1:= Z ; Z:= F(Z) until (ρ(P,Z) or Z=Z1)

\\Postcondition:
{ρ(P,Z) ⇔ ρ(P, T),
where T is the least fix-point of the mapping λQ.(S ∪ F (Q))}

We would like to refer this formalization as ascending Dynamic Programming
template, since (as we will see in the section 4) many particular instances of as-
cending Dynamic Programming algorithms can be generated from this template
by specialization of the domain D, sets S and P , and function F . (Like many
instances of backtracking and branch-and-bound algorithms can be generated
from the unified template that is presented and verified in [12].)

Partial correctness of the formalized ascending Dynamic Programming tem-
plate follows from Knaster-Tarski fix-point theorem [9]. We would not like to
present the exact formulation of the theorem, but would like to present the
following proposition that is a trivial corollary from the theorem.

Proposition 2. Let D be a non-empty set, G : 2D → 2D — be a total monotone
function, and R0, R1, ... be the following sequence of D-subsets: R0 = ∅ and
Rk+1 = G(Rk) for every k ≥ 0. Then there exists the least fix-point T ⊆ D of
the function G and R0 ⊆ R1 ⊆ R2 ⊆ . . . Rk ⊆ Rk+1 ⊆ . . . ⊆ T .

The following proposition is a trivial consequences of the above proposition.

Proposition 3. Dynamic Programming template is partially correct, i.e. for
any input data that meets the precondition, the algorithm instantiated from the
template either loops or halts in such a way that the postcondition holds upon the
termination. Assuming that for some input data the precondition of the Dynamic
Programming template is valid, and the domain D is finite, then the algorithm
instantiated from the template terminates on these data after (at most) |D| it-
erations of the loop repeat-until.

222 N. Shilov

Proof. Let us assume that a particular instance of the template terminates for
some input data that meets the precondition. According to the above proposi-
tion 2, the following function G = λQ.(S ∪ F (Q)) : 2D → 2D (that maps every
Q ⊆ D to S ∪ F (Q)) has the least fix-point. Let R0 = ∅ and Rk+1 = G(Rk) for
every k ≥ 0; then for every k > 0 values of set variables Z and Z1 immediately
after k iterations of the loop are Rk+1, and Rk respectively, and (according to
proposition 2) Rk ⊆ T , where is the least fix-point of the mapping G. Hence, if
the repeat-loop terminates due to condition ρ(P, Z), then ρ(P, T) due to mono-
tonicity of G; if this loop terminates, but not due to the condition ρ(P, Z) (i.e.
this condition is not valid), then it terminates due to another condition Z=Z1,
that implies that the final value of X is equal to the least fix-point T , and hence
ρ(P, T) is not valid also. �

4 Examples of the Template Specialization

In this section we illustrate how the ascending Dynamic Programming template
works, i.e. how concrete algorithms can be generated from it by specialization
(i.e. by instantiating concrete functions and predicates).

4.1 Computing Dynamic Programming

Let us start with Dropping Bricks Puzzle and adopt

– D to be an “initial segment” of the graph of the function G, i.e. the set of
all integer pairs (m,G(m)), where m represents a level (in [1..H]);

– S to be a singleton set {(0, 0)} that consists of the unique trivial pair, and
P to be another singleton set {(H,G(H))};

– F to be a function that maps any Q ⊆ D to {(m,n) ∈ D |
there exist integers n0, . . . nm−1 such that (0, n0), . . . (m− 1, nm−1) ∈ Q

and n = 1 + min1≤k≤m max{(k − 1), nm−k}};
– ρ(P,Q) to be ∃n : (H,n) ∈ (P ∩Q).

This specialization meets the precondition of the template of the ascending
Dynamic Programming, and D is the least fix-point of F . Hence (according
to proposition 3), the resulting algorithm terminates after H iterations of the
repeat-loop (since |D| = H), and (upon the termination) (H,G(H)) ∈Z (since
∃n : (H,n) ∈ (P∩Z) ⇔ ∃n : (H,n) ∈ (P ∩ T) where T is D, the fix-point of F),
but there is no any other n 6= G(H) such that (H,n) ∈Z (since P is a singleton).

The above example can be generalized as follows.

Proposition 4. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. Assume that SPP : X → 2X is some
upper approximation of the support function for G. Let v ∈ X be any value. If
to adopt

– the graph of G restricted on SPP (v) as D,
– a set {(u, f(u))|p(u) & u ∈ SPP (v)} as S,

Inverting Dynamic Programming 223

– a singleton {(v,G(v))} as P ,
– a mapping Q 7→ {(u,w) ∈ D | ∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈
Q & w = g(u,w1, . . . wn)} as F : 2D → 2D,

– ∃w : (v, w) ∈ (R ∩Q) as ρ(R,Q) : 2D × 2D → Bool,

then the algorithm that results from the template of the ascending Dynamic Pro-
gramming computes G(v) in the following sense: it terminates after iterating
repeat-loop |SPP (v)| times at most, upon the termination (v,G(v)) ∈Z and there
is no any w ∈ Y (other than G(v)) such that (v, w) ∈Z.

Proof. The described specialization meets the precondition of the template of
the ascending Dynamic Programming, and D is the least fix-point of F . Hence
(according to proposition 3), the resulting algorithm terminates after at most
|SPP (v)| iterations of the repeat-loop (since |D| ≤ |SPP (v)|), and (upon the
termination) (v,G(v)) ∈Z (since ∃w : (v, w) ∈ (P∩Z) ⇔ ∃w : (v, w) ∈ (P ∩ T)
where T is D, the fix-point of F), but there is no any other w 6= G(v) such that
(v, w) ∈Z (since P is a singleton). �

4.2 Context-Free Parsing

Parsing theory for context-free (C-F) languages is well established and developed
technology [1,2]. The first sound and efficient algorithm for parsing C-F lan-
guages was developed independently by J. Cocke, D.H. Younger and T. Kasami
in period from 1965 to 1970. More efficient and practical parsing algorithms have
appeared since these times, nevertheless Cocke - Younger - Kasami algorithm
(CYK algorithm) still has educational importance nowadays2. A context-free
grammar (C-F grammar) is a tuple G = (N,E, P, S), where

– N and E are disjoint finite alphabets of non-terminals and terminals,
– P ⊆ N × (N ∪ E)∗ is a set of productions of the following form n → w,
n ∈ N , w ∈ (N ∪ E)∗,

– s ∈ N is the initial non-terminal.

A C-F grammar is in the Chomsky Normal Form (CNF) if the initial symbol does
not occur in the right-hand side of any production, and every production has the
form n → n′n′′ or n → e, where n, n′, n′′ ∈ N and e ∈ E. Derivation in a C-F
grammar G is a finite sequence of words w0, . . . wk, wk+1, . . . wm ∈ (N ∪E)∗,
(m ≥ 0), such that every word wk+1 within this sequence results from the
previous one wk by applying a production (in this grammar). For every words
w′, w′′ ∈ (N ∪ E)∗ let us write w′ ⇒ w′′ if there exists a derivation that starts
with w′ and finishes with w′′. Language L(G) generated by the grammar G is
defined as follows: L(G) = {w ∈ E∗ | s⇒ w}.

Two C-F grammars are said to be equivalent if they generate equal languages.
It is well-known fact that every C-F grammar that does not generate the empty
word is equivalent to some CNF grammar [1].

2 Recently M. Lange and H.F. Leiß suggested a generalized CYK algorithm for edu-
cational purposes [10].

224 N. Shilov

Definition 4. Assume that G = (N,E, P, s) is a given C-F grammar. Parsing
problem for L(G) can be formulated as follows: for input word w ∈ E∗ construct
the set of all pairs (n, u), n ∈ N and u ∈ E∗ is a (non-empty) subword of w,
such that n⇒ u.

In the sequel we discuss parsing problem for CNF grammars only. Let G =
(N,E, P, s) be a CNF grammar, w ∈ E∗ be the input word, L = L(G) be
the corresponding language, D be the set of all pairs (n, u), where n ∈ N and
u ∈ E∗ is a (non-empty) subword of w, and T = {(n, u) ∈ D | n ⇒ u}. It
is easy to see that T is the least fix-point of the following monotone function
F : 2D → 2D that maps every Q ⊆ D to F (Q) = {(n, e) ∈ D | e ∈ E, (n →
e) ∈ P} ∪ {(n, u) ∈ D | ∃(nprime, uprime), (nprimeprime, uprimeprime) ∈
Q : u ≡ uprimeuprimeprime and (n → nprimenprimeprime) ∈ P}. Hence
we can adopt {(n, e) ∈ D | e ∈ E, (n → e) ∈ P} as S, {(s, w)} as P in the
ascending Dynamic Programming template, and predicate FALSE as ρ. After
this specialization the template becomes CYK algorithm that solves the parsing
problem for L(G) by iterating repeat-loop at most |N | × |w| times.

5 Inverting Descending Dynamic Programming

Definition 5. Let G : X → Y be a function. A function G− : Y → X is said
to be inverse of G if the following properties hold:

– for every w ∈ Y , if w ∈ G(X) then G−(w) is defined and G(G−(w)) = w;
– for every w ∈ Y , if w /∈ G(X) then G−(w) is undefined.

Let us remark, that if a function G : X → Y is not injective, then G− is not
unique.

Let us assume that some total function G : X → Y is defined by recursive
scheme of Dynamic Programming 1. Let us assume also that X is countable (with
some fixed enumeration cnt : N → X), that we have the following abstract data
type SubSet which values are subsets of X (i.e. all subsets, not just finite), that
has standard set-theoretic operations union and intersection (applicable when at
least one argument is finite) and another choice operation fir : SubSet→ X that
computes for every set T the element of T with the smallest number (according
to cnt).

Assume that we want to design an algorithm that computes some inverse of
G. The simplest way to compute G−(w) for a given y ∈ Y is to proceed one by
one according to count as follows.
\\ Precondition:

{G : X → Y is a total computable function,

X is a countable set,

Fir : SubSet→ X is a choice function, y ∈ Y }
\\ Algorithm:

var x: X; var z: Y; var R:=X: SubSet;

repeat x:= Fir(R); z:= G(x); R:= R\{x} until (z=y or R=∅);

Inverting Dynamic Programming 225

if y 6=z then loop

\\ Postcondition:

{G(x) = y}.
Partial correctness of this algorithm is straightforward, but without memo-

ization this algorithm is extremely inefficient. More efficient way to compute the
inverse function is presented below as the following Inverse Dynamic Program-
ming algorithm.
\\ Precondition:

{G : X → Y is a computable function

defined by scheme of recursive Dynamic Programming (1),

SPP : X → 2X is an upper support approximation for G,
X is a countable set, Fir : SubSet→ X is a choice function,

y ∈ Y }
\\ Algorithm:

var x: X; var R:=X, T: SubSet;

var D:=∅: 2X×Y ;
var k : integer;

repeat x:= Fir(R); T:= SPP(x); R:= R\T;
D:= D ∪ {(u, f(u)) | p(u) & u ∈ T};
exercise k∈ [1..|T |] times: D:= D ∪ {(u,w) /∈ D |

∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈ D,
t1(u), . . . tn(u) ∈ T, & w = g(u,w1, . . . wn)}

until (∃u : (u, y) ∈ D or R=∅);
if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop

\\ Postcondition:

{G(x) = y}. (Parameter k may be any in the specified range and, maybe, it can
be determined by supercompilation [13,14].)

Proposition 5. Inverse Dynamic Programming algorithm is partially correct.

Proof. One can proceed according to Floyd - Hoare method [6,3] and use the
following (one and the same) invariant to both loops (i.e. for the external repeat-
loop and for the internal exercise-loop): D is a subset of graph of G. �

Proposition 6. Assume that for some input data the precondition of the Inverse
Dynamic Programming algorithm is valid and that the input value y belongs to
G(X). Then the algorithm eventually terminates.

Proof. A standard way to prove algorithm (and program) termination is via
potential (or bound) function [6,3], i.e. a function that maps states of the al-
gorithm to natural numbers so that every legal loop execution reduces value
of the function. Let n ∈ N be an integer such that y = G(cnt(n)), let m =∑

0≤i≤n |SPP (cnt(i))| and let π(D) = m − |D|. Then every legal iteration of
any loop of our algorithm reduces the value of this function π(D) at least by
one. �

As follows from propositions 5 and 6, the inverse Dynamic Programming
really computes an inverse function for a function defined by recursive scheme
for descending Dynamic Programming.

226 N. Shilov

Let us present an example. It does not make sense to invert function G that
solves Dropping Bricks Puzzle, since this function is not injective. So let us
consider a simpler injection function F : N → N

F (n) = if (n = 0 or n = 1) then 1 else F (n− 1) + F (n− 2)

that computes Fibonacci numbers. Let us assume that cnt is enumeration in
the standard order. Then our Inverse Dynamic Programming algorithm gets the
following form:
var x: N; var R:=N, T: 2N;

var D:=∅ : 2N×N;

var k : integer;

repeat x:= Fir(R); T:= [0..x]; R:= R\[0..x];
D:= D ∪ {(0, 1) | 0 ∈[0..x]} ∪ {(1, 1) | 1 ∈[0..x]};
exercise k∈[1..x] times: D:= D∪ {(u,w) /∈ D |

∃w1, w2 : (u− 1, w1), (u− 2, w2) ∈ D,
(u− 1), (u− 2) ∈[0..x], & w = w1 + w2}

until ∃u : (u, y) ∈ D;

if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop.

After some simplification one can get the following algorithm: var x: N; var

T: 2N; var D:=∅: 2N×N; var k : integer;

x:=0; D:= {(0, 1), (1, 1)};
repeat x:=x+1; D:= D ∪ {(x,w1 + w2) |

∃w1, w2 : (x− 1, w1), (x− 2, w2) ∈ D};
until ∃u : (u, y) ∈ D;

if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop

that just computes and saves Fibonacci sequence in the “array” D and checks
whether y is in the array already.

6 Concluding Remarks

Author would not like to forth everyone to think about Dynamic Programming in
terms of fix-point computations, but believe that ascending Dynamic Program-
ming template presented in the paper will help to teach and (maybe) automatize
Algorithm Design. This approach to teaching Dynamic Programming is in use
in Master program at Information Technology Department of Novosibirsk State
University since 2003. A possible application of the unified template is data-flow
parallel implementation of the Dynamic Programming, but this topic need more
research.

Acknowledgments. The research is supported by joint Russian-Korea project
RFBR-12-07-91701-NIF-a.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, Vol.
1, Parsing. Prentice Hall (1972)

Inverting Dynamic Programming 227

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd Edition. Addison-Wesley (2007)

3. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verifcation of Sequential and Concurrent
Programs. Third edition, Springer (2009)

4. Astapov, D.: Recursion + Memoization = Dynamic Programming. (In Russian.)
Practice of Functional Programming n.3,17–33, available at http://fprog.ru/

2009/issue3/ (2009)
5. Bellman, R.: The theory of dynamic programming. Bulletin of the American Math-

ematical Society 60, 503–516 (1954)
6. Gries, D.: The Science of Programming. Springer (1987)
7. Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification.

Lecture Notes in Computer Science 36, Springer, Heidelberg (1975)
8. Kotov V.E., Sabelfeld V.K.: Theory of Program Schemata. (Teoria Skhem Pro-

gramm.) Science (Nauka), Moscow (1991) (in Russian)
9. Knaster, B., Tarski, A.: Un theoreme sur les fonctions d’ensembles. Ann. Soc. Polon.

Math., 6, 133–134 (1928)
10. Lange, M., Leiß, H.: To CNF or not to CNF? An Efficient Yet Pre-

sentable Version of the CYK Algorithm. Informatica Didactica 8, available
at http://www.informatica-didactica.de/cmsmadesimple/index.php?page=

LangeLeiss2009_en (2009).
11. Shilov, N.V.: A note on three Programming Paradigms. In: 2nd International

Valentin Turchin Memorial Workshop on Metacomputation in Russia, pp.173–184.
Ailamazyan Program Systems Institute, Pereslavl-Zalessky, Russia (2010)

12. Shilov, N.V.: Algorithm Design Template base on Temporal ADT. Proceedings of
18th International Symposium on Temporal Representation and Reasoning, IEEE
Computer Society, 157–162 (2011)

13. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3), 292–325 (1986)

14. Turchin, V.F.: Supercompilation: the approach and results. (Superkompilyatsya:
metody i rezultaty.) In: Current trends in architecture, design and implementation
of program systems. (Problemy arkhitektury, analiza i razrabotki programmnyh
system.). System Informatics (Sistemtaya Informatika) 6, Science (Nauka), Novosi-
birsk, 64–89 (1998) (in Russian)

http://fprog.ru/2009/issue3/
http://fprog.ru/2009/issue3/
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009_en
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009_en

	Introduction
	Dropping Bricks from a High Tower
	Recursive Method for Optimization Problems

	Recursion & Memoization vs. Dynamic Programming
	Computing the Least Fix-Point
	Examples of the Template Specialization
	Computing Dynamic Programming
	Context-Free Parsing

	Inverting Descending Dynamic Programming
	Concluding Remarks

