
Russian Academy of Sciences
Ailamazyan Program Systems Institute

Third International

Valentin Turchin

Workshop on Metacomputation

Proceedings

Pereslavl-Zalessky, Russia, July 5�9, 2012

Pereslavl-Zalessky



ÓÄÊ 004.42(063)
ÁÁÊ 22.18

T66

Third International Valentin Turchin Workshop on Metacomputa-
tion // Proceedings of the Third International Valentin Turchin Workshop
on Metacomputation. Pereslavl-Zalessky, Russia, July 5–9, 2012 / Edited by
A. V. Klimov and S. A. Romamenko. — Pereslavl Zalessky: Publishing House
“University of Pereslavl”, 2012, 260 p. — ISBN 978-5–901795-28-6

Òðåòèé ìåæäóíàðîäíûé ñåìèíàð ïî ìåòàâû÷èñëåíèÿì èìåíè Â.Ô. Òóð-

÷èíà // Ñáîðíèê òðóäîâ Òðåòüåãî ìåæäóíàðîäíîãî ñåìèíàðà ïî ìåòàâû÷èñëåíèÿì
èìåíè Â.Ô. Òóð÷èíà, ã. Ïåðåñëàâëü-Çàëåññêèé, 5�9 èþëÿ 2012 ã. / Ïîä ðåäàêöèåé
À.Â. Êëèìîâà è Ñ.À. Ðîìàíåíêî. � Ïåðåñëàâëü-Çàëåññêèé: Èçä-âî ¾Óíèâåðñèòåò
ãîðîäà Ïåðåñëàâëÿ¿, 2012, 260 ñ. (àíãë). � ISBN 978-5�901795-28-6

c© 2012 Ailamazyan Program Systems Institute of RAS
Èíñòèòóò ïðîãðàììíûõ ñèñòåì èìåíè À.Ê. Àéëàìàçÿíà ÐÀÍ, 2012

ISBN 978-5�901795-28-6



Valentin Turchin
(1931–2010)





Preface

The proceedings contain the papers presented at the Third International Valentin
Turchin Workshop on Metacomputation, META 2012, held on July 5–9, 2012 in
Pereslavl-Zalessky.

The workshop belongs to a series of workshops organized biannually by Aila-
mazyan Program Systems Institute of the Russian Academy of Science and Ail-
amazyan University of Pereslavl in an ancient Russian town Pereslavl-Zalessky.

The first workshop in 2008 was blessed by the creator of supercompilation
Valentin Turchin, who did not come personally, but was very glad to hear that
supercompilation and other metacomputation topics attracted more and more
attention of the computer science community.

The second workshop in 2010 was held soon after Valentin Turchin’s depar-
ture and was devoted to his memory. At that time we observed a burst of work
on supercompilation and related techniques. We are pleased to mention that
since then two authors who presented their work at META 2010, Jason Reich
and Ilya Klyuchnikov, have completed and defended their PhD theses on the
topics of further development of supercompilation.

From now on this series of workshops is named after Valentin Turchin.
Metacomputation is a research area related to deep program analysis and

transformation. The primary topics of the META 2012 workshop are multi-result
supercompilation and distillation, which are further developments of supercompi-
lation. Other papers and talks address program inversion and its logics, research
into practical metacomputation and applications as well as metaprogramming
in Scala.

Multi-result supercompilation realizes the idea that while solving various
problems by supercompilation from program optimization to proving properties
of programs, there should be considered a set of residual programs equivalent to
the source one, rather than a single one produced by using a fixed supercompi-
lation strategy.

– Ilya G. Klyuchnikov and Sergei A. Romanenko. Formalizing and Implement-
ing Multi-Result Supercompilation. Explains the principles of multi-result
supercompilation and discusses some details related to its implementation.

– Sergei A. Grechanik. Overgraph Representation for Multi-Result Supercom-
pilation. Suggests how to make multi-result supercompilation more efficient
with the use of a compact representation of graphs of configurations.

– Andrei V. Klimov, Ilya G. Klyuchnikov and Sergei A. Romanenko. Auto-
matic Verification of Counter Systems via Domain-Specific Multi-Result Su-
percompilation. Demonstrates how multi-result supercompilation improves
previous results on application of supercompilation to verification of models
expressed as counter systems.

– Andrei V. Klimov. Why Multi-Result Supercompilation Matters: Case Study
of Reachability Problems for Transition Systems. Revisits and analyses the



method of solving the reachability problems by supercompilation and an-
other method codenamed “Expand, Enlarge and Check” from the viewpoint
of multi-result supercompilation.

Distillation is a result of a metasystem transition from plain supercompilation
to a hierarchy of program transformers.

– Neil D. Jones and G. W. Hamilton. Superlinear Speedup by Program Trans-
formation. Poses the problem of going beyond the classic positive supercom-
pilation which can achieve only linear speedup and states the goal of finding
an essential “inner core” of distillation, which gives rise to this improvement.

– G. W. Hamilton. A Hierarchy of Program Transformers. Presents the main
idea of distillation as building a hierarchy of program transformers in which
the transformer at each level of the hierarchy builds on top of the transform-
ers at lower levels.

– Michael Dever and G. W. Hamilton. A Comparison of Program Transforma-
tion Systems. Compares positive supercompilation, distillation and higher-
level supercompilation.

Program inversion is one of the favorite topics of metacomputation.

– Nikolai N. Nepejvoda. Reversivity, Reversibility and Retractability. Analyses
three essentially different but usually mixed notions of program invertibility
and presents an outline of their logics.

– Nikolay Shilov. Inverting Dynamic Programming. Considers Dynamic Pro-
gramming as a case of inversion of a specific class of programs.

Towards practical metacomputation and applications

– Dimitur Krustev. A Metacomputation Toolkit for a Subset of F# and Its
Application to Software Testing: Towards Metacomputation for the Masses.
Presents an on-going experiment to develop a practical metacomputation
toolkit for F# and also addresses a potential practical application — auto-
matic generation of software test sets.

– Neil D. Jones. Obfuscation by Partial Evaluation of Distorted Interpreters
(Invited Talk). Investigates the possibility of program obfuscation by pro-
gram specialization.

– Gavin E. Mendel-Gleason and G. W. Hamilton. Development of the Pro-
ductive Forces. Demonstrates how the productivity of a program, which is
required in theorem provers such as Coq or Agda, can be derived by super-
compiling the program and checking that the residual program satisfies a
syntactic property referred to as guardedness condition.

– Alexei Adamovich. Optimization of Imperative Functional Parallel Programs
with Non-local Program Transformations. Presents a method of nonlocal op-
timizing transformation of a typical parallel application solving massively
parallel problem in the T-System being under development in Program Sys-
tems Institute.

Practical metaprogramming in Scala



– Eugene Burmako and Martin Odersky. Scala Macros, a Technical Report.
Presents a minimalistic macro system for Scala, integrated with the static
type system of the host language.

– Alexander A. Slesarenko. Lightweight Polytypic Staging of DSLs in Scala.
Describes Lightweight Polytypic Staging, a new approach to the implemen-
tation of deep embedding of DSLs in Scala, and demonstrates its usefulness
for efficient implementation of nested data parallelism as flat data paral-
lelism.

The files of the papers and presentations of this and previous workshops on
metacomputation as well as other information can be found at the META sites:

– META 2008: http://meta2008.pereslavl.ru/

– META 2010: http://meta2010.pereslavl.ru/

– META 2012: http://meta2012.pereslavl.ru/

June 2012 Andrei Klimov
Sergei Romanenko





Organization

Workshop Chair

Sergei Abramov, Ailamazyan Program Systems Institute of RAS, Russia

Program Committee Chairs

Andrei Klimov, Keldysh Institute of Applied Mathematics of RAS, Russia
Sergei Romanenko, Keldysh Institute of Applied Mathematics of RAS, Russia

Program Committee

Mikhail Bulyonkov, A. P. Ershov Institute of Informatics Systems of RAS, Russia
Robert Glück, University of Copenhagen, Denmark
Geoff Hamilton, Dublin City University, Republic of Ireland
Arkady Klimov, Institute for Design Problems in Microelectronics of RAS, Russia
Dimitur Krustev, IGE+XAO Balkan, Bulgaria
Alexei Lisitsa, Liverpool University, Great Britain
Gavin Mendel-Gleason, Dublin City University, Republic of Ireland
Neil Mitchell, Standard Charted, United Kingdom
Andrei Nemytykh, Ailamazyan Program Systems Institute of RAS, Russia
Johan Nordlander, Lulea University of Technology, Sweden
Peter Sestoft, IT University of Copenhagen, Denmark
Alexander Slesarenko, Keldysh Institute of Applied Mathematics of RAS, Russia
Morten Sørensen, Formalit, Denmark
Walid Taha, Computer and Electrical Engineering Halmstad University, Sweden

Invited Speaker

Neil D. Jones, Professor Emeritus of the University of Copenhagen, Denmark

Sponsoring Organizations

Russian Academy of Sciences

Russian Foundation for Basic Research (grant � 12-07-06044-ã)





Table of Contents

Optimization of Imperative Functional Parallel Programs with
Non-local Program Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Alexei Adamovich

Scala Macros, a Technical Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Eugene Burmako and Martin Odersky

A Comparison of Program Transformation Systems . . . . . . . . . . . . . . . . . . . 33
Michael Dever and G. W. Hamilton

Overgraph Representation for Multi-Result Supercompilation . . . . . . . . . . . 48
Sergei A. Grechanik

A Hierarchy of Program Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
G. W. Hamilton

Obfuscation by Partial Evaluation of Distorted Interpreters (Invited Talk) 87
Neil D. Jones

Superlinear Speedup by Program Transformation (Extended Abstract) . . 88
Neil D. Jones and G. W. Hamilton

Why Multi-Result Supercompilation Matters: Case Study of
Reachability Problems for Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . 91

Andrei V. Klimov

Automatic Verification of Counter Systems via Domain-Specific
Multi-Result Supercompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Andrei V. Klimov, Ilya G. Klyuchnikov, and Sergei A. Romanenko

Formalizing and Implementing Multi-Result Supercompilation . . . . . . . . . . 142
Ilya G. Klyuchnikov and Sergei A. Romanenko

A Metacomputation Toolkit for a Subset of F# and Its Application to
Software Testing: Towards Metacomputation for the Masses . . . . . . . . . . . . 165

Dimitur Krustev

Development of the Productive Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Gavin E. Mendel-Gleason and G. W. Hamilton

Reversivity, Reversibility and Retractability . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Nikolai N. Nepejvoda

Inverting Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Nikolay Shilov



Lightweight Polytypic Staging of DSLs in Scala . . . . . . . . . . . . . . . . . . . . . . . 228
Alexander V. Slesarenko



Optimization of Imperative Functional
Parallel Programs with Non-local

Program Transformations

Alexei Adamovich

Ailamazyan Program Systems Institute of Russian Academy of Sciences, RCMS,
Pereslavl-Zalessky, Russia

lexa@botik.ru

Abstract. Functional programming is among paradigms used for the
real-world parallel application development. PSI of RAS during a con-
siderable period of time develops the T-System approach based on func-
tional programming. This paper briefly describes the architecture of the
ACCT compiler system targeted at performing transformations of the T-
System programs. An algorithm for nonlocal optimizing transformation
of a typical parallel application solving massively parallel problem in the
T-System is presented. The author finally mentions several opportunities
of other possible applications of the proposed architecture.

Keywords: functional programming, parallel application development,
T-System, program transformation

1 Introduction

Advance in the field of parallel computations is one of the modern trends. The
advance is due not only to the implementation of supercomputers with over 10
PFlops of performance. A substantial reason is that multicore processor archi-
tecture has become the dominant on the desktop PCs.

The current state of software tools for parallel applications development im-
plies a coexistence of a number of paradigms. Specifically, the functional pro-
gramming paradigm is being developed as a base for implementing the real-world
parallel applications. In this paradigm, the possibility of automatic paralleliza-
tion and dynamic load balancing is very attractive.

From the first half of 90s, the Aylamazyan Program Systems Institute of the
Russian Academy of Sciences (PSI of RAS) develops an approach to parallel
program development based on the functional paradigm which is called now the
T-System [1]. Today, in PSI of RAS, there are made several different imple-
mentations of the T-System [2,3]. However, for all of the implementations one
common disadvantage is the lack of tools for deep analysis and transformation
of programs.

In the paper, the author presents general principles of the T-System. The
paper also describes the architecture of the compiler version for the T-System



12 A. Adamovich

(with a codename ACCT) being implemented in PSI of RAS. ACCT allows to
analyze programs given it at input and to execute their optimizing transforma-
tions. Then, the author outlines an algorithm for non-local transformations of a
typical parallel application solving massively parallel problems in the T-System.
The paper further gives several examples of other possible applications of the
proposed architecture for increasing the efficiency of parallel applications.

2 Compiler Design

2.1 Basic Properties of the Input Language and the Model of
Computation

For ACCT, the input language is an extended restriction of the C programming
language (cT) [4]. Function bodies are written with a conventional imperative
style. Function interaction is possible only within the framework of the functional
programming paradigm, without the side effects: the information from outside
can only be received via function arguments, and the transfer of information
outwards is performed by sending function results (there may be a number of
results).

When the T-function is called a T-process is created – which is a user-level
thread. A new started T-process is potentially capable of being executed in
parallel with the initial T-process. For enabling a parallel execution at the T-
process launch, the variables that are receiving their values as a result of the
functional call take special values – so called “non-ready values”. A non-ready
value is replaced with normal (ready) one after the T-process completed sending
a corresponding result of the T-function call.

Non-ready values are located in special variables (outer variables). A non-
ready value may easily participate in assignment of a value of one outer variable
to another outer variable of the same type. If the T-process needs an outer
variable value for executing a nontrivial operation (such as computation of the
result of an arithmetic operation or transformation of an integral value into a
float point value), the execution of such a T-process will be suspended until the
outer variable takes a ready value.

It must be noted that T-function bodies may contain the calls of conventional
functions (C functions), which requires to limit the effect of such a call by the
T-process on the background of which the call is executed (there should be no
side effects as far as other T-processes are concerned).

2.2 Compiler Architecture

The compiler consists of the following main components: front end, a set of
transform passes, and back end.

Front end transforms the program module from an input language into an
intermediate representation (IR). After the transformation is complete, the inter-
mediate representation obtained as a result is stored in a separate file or special
program library.



Optimization of Imperative Functional Parallel Programs 13

Each transform pass is able to transfer IR from the file or program library
into RAM and somehow modify it. After that, a new version of IR is stored
back on the external storage. Since all application modules are available to the
transform pass, the performed transformations have a potential possibility to
rely on the use of complete information about the application code as a whole.

The compiler back end reads IR from the file or program library and forms
the resulting assembly (or C) code for further transformation into an executable
program.

There also exists a compiler driver – a control program, which is needed for
to call all the passes described above in the proper order.

A similar structure of compiling systems is used in a number of program
transformation systems, such as SUIF [5], LLVM [6], OPS [7], etc. The ACCT
implementation is heavily based on the C front end of the GCC compiler.

Hereinafter, we’ll give an example of a non-local transformation of an appli-
cation program. Such transformation may be implemented with the proposed
program architecture.

3 Example of Program Transformation

3.1 Initial Problem

The proposed program transformation is suitable for the applications solving
massively parallel problems. As an example of a program being transformed, we
use a special modification of a standard iterative ray tracing algorithm. In case
of ray tracing, a variable parameter in a massively parallel problem is a pair of
coordinates of a point on the image plane.

The upper level of the modified algorithm implies a bisection of the rect-
angular part of the image plane containing the image. The division recursively
proceeds until, after some step in the recursion, the resulting rectangles become
sufficiently small. Thereafter, each of the resulting small rectangles is filled with
image pixels by means of a standard tracing algorithm. Such small rectangular
fragments are then assembled into a composite image.

Each small image fragment may be built independently of the others, which
allows a parallel implementation of the problem. The recursive method of image
fragmenting permits to bypass (e.g. executing the task on a cluster) the compu-
tation sequence which is typical for the so-called “task farm” paradigm and to
avoid the appropriate performance penalties.

The implementation of the algorithm on cT may be represented as the fol-
lowing three functions:

1. The render scene function (which is a C function) is destined for filling
small rectangles with the RGB intensity values for each point of the fragment
contained within such a rectangle.

2. The render scene ut T-function recursively bisects the rendering area. It
also calls the render scene function – in case the size limit of the area is
reached (that is the base case).



14 A. Adamovich

3. Tmain. The launch of the T-process of the TMain function starts the execution
of any application written in cT. TMain reads the scene description from the
file and then launches the T-process with the first call to render scene ut.
After that, TMain solves the problem of breadth-first traversal of the binary
tree built by render scene ut and assembles a composite image from the
fragments located inside the leaves of the tree, in parallel with the computa-
tion of individual fragments performed by render scene ut/render scene

calls.

In this paper, we’ll consider the render scene ut T-function. The code of
the function is as follows:

01 [void safe * sh]

02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,

03 int nx, ny, 04 void safe * sh_scene) {

05 void safe * utsh_res;

06

07 if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {

08 int ny1, ny2;

09

10 ny1 = ny / 2;

11 ny2 = ny - ny1;

12 utsh_res = tnew (void safe * [2]);

13 utsh_res [0] =

14 render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,

15 nx, ny1, sh_scene);

16 utsh_res [1] =

17 render_scene_ut (f_ulx,f_uly + f_stepy * ny1,

18 f_stepx, f_stepy, nx, ny2,

19 sh_scene);

20 sh <== utsh_res;

21 } else {

22 utsh_res =

23 tnew (char[sizeof (frag_dsc) +

24 CHAR_PER_POINT * nx * ny] outer);

25 render_scene

26 (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,

27 ((char *) &(utsh_res.C)) + sizeof(frag_dsc));

28 sh <== utsh_res;

29 }

30 }

The function arguments are the parameters of the image fragments on the
plane (the coordinates of upper left vertex of the rectangle, step size for each
axis, the numbers of steps) and the scene description. As a result, the function
returns a special-kind pointer called holder.



Optimization of Imperative Functional Parallel Programs 15

The line 7 of the function code above checks whether the bisection of the
fragment must be continued. If bisection must be performed the resulting holder
being returned (line 20) keeps (points to) a pair of similar holders (with initially
non-ready values) returned in their turn by the recursive calls (lines 12 through
19). Otherwise, the function will return the holder (line 28) keeping the image
fragment calculated by render scene regular C call (lines 22 through 27).

Figure 1.a illustrates the sequence of the T-processes launched which starts
when the TMain function calls the render scene ut T-function. As the picture
indicates, the sufficient part of the T-processes recursively launches render sce-

ne ut and builds intermediate vertices of the binary tree fragments. The other
part (building the leaves of the tree) computes the image fragments and re-
turns them as the results. This means that almost a half of the T-processes are
lightweight and the multiprocessor resources are underused as a consequence.

Fig. 1. Building a data fragments tree by parallel T-function calls: a – initial imple-
mentation scheme; b – scheme of implementation after modification.

Figure 1.b represents another scheme of building the tree of image fragments.
On the 1.b scheme, each of the T-processes builds an image fragment located
inside the tree leaf. Also one or more intermediate nodes of the tree may probably
be built by the same T-process. This method of solving the problem permits to



16 A. Adamovich

avail the computational power of a multiprocessor efficiently since each of the
T-processes becomes rather heavy computationally.

It is possible to obtain such parallel implementation of an application by
changing the if-part of the conditional statement of the render scene ut func-
tion as follows:

06 ...

07 if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {

08 int ny1, ny2;

09’ void safe * utsh_w;

10’

11’ ny1 = ny / 2;

12’ ny2 = ny - ny1;

13’ utsh_res = tnew (void safe * [2]);

14’ utsh_w = utsh_res;

15’ for (;;) {

16’ utsh_w [0]

17’ = render_scene_ut

18’ (f_ulx, f_uly, f_stepx, f_stepy,

19’ nx, ny1, sh_scene);

20’ f_uly = f_uly + f_stepy * ny1;

21’ if (nx * ny2 <= MIN_POINTS_PER_FRAG

22’ || ny2 < 2)

23’ break;

24’ ny1 = ny2 / 2;

25’ ny2 = ny2 - ny1;

26’ utsh_w [1] = tnew (void safe * [2]);

27’ utsh_w = utsh_w [1];

28’ }

29’ utsh_w [1] =

30’ tnew (char[sizeof (frag_dsc) +

31’ CHAR_PER_POINT * nx * ny2] outer);

32’ render_scene

33’ (f_ulx, f_uly, f_stepx, f_stepy, nx, ny2,

34’ ((char *) (utsh_w[1].C))+sizeof(frag_dsc));

35’ sh <== utsh_res;

21 } else {

22 ...

The numbers of new (subject to changes) lines have a stroke. One can see
that one (the second) of the recursive calls has been removed from the if-part of
the conditional statement and the remaining (the first) call has been moved into
a loop (lines 16’ through 19’). This remaining call is responsible for launching
the building of the left-upper branch (in terms of Fig. 1) in each intermediate
node of the tree. All right-lower branches are computed by a single T-process
during the loop execution. As the function exits the loop, it builds a tree leaf
and returns the result (lines 29’ through 35’).



Optimization of Imperative Functional Parallel Programs 17

To find a way to generalize the mentioned transformation for solving an
arbitrary massively parallel task is the core of the problem.

3.2 Solution: Sequence of Stages

Figure 2 illustrates a simplified scheme of the internal representation of the
compute it ut function which implements the recursive part of the algorithm
solving generalized massively parallel problems. Transformations consist in a
partial replacement of recursion by iteration. Specifically, one of two recursive
calls in the upper-left branch of the final conditional statement is to be replaced
with iteration.

A transformation object is an inner representation of a given upper-left
branch of a conditional statement. A transformation algorithm consists of three
stages:

1. Substitution. The function body is subject to a special form of inlining – it
is substituted into the second recursive call of the compute it ut function
implementing the recursion step.

2. Looping. The looping stage is executed in several steps. The execution of
all the three steps allows to considerably reduce the number of lightweight
parallelism granules.

3. Final cleaning of variables and assignments.

Hereinafter, an overview of each step is presented.

Substitution. The second recursive function call – implementing the recursion
step – is substituted with a copy of the function inner representation. Such
substitution copies corresponding environments, including call arguments, and
also assigns corresponding initial values to them.

As a result of the substitution stage, the inner representation of a recursive
branch of the final conditional statement will contain three instead of two re-
cursive calls to the compute it ut function. After further transformation at the
looping stage, two of three recursive calls will be deleted but the remaining one
will be executed in the loop body.

Looping. The two (of three) last recursive calls are completely eliminated at the
looping stage. As a substitution to the eliminated recursive calls, the compute it

C function – loop structure and recursion base – is inserted into the recursive
branch of the compute it ut function. The given procedure may be implemented
as a following sequence of steps:

1. A working holder (”outer” pointer) with a unique name – indicated here as
utsh w’ – is introduced into the compute it ut T function environment:

void safe * utsh_w’;



18 A. Adamovich

Fig. 2. Scheme of the internal representation of the function implementing the recursive
part of the algorithm solving a generalized massively parallel problem



Optimization of Imperative Functional Parallel Programs 19

This holder will be used as leading and keep the current tree node – the node
which is built in the loop at a current iteration step). The built root of a
subtree returned as a result serves as an initial value of the leading pointer:

utsh_w’ = utsh_res;

All subsequent occurrences of the utsh res variable in the transformable
code, except for the result sending final statement, should be substituted
with occurrences of the utsh w’ variable.

2. The list of statements added at the substitution stage as a body of a substi-
tuted function is transformed into a loop statement body. The first recursive
call of the compute it ut T-function is also moved into the loop body as
the first statement.

3. After that, the nested (situated in the loop body) conditional statement
is transformed. The non-recursive branch (the else-part containing the re-
cursion base) is taken out of the loop body. The condition is reversed (the
initial condition is denied). The break statement is placed into the condi-
tional statement instead of the recursive branch. The recursive branch of the
conditional statement is placed into the list of statements immediately after
the conditional statement.

Two final recursive calls (added into the intermediate representation at the
substitution step) are then deleted from the loop body. Thus, one initial call
remains. A set of statements is added to the end of the loop, which – before
the next operation starts – brings the variable environment to a state which is
“equivalent” to the state it initially had after entering the called function and
before performing the initial recursive call. In other words, the variables of the
A+B (see Fig. 2) environment are reinitialized on the basis of variables of the
A’+B’ environment introduced during the substitution stage. The value transfer
from the A’+B’ environment to the A+B environment is made by reassignment;
for example:

f_ulx = f_ulx’; f_uly = f_uly’;

f_stepx = f_stepx’; f_stepy = f_stepy’;

To complete the reinitialization, a new value is assign to the leading index:

utsh_w’ = utsh_w’ [1];

As Figure 3 illustrates, after the looping stage, the resulting scheme of the
intermediate representation of the recursive branch is rather bulky. It should
be noted that the scheme contains some excessive assignments and even some
excessive variables that will be deleted at the following stage of transformation
– at the cleaning stage.

Cleaning. As stated above, after mechanically implemented transformations,
the intermediate representation of the recursive branch has a number of odd
assignments and T-variables. For example, if we apply the above transformation
steps to the render scene ut function, the result will contain the following
definition:



20 A. Adamovich

Fig. 3. Scheme of the intermediate representation of the recursive branch of the final
conditional statement of the compute it ut function after the looping stage



Optimization of Imperative Functional Parallel Programs 21

void safe * sh_scene’;

and a pair of assignments, such as

sh_scene’ = sh_scene;

and

sh_scene = sh_scene’;

with no other assignments to these variables are performed, which means thatthe
assignments and the sh scene’ variable itself may be removed from the interme-
diate representation with substituting its other occurrences with the sh scene

variable references.

The optimizations being performed on the cleaning stage we have just men-
tioned are rather simple. However, they will not be automatically performed by
the back-end since it merely converts outer variables and related actions into C
correspondent data structures. After conversion, the information about seman-
tics of outer variables will be lost.

4 Conclusion

Obviously, the transformation described above is not the only possible within
the framework of the proposed ACCT architecture. The author hopes to make
it possible to implement transformational passes based on more sophisticated
techniques developed in the realm of functional programming (partial evaluations
[8], supercompilation [9] etc.).

In addition, a set of transformational passes as tools for to support efficient
implementation of a T-System runtime could be of value.

The author also expresses hope that the implementation of ACCT will permit
to strengthen the position of the functional paradigm in the list of numerous
modern programming paradigms being used in the area of parallel program
development.

References

1. S. M. Abramov, A. I. Adamowitch, I. A. Nesterov, S. P. Pimenov, Y. V. Shevchuck.
Autotransformation of evaluation network as a basis for automatic dynamic paral-
lelizing, Proc. The 6th NATUG meeting, NATUG’1993 Spring Meeting “Transputer:
Research and Application”, May 10-11, 1993, IOS Press, Vancouver, Canada, pp.
333–344

2. S. M. Abramov, A. I. Adamovich, , and M. R. Kovalenko. T-System–Environment
Supporting Automatic Dynamic Parallelization of Programs: An Example of the
Implementation of an Image Rendering Algorithm Based on the Tracing Method,
Programmirovanie, 1999, no. 2, pp. 100–107 (in Russian)



22 A. Adamovich

3. Sergey Abramov, Alexei Adamovich, Alexander Inyukhin, Alexander Moskovsky,
Vladimir Roganov, Elena Shevchuk, Yuri Shevchuk, and Alexander Vodomerov.
OpenTS: An Outline of Dynamic Parallelization Approach. Parallel Comput-
ing Technologies: 8th International Conference, PaCT 2005, Krasnoyarsk, Russia,
September 5-9, 2005. Proceedings. Editors: Victor Malyshkin - Berlin etc. Springer,
2005. - Lecture Notes in Computer Science: Volume 3606, pp. 303–312

4. Alexey I. Adamovich. cT: An Imperative Language with Parallelizing Features Sup-
porting the Computation Model ”Autotransformation of the Evaluation Network”.
Proceedings of the 3rd International Conference on Parallel Computing Technologies
(PaCT ’95), St. Petersburg, Russia, September 1995, pp. 127–141

5. Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, Mon-
ica S. Lam. Interprocedural parallelization analysis in SUIF. Transactions on Pro-
gramming Languages and Systems (TOPLAS), Volume 27, Issue 4, July 2005, pp.
662–731

6. Chris Lattner, Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar. 2004,
pp. 75–88

7. B. Steinberg, E. Alimova, A. Baglij, R. Morilev, Z. Nis, V. Petrenko, R. Steinberg.
The System for Automated Program Testing. / Proceedings of IEEE East-West
Design & Test Symposium (EWDTS’09). Moscow, Russia, September 18-21, 2009,
pp. 218–220

8. Neil D. Jones, Carsten K. Gomard, Peter Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall International Series in Computer Science,
Prentice-Hall, 1993, 400 pages.

9. Valentin F. Turchin. Program transformation by supercompilation. Ganzinger H.,
Jones N.D. (ed.), Programs as Data Objects (Copenhagen, Denmark). Lecture Notes
in Computer Science, Vol. 217, pp. 257–281, Springer-Verlag, 1986



Scala Macros, a Technical Report

Eugene Burmako and Martin Odersky

École Polytechnique Fédérale de Lausanne (EPFL)
first.last@epfl.ch

Abstract. Metaprogramming is a powerful technique of software de-
velopment, which allows to automate program generation. Applications
of metaprogramming range from improving expressiveness of a program-
ming language via deep embedding of domain-specific languages to boost-
ing performance of produced code by providing programmer with fine-
grained control over compilation. In this report we introduce macros,
facility that enables compile-time metaprogramming in the Scala pro-
gramming language.

Keywords: Compile-time Metaprogramming, Macros, Multi-stage Pro-
gramming, Language Virtualization

1 Introduction

As its name suggests, Scala (which stands for “scalable language” [1]) has been
built from the ground up with extensibility in mind. Such features as abstract
type members, explicit selftypes and modular mixin composition enable the pro-
grammer to compose programs as systems of reusable components [2].

The symbiosis of language features employed by Scala allows the code written
in it to reach impressive levels of modularity [3], however there is still room for
improvement. For example, the semantic gap between high-level abstractions
and the runtime model of Java Virtual Machine brings performance issues that
become apparent in high-performance scenarios [5]. Another example is state of
the art in data access techniques. Recently established standards in this domain
[4] cannot be readily expressed in Scala, which represents a disadvantage for
enterprise software development.

Compile-time metaprogramming has been recognized as a valuable tool for
enabling such programming techniques as: language virtualization (overload-
ing/overriding semantics of the original programming language to enable deep
embedding of DSLs) [6], program reification (providing programs with means
to inspect their own code) [8,10], self-optimization (self-application of domain-
specific optimizations based on program reification) [11,12], algorithmic program
construction (generation of code that is tedious to write with the abstractions
supported by a programming language) [7,8].

Our research introduces new concepts to Scala programming languages en-
abling metaprogramming techniques that address modern development chal-
lenges in an approachable and structured way [9].



24 E. Burmako, M. Odersky

2 Intuition

Here is a prototypical macro definition in our macro system:

def m ( x : T ) : R = macro implRef

At first glance macro definitions are equivalent to normal function definitions,
except for their body, which starts with the conditional keyword macro and is
followed by a possibly qualified identifier that refers to a macro implementation
method.

If, during type-checking, the compiler encounters an application of the macro
m(args), it will expand that application by invoking the corresponding macro im-
plementation method, with the abstract-syntax trees of the argument expressions
args as arguments. The result of the macro implementation is another abstract
syntax tree, which will be inlined at the call site and will be type-checked in
turn.

Example 1. The following code snippet declares a macro definition assert that
references a macro implementation Asserts.assertImpl.

def assert ( cond : Boolean , msg : Any ) =
macro Asserts . assertImpl

A call assert(x < 10, "limit exceeded") would then lead at compile time to
an invocation:

assertImpl ( c ) (<[ x < 10 ]> , <[ " limit exceeded " ]>)

where c is a context argument that contains information collected by the
compiler at the call site (receiver of the macro invocation, symbol tables for
enclosing lexical scopes, etc.), and the other two arguments are abstract syntax
trees representing the two expressions x < 10 and "limit exceeded".

In this document <[ expr ]> denotes the abstract syntax tree that represents
the expression expr, but this notation has no counterpart in our extension of the
Scala language. The canonical way to construct abstract syntax trees is to use
the types in the compiler library, which for the two expressions above looks like
this:

Apply (
Select ( Ident ( newTermName ( "x" ) ) , newTermName ( " $less " ) ,
List ( Literal ( Constant (10) ) ) )

Literal ( Constant ( " limit exceeded " ) )

The core of our macro system is described in sections 3 through 6 and is
inspired by the notions from LISP [13], Scheme [14] and Nemerle [8]. Sections 7
through 9 describe a peculiar feature of Scala macros that makes use of staging
to bootstrap macros into a hygienic and quasiquoting metaprogramming system.
Subsequent sections conclude the report.



Scala Macros, a Technical Report 25

3 Baseline

Let us examine a possible implementation of the assert macro mentioned in
Example 1 to explore the foundations of Scala macros:

object Asserts {
def assertionsEnabled = . . .
def raise ( msg : Any ) = throw new AssertionError ( msg )
def assertImpl ( c : Context )

( cond : c . Expr [ Boolean ] , msg : c . Expr [ Any ] )
: c . Expr [ Unit ] =

if ( assertionsEnabled )
<[ if ( ! cond ) raise ( msg ) ]>

else
<[ ( ) ]>

}

As the listing shows, a macro implementation takes several parameter lists.
First comes a single parameter, of type Context. This is followed by a list of
parameters that have the same names as the macro definition parameters. But
where the original macro parameter has type T, a macro implementation param-
eter has type c.Expr[T]. Expr[T] is a type defined in Context that wraps an abstract
syntax tree of type T. The result type of the assertImpl macro implementation
is again a wrapped tree, of type c.Expr[Unit].

Parameters of a macro implementation are dependently typed, being a part
of a dependent method type [15]. Such type annotations statically ensure that
artifacts passed into a macro belong to the context that services a macro ex-
pansion. This type-checking facility is important from a practical standpoint, as
it prevents accidental mix-up of compilation stages. For example, without de-
pendent typing it would be possible to inadvertently refer to runtime trees and
types (obtained from a reflection context) in a compile-time macro (that uses
the compiler context).

The macro being discussed is static, in a sense that it has a statically known
receiver (such receivers are called “objects” in Scala parlance). It is possible,
however, to define instance macros and use them in a prefix fashion, analogously
to instance methods, e.g. receiver.a_macro(args). In that case, abstract syntax
tree corresponding to receiver is passed to the macro implementation in Context.

4 Expression Trees

An expression tree of type Expr[T] encapsulates an abstract syntax tree of type T

together with its type. Heres the definition of Expr as a member of the compiler
library exposed to macro implementations:

case class Expr [ T : TypeTag ] ( tree : Tree ) {
def eval : T = . . .
lazy val value : T = eval

}



26 E. Burmako, M. Odersky

Implicit in the contract for Expr is that the type of the reified tree conforms
to the type parameter T (which is also reified by the virtue of the TypeTag context
bound, as described in subsequent sections). Expr values are typically created by
the compiler, which makes sure that this contract is kept.

Note that the method eval which when called on a value of type Expr[T] will
yield a result of type T. The eval method and the value value play a special role
in tree splicing as described in subsequent sections.

5 Polymorphic Macros

Macro definitions and macro implementations may both be polymorphic.
Type parameters in an implementation may come with TypeTag context bounds

[16]. In that case the corresponding TypeTags describing the actual type argu-
ments instantiated at the application site will be passed along when the macro
is expanded.

Example 2. The code below declares a polymorphic macro definition Queryable

.map that references a polymorphic macro implementation QImpl.map:

class Queryable [ T ] {
def map [ U ] ( p : T => U ) : Queryable [ U ] = macro QImpl . map [ T , U ]

}

object QImpl {
def map [ T : c . TypeTag , U : c . TypeTag ]

( c : Context )
( p : c . Expr [ T => U ] )
: c . Expr [ Queryable [ U ] ] = . . .

}

As outlined in [16], context bounds provide a concise notation for declaring
implicit parameter sections that captures suitable type class instances from lex-
ical scope. For example, method QImpl.map is desugared into the following form:

object QImpl {
def map [ T , U ]

( c : Context )
( p : c . Expr [ T => U ] )
( implicit evidence$1 : c . TypeTag [ T ] ,
implicit evidence$2 : c . TypeTag [ U ] )

: c . Expr [ Queryable [ U ] ] = . . .
}

Now consider a value q of type Queryable[String] and the following macro call
(the explicit type argument [Int] can be omitted, in which case it will be inferred
by the compiler):

q . map [ Int ] ( s => s . length )

The call is expanded to the following macro invocation:



Scala Macros, a Technical Report 27

QImpl . map ( c ) (<[ s => s . length ]>)
( implicitly [ c . TypeTag [ String ] ] , implicitly [ c . TypeTag [ Int ] ] )

The implicitly function is used to summon suitable (i.e. marked as implicit
and having a conformant type signature) type tags from the lexical scope of the
call site. Shortly put, implicit search starts with the innermost enclosing scope
and proceeds from the inside out (details about the implicit resolution algorithm
may be found in [17]).

Of course, macro runtime does not expect the programmer to know about
macro contexts, to create the type tags manually and to put them into local
variables visible from macro call sites. In a common case when type tags are
not declared explicitly, implicit search will fall back to the outermost scope,
declared in the standard library. This outermost scope hosts implicit macros
that are capable of materializing type tags for arbitrary types.

6 Type Tags

A value of type TypeTag[T] encapsulates a representation of type T. A TypeTag

value simply wraps a Scala type, while a ConcreteTypeTag value is a type tag that
is guaranteed not to contain any references to type parameters or abstract types.

case class TypeTag [ T ] ( tpe : Type ) { . . . }
class ConcreteTypeTag [ T ] ( tpe : Type ) extends TypeTag [ T ] ( tpe )

Implicit in the contract for all Tag classes is that the reified type represents
the type parameter T. Tags are typically created by the compiler, which makes
sure that this contract is kept. The creation rules are as follows:

1) If an implicit value of type TypeTag[T] is required, the compiler will summon
it from the enclosing lexical scope or make one up on demand using the implicit
search algorithm described in the previous section.

2) The implicitly created value contains a value of type Type that is a reified
representation of T. In that value, any occurrences of type parameters or abstract
types U which come themselves with a TypeTag are represented by that TypeTag.
This is called type splicing.

3) If an implicit value of type ConcreteTypeTag[T] is required, the compiler will
make one up on demand following the same procedure as for TypeTags. However,
if the resulting type still contains references to type parameters or abstract types,
a static error results.
As an example that illustrates type splicing, consider the following function:

def f [ T : TypeTag , U ] = {
type L = T => U
implicitly [ TypeTag [ L ] ]

}

Then a call of f[String, Int] will yield a result of the form:

TypeTag (<[ String => U ]>)



28 E. Burmako, M. Odersky

Note that T has been replaced by String, because it comes with a TypeTag in
f, whereas U was left as a type parameter.

Type splicing plays an important role in the design of the metaprogramming
system, because Scala uses the erase-types model to compile polymorphic types
[18]. In this model, when the program is compiled down to executable form, type
arguments of the invocations are removed, and type parameters are replaced by
their upper bounds. With implicit parameters it becomes possible to capture
type arguments during the compile-time to retain them at runtime [3], and type
splicing scales this technique to complex types.

7 Quasiquoting and Hygiene

The macro scheme described so far has the advantage that it is minimal, but also
suffers from two inconveniences: tree construction is cumbersome and hygiene is
not guaranteed. Consider a fragment of the body of assertImpl in Example 1 :

<[ if ( ! cond ) raise ( msg ) ]>

To actually produce the abstract syntax tree representing that expression
one might write something like that:

c . Expr (
If ( Select ( cond , newTermName ( " unary_$bang " ) ) ,

Apply ( Ident ( newTermName ( " raise " ) ) , List ( msg ) ) ,
Literal ( Constant ( ( ) ) ) ) )

Cumbersome enough as this is, it is also wrong. The tree produced from a
macro will be inlined and type-checked at the macro call site. But that means
that the identifier raise will be type-checked at a point where it is most likely
not visible, or in the worst case they might refer to something else. In the macro
literature, this insensitivity to bindings is called non-hygienic [19,8].

In the case of assertImpl, the problems can be avoided by generating instead
of an identifier a fully qualified selection

Select ( Ident ( newTermName ( " Asserts " ) ) , newTermName ( " raise " ) )

(to be completely sure, one would need to select the full path starting with the
_root_ package). But that makes the tree construction even more cumbersome
and is very fragile because it is easily forgotten.

However, it turns out that macros themselves can be used to solve both these
problems. A corner-stone of the technique is a macro called reify that produces
its tree one stage later.

8 Reify

The reify macro plays a crucial role in the proposed macro system. Its definition
as a member of Context is:

def reify [ T ] ( expr : T ) : Expr [ T ] = macro . . .



Scala Macros, a Technical Report 29

Reify accepts a single parameter expr, which can be any well-typed Scala
expression, and creates a tree that, when compiled and evaluated, will recreate
the original tree expr. So reify is like time-travel: trees get re-constituted at a
later stage. If reify is called from normal compiled code, its effect is that the
abstract syntax tree passed to it will be recreated at run time. Consequently, if
reify is called from a macro implementation, its effect is that the abstract syntax
tree passed to it will be recreated at macro-expansion time (which corresponds
to run time for macros). This gives a convenient way to create syntax trees from
Scala code: pass the Scala code to reify, and the result will be a syntax tree
that represents that very same code.

Moreover, reify packages the result expression tree with the types and values
of all free references that occur in it. This means in effect that all free references
in the result are already resolved, so that re-typechecking the tree is insensitive to
its environment. All identifiers referred to from an expression passed to reify are
bound at the definition site, and not re-bound at the call site. As a consequence,
macros that generate trees only by the means of passing expressions to reify are
hygienic.

So in that sense, Scala macros are self-cleaning. Their basic form is minimal
and unhygienic, but that simple form is expressive enough to formulate a reify

macro, which can be used in turn to make tree construction in macros concise
and hygienic.

Example 3 : Here is an implementation of the assert macro using reify.

object Asserts {
def assertionsEnabled = . . .
def raise ( msg : Any ) = throw new AssertionError ( msg )
def assertImpl ( c : Context )

( cond : c . Expr [ Boolean ] , msg : c . Expr [ Any ] )
: c . Expr [ Unit ] =

if ( assertionsEnabled )
c . reify ( if ( ! cond . eval ) raise ( msg . eval ) )

else
c . reify ( ( ) )

}

Note the close correspondence with the meta-notation of Example 1.

9 Splicing

Reify and eval are inverses of each other. Reify takes an expression and produces
a tree that, when evaluated with eval, yields the same result as the original
expression. This is also expressed by their types. reify goes from T to Expr[T],
and eval goes from Expr[T] back to T.

The reify macro takes advantage of this relationship by short-circuiting em-
bedded calls to eval during the process that we call tree splicing (compare this
with type splicing described above):



30 E. Burmako, M. Odersky

reify ( expr . eval ) translates to expr

This principle is seen in action in Example 3. There, the contents of the
parameters cond and msg are spliced into the body of the reify.

Along with eval, value also gets special treatment:

reify ( expr . value ) also translates to expr

Similar to eval, the value value also makes reify splice its tree into the
result. The difference appears when the same expression gets spliced into multiple
places inside the same reify block. With eval, reify will always insert a copy of
the corresponding tree (potentially duplicating side-effects), whereas value will
splice itself into a temporary variable that will be referred by its usages.

The notion of splicing also manifests itself when reify refers to a type that
has a TypeTag associated with it. In that case instead of reproducing the types
internal structure as usual, reify inserts a reference to the type tag into its result.

reify ( expr : T ) translates to expr typed as TypeTag [ T ] . tpe

Tagging a type can be done either automatically, by writing a TypeTag con-
text bound on a type parameter of a macro implementation, or manually, by
introducing an implicit TypeTag value into the scope visible by reify.

Note the close resemblance of type splicing in reify and type splicing during
TypeTag generation. In fact, here we are talking about the same algorithm. When
producing a TypeTag for a type, corresponding implicit macros call reify (which,
in turn, calls TypeTag generators to resolve potential splices using the implicit
search algorithm).

10 Related Work

The history of compile-time metaprogramming dates back to the times of LISP
[13], which was introduced in 1950s. Since then a fair amount of languages:
statically typed [7] and dynamically typed [20], minimalistic [14] and having
rich syntax [8] - have adopted macros. Our research builds on this notion of
compile-time program transformation.

Hygiene is an important idea brought up in Scheme. The problem of inadver-
tent name clashes between the application code and generated macro expansions
has been well-known in the Lisp community. Kohlbecker et al. [19] have solved
this problem by embedding the knowledge of declaration sites into symbols that
represent values and declarations in the program, making macro expansions hy-
gienic.

We acknowledge this problem, but our means of achieving hygiene do not
require changes to the type-checking algorithm. By making use of reify, a stag-
ing macro, we statically ensure that cross-stage bindings do not occur. Similar
approach has been used in MacroML [21], which implements a macro system in
a staged language MetaML [22]. Our arrival at this conflux of ideas happened
the other way around - we built a staged system with macros.



Scala Macros, a Technical Report 31

As a language with syntax, Scala has to work hard to achieve homoiconicity.
The incovenience of manipulating abstract syntax trees in their raw form is a
well-known problem, and it affects rich languages to a greater extent than it
affects minimalistic ones. Traditional solution to this problem is a quasiquoting
DSL that lets the programmer encode ASTs in a WYSIWYG manner [26,8,27].

Our answer to this challenge is the same staging macro reify that we use to
achieve hygiene. Code passed to reify becomes an AST one stage later, which
provides a quasiquoting facility without the need to introduce a special domain-
specific language.

Finally, as a language virtualization platform, Scala macros are conceptually
close to Scala-Virtualized [23] which virtualizes base language constructs (e.g.
control flow) and even data structures [24]. However, our approach to virtual-
ization is different. Scala macros expose general-purpose Scala trees and types
and provide low-level manipulation facilities, whereas Scala-Virtualized is good
for embedded DSLs, in particular when the DSL expression trees do not exactly
correspond to Scala trees [25].

11 Conclusions

We have presented a minimalistic macro system for Scala, a language with rich
syntax and static types. This macro system builds up a metaprogramming facil-
ity on a single concept - compile-time AST transformer functions.

Other metaprogramming facilities usually include additional concepts of quasi-
quoting and hygiene to make themselves suitable for practical use. We have
shown, however, that it is possible to implement both on top of our minimalistic
core.

Acknowledgements

The authors would like to thank Vladislav Chistyakov, Jan Christopher Vogt,
Stefan Zeiger, Adriaan Moors and the entire Scala community for insightful
discussions and helpful comments.

References

1. Odersky, M., Spoon L., and Venners B., Programming in Scala, Second Edition.
Artima Press, 2010.

2. Odersky, M., and Zenger M., Scalable Component Abstractions. ACM Sigplan No-
tices, 2005.

3. Odersky, M., and Moors, A., Fighting Bit Rot with Types (Experience Report: Scala
Collections). Theoretical Computer Science, 2009.

4. Box, D., and Hejlsberg, A., LINQ: .NET Language-Integrated Query, Retrieved
from http://msdn.microsoft.com/en-us/library/bb308959.aspx, 2007.

5. Dragos I., Optimizing Higher-Order Functions in Scala, Third International Work-
shop on Implementation Compilation Optimization of ObjectOriented Languages
Programs and Systems, 2008.



32 E. Burmako, M. Odersky

6. McCool, M. D., Qin, Z., and Popa, T. S., Shader metaprogramming, Proceedings of
the ACM SIGGRAPHEUROGRAPHICS conference on Graphics hardware, 2002.

7. Sheard, T., and Peyton Jones, S., Template Meta-programming for Haskell, Haskell
Workshop, 2002.

8. Skalski K., Syntax-extending and type-reflecting macros in an object-oriented lan-
guage, Master Thesis, 2005.

9. Scala Macros, Use cases, Retrieved from http://scalamacros.org/usecases.html,
2012.

10. Attardi, G., and Cisternino, A., Reflection support by means of template metapro-
gramming, Time, 2001.

11. Seefried, S., Chakravarty, M., and Keller, G., Optimising Embedded DSLs using
Template Haskell. Generative Programming and Component Engineering, 2004.

12. Cross, J., and Schmidt, D., Meta-Programming Techniques for Distributed Real-
time and Embedded Systems, 7th IEEE Workshop on Object-oriented Real-time
Dependable Systems, 2002.

13. Steele, G., Common LISP. The Language. Second Edition, Digital Press, 1990.
14. The Revised [6] Report on the Algorithmic Language Scheme, Journal of Functional

Programming, volume 19, issue S1, 2010.
15. Odersky, M., Cremet, V., Rckl, C., and Zenger M., A Nominal Theory of Objects

with Dependent Types, 17th European Conference on Object-Oriented Program-
ming, 2003.

16. Oliveira, B., Moors, A., and Odersky, M., Type classes as objects and implicits, 25th
Conference on Object-Oriented Programming, Systems, Languages & Applications,
2010.

17. Odersky, M., The Scala Language Specification, Version 2.9, 2011.
18. Schinz, M., Compiling Scala for the Java Virtual Machine, PhD thesis, 2005.
19. Kohlbecker, E., Friedman, D., Felleisen, M., and Duba, B., Hygienic macro expan-

sion, Symposium on LISP and Functional Programming, 1986.
20. Rahien, A., DSLs in Boo: Domain-Specific Languages in .NET, Manning Publica-

tions Co., 2010.
21. Ganz, S., Sabry, A., and Taha, W., Macros as Multi-Stage Computations: Type-

Safe, Generative, Binding Macros in MacroML, International Conference on Func-
tional Programming, 2001.

22. Taha, W., and Sheard, T., MetaML: Multi-Stage Programming with Explicit An-
notations, 1999.

23. Moors, A., Rompf, T., Haller, P., and Odersky, M., Scala-Virtualized, Partial Eval-
uation and Program Manipulation, 2012.

24. Slesarenko A, Lightweight Polytypic Staging: a new approach to Nested Data Par-
allelism in Scala, Scala Days, 2012.

25. Rompf, T., and Odersky, M., Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs, 2010.

26. Bawden, A., Quasiquotation in Lisp, Proceedings of the ACM SIGPLAN Workshop
on Partial Evaluation and SemanticsBased Program Manipulation, 1999.

27. Mainland, G., Why it’s Nice to be Quoted: Quasiquoting for Haskell, Applied Sci-
ences, 2007.



A Comparison of Program Transformation
Systems

Michael Dever and G.W. Hamilton

Dublin City University
{mdever, hamilton}@computing.dcu.ie

Abstract. Program transformation is a popular technique for attempt-
ing to improve the efficiency of a program. At a high level, program
transformation is the process of taking an input program and trans-
forming it into an improved version of the original, bearing the same
constraints as the original, e.g. termination constraints. In this paper,
we focus on three fold/unfold [3] based transformation systems, positive
supercompilation [26,25,21,2,12] and distillation [8,9,10,11] and HOSC
[19,18]. We focus on derivatives of both that use labelled transition sys-
tems [12,11] and we present these systems, their underlying theory, and
implementations. Based upon these implementations we will present an
analysis of how they compare to each other, and another transformation
system, HOSC[19], when applied to a sample of real-world programs.

1 Introduction

Program transformation describes the process of taking an input program and
transforming it via various methodologies, discussed below, to a semantically
equivalent program [23] that is bounded by the same constraints as the original
program. The goal of such a transformation is to enhance and improve the orig-
inal program, whether the improvements be scalability, efficiency, concurrency
or other measures of improvement. This goal exists as programming, in any lan-
guage, can be an arduous task, with many aspects that have to be taken in to
consideration by the developer.

As skill, knowledge and experience can vary greatly from programmer to
programmer, program transformation has the potential to prove an immense
aid to developers. If a developer can write a version of software, and have it
improved for them by another program (the transformer), this will result in
better software coming from that developer. There are, however, downsides to
applications of program transformation in the field. Program transformers don’t
always produce intuitive, comprehendible output; if they did, and the results
were intuitive, there would not be a need for the transformer.

There exist many different techniques for the application of program transfor-
mation techniques to functional programs; Burstall & Darlington’s fold/unfold
algorithms [3], which are the cornerstones of the other transformations de-
tailed here; Pettorossi and Proietti’s transformation rules (fold/unfold based)



34 M. Dever, G.W. Hamilton

[23], which further the techniques of Burstall & Darlington; Wadler’s defor-
estation [31] and its derivatives [5,7], Turchin’s supercompilation [28], and its
derivatives in the form of positive supercompilation [26,25,21,2], two-level super-
compilation[19,18], Hamilton’s distillation [8,9,10,11] and many others.

While we focus on program transformation applied to functional languages
in this paper, it is worth noting that program transformation is applicable to
other types of language, such as logic languages [20], and sequential languages
[17]. There are a number of reasons why we focus on functional languages, but
the most important reasons are that functional languages are easier to analyze,
reason about, and to manipulate using program transformation techniques. The
lack of side-effects in pure functional languages is a major benefit, as these do
not have to be taken into consideration during the transformation process.

A key note to be made about functional languages is that due to their na-
ture, a lot of functions use intermediate data structures to generate results. As
an example, the naive definition of reverse below relies heavily upon using in-
termediate lists, in its call to append. Another key feature of some functional
languages is the ability to use lazy evaluation, where results are evaluated as
they are needed. Even within this context, the use of intermediate structures
can be a hindrance, as each allocation requires space and time for allocation etc.
[31], and the transformations examined here are aimed at reducing/eliminating
usage of intermediate data. To show these reductions, we will present our imple-
mentations of the transformation systems, and an analysis of how they compare
to each other.

reverse = λxs.case xs of
[] → []
(x : xs)→ append (reverse xs) [x]

append = λxs ys.case xs of
[] → ys
(x : xs)→ (x : append xs ys)

In this paper, we focus on fold/unfold based transformations using labelled
transition systems [12,11], that depict a programs run-time behavior, and use
weak bisimulation to prove correctness. The remainder of this paper is structured
as follows: in Section 2 we define the higher-order language to be used, and some
constraints on it. In Section 3, we define a labelled transition system, and weak
bisimilarity. In Section 4 we define both supercompilation and distillation using
a labelled transition system, and in Section 5 we present the results of using
these to optimize a sample of programs.

2 Language

The simple higher-order language to be used throughout this paper is shown
below:

Within this language, a program consists of an expression to be evaluated, e0,
and a set of function definitions, ∆ = f1 = e1 . . . fk = ek. Constructors must be



A Comparison of Program Transformation Systems 35

prog ::= e0 where f1 = e1 . . . fk = ek Program

e ::= x Variable
| c e1 . . . ek Constructor
| f Function
| λx.e Lambda Abstraction
| e0 e1 Application
| case e0 of p1 ⇒ e1 | . . . |pk ⇒ ek Case Expression

p ::= c x1 . . . xk Pattern

Fig. 1. Language Definition

of a fixed arity, and within c e1 . . . ek, k must be equal to constructor c’s arity.
Bound variables are those introduced by λ-abstraction or case patterns, and
all other variables are free. Two expressions, e1 and e2, are equivalent, e1 ≡ e2,
if the only difference between the two is the naming of their bound variables.
Case expressions may only have non-nested patterns, and if nested patterns are
present, they must be transformed into equivalent non-nested versions [1,30].

The language shown uses a standard call-by-name operational semantics, in
which there exists an evaluation relation ⇓ between closed expressions and values
(expressions in weak head normal form [14]). The one-step reduction relation,

r
;,

is shown in Figure 2, and defines three reductions, f , c and β, where f represents
an unfolding of function f , c represents a constructor elimination of constructor
c and β represents β-substitution.

(f = e) ∈ ∆
f

f
; e ((λx.e0) e1)

β
; (e0{x 7→ e1})

e0
r
; e′0

(e0 e1)
r
; (e′0 e1)

pi = c x1 . . . xn

(case (c e1 . . . en) of p1 : e′1| . . . |pk : e′k)
c
; (ei{x1 7→ e1, . . . , xn 7→ en})

e0
r
; e′0

(case e0 of p1 : e1| . . . pk : ek)
r
; (case e′0 of p1 : e1| . . . pk : ek)

Fig. 2. One-Step Reduction Relation

e
r
; denotes the reduction of an expression, e, by rule r, e ⇑ denotes e diverg-

ing, and e ⇓ denotes e converging. e ⇓ v can be used to denote e evaluating to

the value v. These notations are defined in below, where
r
;
∗

denotes the reflexive
transitive closure of

r
;.



36 M. Dever, G.W. Hamilton

e
r
;, iff ∃e′.e r

; e′ e ⇓, iff ∃v.e ⇓ v
e ⇓ v, iff e

r
;
∗
v ∧ ¬(v

r
;) e ⇑, iff ∀e′.e r

;
∗
e′ ⇒ e′

r
;

Definition (Substitution) If e is an expression, and there exists a substitu-
tion, θ = {x1 → e1, . . . xn → en}, then eθ = e{x1 → e1, . . . xn → en} denotes the
simultaneous substitution of ei for the variable xi in e, while ensuring name cap-
ture cannot happen. �

Definition (Renaming) If there exists a bijective mapping, σ, such
that σ = {x1 → x′1, . . . , xn → x′n}, and there exists an expression e, then
e{x1 → x′1, . . . , xn → x′n} denotes the simultaneous substitution of the variable
xi for x′i in e. �

Definition (Context) A context, C, is an expression that contains a hole [],
where one sub-expression should be, and C[e] denotes the replacing the hole in
C with the sub-expression e. �

Definition (Evaluation Context, Redex and Observable) Evaluation con-
texts, E , redexes, R, and observables, O are as defined below.

E ::= []
| E e
| case E of p1 ⇒ e1 | . . . |pk ⇒ ek

R ::= f
| (λx.e0) e1
| case (x e1 . . . en) of p1 ⇒ e′1 | . . . |pk ⇒ e′k
| case (c e1 . . . en) of p1 ⇒ e′1 | . . . |pk ⇒ e′k

O ::= x e1 . . . en
| c e1 . . . en
| λx.e

�

Definition (Observational Equivalence) Observational equivalence,', equates
two expressions if and only if they exhibit the same termination behavior in all
closing contexts, i.e. e1 ' e2 iff ∀C.C[e1] ⇓ iff C[e2] ⇓. �

3 Labelled Transition Systems

As per Gordon [6], Hamilton and Jones [12,11], define and extend a labelled
transition system, that depicts immediate observations that can be made on ex-
pressions to determine their equivalence. Their extension is to allow free variables
in both expressions and actions, and a knock on effect of this is that observa-
tional equivalence will now require that both free and bound variables in actions
match.



A Comparison of Program Transformation Systems 37

Definition (Labelled Transition System) A driven LTS associated with the
program e0 is represented by t = (E , e0,→, Act) where:

– E represents the set of states of the LTS. Each state can be either an expres-
sion or the end-of-action state 0.

– t contains as root the expression e0, denoted root(t).
– →⊆ E X Act X E is a transition relation relating pairs of states by actions

according to the driving rules.
– If e ∈ E and e

α→ e′ then e′ ∈ E .
– Act is a set of actions, α, each of which can either be silent or non-silent.

Non-silent actions are one of: a variable, a constructor, the ith argument of
an application, a λ-abstraction over a variable x, case selector, a case branch
pattern or a let abstraction. Silent actions are one of: τf , the unfolding of a
function f , τc, the elimination of a constructor c or τβ , β-substitution.

�

λ-abstractions, case pattern variables and let variables that are within the
actions of an LTS, t, are bound, denoted by bv(t), while all other variables are
free, denoted by fv(t). let transitions do not appear in a driven LTS, and are only
introduced later on due to generalization, via let transitions. The authors note
that the LTS notation allows for identifying program behavior just by looking at
the labels on the transitions, and that transitions from constructors or variables
lead to the end-of-action state, 0. In addition to the above notation, Hamilton
et. al. provide some additional notation for working with an LTS:

– e
α→ e′ represents (e, α, e′) ∈→.

– e→ (α1, t1), ..., (αn, tn) represents an LTS containing root state e where
t1, ..., tn are LTSs obtained by following transitions labelled α1, ..., αn from
e.

– e⇒ e′ can be used if and only if there exists a potentially empty set of silent
transitions from e to e′.

– In the case of a non-silent action α, e1
α⇒ e2 can be used if and only if there

exists e1 and e2 such that e1 ⇒ e′1
α→ e′2 ⇒ e2

Comparisons of program behavior can be completed using by using weak
bisimilarity, defined below:

Definition (Weak Simulation) The binary relation R ⊆ E1XE2 is a weak
simulation of a pure LTS (E1, e10,→1, Act1) by another pure LTS (E2, e20,→2, Act2)
if (e10, e

2
0) ∈ R and for every pair (e1, e2) ∈ R, α ∈ Act1, e′1 ∈ E1 it holds that if

e1
α⇒ e′1 then

∃e′2 ∈ E2.e2
α⇒ e′2 ∧ (e′1, e

′
2) ∈ R �

Definition (Weak Bisimulation) A weak bisimulation is a binary relation R
such that itself and its inverse are weak simulations. �

Definition (Weak Bisimilarity) If a weak bisimulation R exists between two
pure LTSs, then there exists a unique maximal one, denoted ∼. �



38 M. Dever, G.W. Hamilton

4 Transformation Techniques using Labelled
Transformation Systems

Supercompilation, [12], and distillation [11], are both program transformation
techniques aimed at reducing the use of intermediate data during the evaluation
of programs. The goal of the present paper is to compare distillation with positive
supercompilation. For this purpose the paper presents a formulation of positive
supercompilation in LTS terms, shown in Figure 4, and compares it with an
LTS formulation of distillation, shown in Figure 5. At the core of both of these
techniques, is a process known as driving, which is essentially a forced unfolding,
applied in a top-down fashion, to construct potentially infinite trees of states and
transitions. Within driving, all function applications are removed, and will only
be re-introduced due to generalization, G, via let transitions at a later point.
These driving rules, D, are the transformation rules that define the technique,
and are applicable to all terms that satisfy the language definition above.

DJeK = D′JeK ∅

D′Je = x e1 . . . enK θ
=

{
e→ (τ↓θ(x),D′Jθ(x ) e1 . . . enK θ), if x ∈ dom(θ)
e→ (x,0), (#1,D′Je1 K θ), . . . , (#n,D′JenK θ), otherwise

D′Je = c e1 . . . enK θ = e→ (c,0), (#1,D′Je1 K θ), . . . , (#n,D′JenK θ)
D′Je = λx .eK θ = e→ (λx,D′JeK θ)
D′Je = E [f ]K θ = e→ (τf ,D′JE [e]K θ)

where (f = e) ∈ ∆
D′Je = E [(λx .e0 ) e1 ]K θ = D′JE [e0 ]K (θ ∪ {x 7→ e1})
D′Je = E [case x of p1 ⇒ e1 | · · · | pk ⇒ ek ]K θ

=





e→ (τβ ,D′JE [case θ(x ) of p1 ⇒ e1 | · · · | pk ⇒ ek ]K θ), if x ∈ dom(θ)
e→ (case,D′JxK θ), (p1,D′JE [e1 ]K (θ ∪ {x 7→ p1})),

. . . ,
(pk,D′JE [ek ]K (θ ∪ {x 7→ pk})), otherwise

D′Je = E [case (x e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k ]K θ
= e→ (case,D′Jx e1 . . . enK θ), (p1,D′JE [e ′

1 ]K θ),
. . . ,

(pk,D′JE [e ′
k ]K θ)

D′Je = E [case (c e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k ]K θ
= e→ (τc,D′JE [e ′

i ]K (θ ∪ {x1 7→ e1, . . . , xn 7→ en}))
where pi = c x1 . . . xn

Fig. 3. Driving Rules

Within both of these transformation systems, driving is performed on an
input expression, performing a normal order reduction, in which wherever possi-
ble, silent transitions are generated. Whenever an expression without a reduction
is encountered, a non-silent transition is generated. If case expressions cannot
be evaluated, then LTS transitions are generated for their branches with infor-



A Comparison of Program Transformation Systems 39

mation propagated according to each branches pattern. As driving results in
a potentially infinite labelled transition system, obviously the transformation
process cannot stop here, as its results so far may be infinite, and as such, an
important issue in both systems is that of termination. Each system approaches
this in a similar, but importantly, different manner.

Both make use of both folding and generalization to guide termination. Gen-
eralization is performed when the risk of there being a potentially infinite unfold-
ing has been detected. The distinction between the approach of the two systems
is that supercompilation performs both of these on previously encountered ex-
pressions, while distillation performs these on previously encountered labelled
transition systems. This difference is quite significant as an LTS obviously con-
tains a lot more information than just a sole expression.

In supercompilation, folding, Fs, is performed upon encountering a renam-
ing of a previously encountered expression, and generalization, Gs, is performed
upon encountering an embedding of a previously encountered expression. In dis-
tillation, folding, Fd, is performed upon encountering a renaming of a previously
encountered LTS, and generalization, Gd, is performed upon encountering an
embedding of a previously encountered LTS. In both cases, an embedding is
defined by a homeomorphic embedding relation.

In both systems, given an input expression, e, the driving rules above, D
are applied resulting in an LTS, DJeK. Next, transformation rules, T , for which
distillation is shown in Figure 5 and supercompilation in Figure 4, are applied
resulting in an LTS, T JDJeKK. Finally, once termination has been guaranteed via
generalization, residualization rules R, shown in Figure 6 are applied, resulting
in a residualized program, RJT JDJeKKK.

TsJeK = T ′
s JeK ∅

T ′
s Je→ (τf , e

′)K ρ =




FsJe′′K ρ, if ∃e′′ ∈ ρ.e′′ ≡ e
T ′
s JGsJe′′K JeK σK ρ , if ∃e′′ ∈ ρ.e′′ ./s e
e→ (τf , T ′

s Je′K (ρ ∪ {e}) ), otherwise

T ′
s Je→ (τβ , e

′)K ρ =




FsJe′′K ρ, if ∃e′′ ∈ ρ.e′′ ≡ e
T ′
s JGsJe′′K JeK σK ρ , if ∃e′′ ∈ ρ.e′′ ./s e
e→ (τβ , T ′

s Je′K (ρ ∪ {e}) ), otherwise
T ′
s Je → (α1 , e1 ), . . . , (αn , en)K ρ = e → (α1 , T ′

s Je1 K ρ ), . . . , (αn , T ′
s JenK ρ )

T ′
s Je→ (let, e0), (x, e1)K ρ = e→ (let, T ′

s Je0K ρ ), (x, T ′
s Je1K ρ )

Fig. 4. Transformation Rules for Supercompilation

The supercompilation transformation system takes the results of DJeK which
is a labelled transition system. As DJeK can be infinite, the transformation rules
Ts only traverse a finite portion lazily from the root. Generalization rules Gs are
applied if the danger of an infinite unfolding (due to recursive function calls)
is detected, and a “whistle is blown”. When a whistle is blown it indicates the
detection of a homeomorphic embedding of a previously encountered expression,



40 M. Dever, G.W. Hamilton

and application of these rules results in an LTS with no danger of infinite folding,
and a finite set of expressions on any path from it’s root. Once the system has
been generalized, folding rules, Fs are applied. Folding takes a generalized LTS
and produces a bisimilar LTS, one with a finite number of states that can be
residualized into an expression using the residualization rules R.

TdJeK = T ′
d JeK ∅ ∅

T ′
d Jt = e→ (τf , t

′)K ρ θ =




FsJt′′K σ, if ∃t′′ ∈ ρ, σ.t′′ h tσ
T ′
d JGdJt′′K JtK θ σK ρ φ, if ∃t′′ ∈ ρ, σ.t′′ ./d tσ
e→ (τf , T ′

d Jt′K (ρ ∪ {t}) θ), otherwise

T ′
d Jt = e→ (τβ , t

′)K ρ θ =




FsJt′′K σ, if ∃t′′ ∈ ρ, σ.t′′ h tσ
T ′
d JGdJt′′K JtK θ σK ρ φ, if ∃t′′ ∈ ρ, σ.t′′ ./d tσ
e→ (τβ , T ′

d Jt′K (ρ ∪ {t}) θ), otherwise
T ′
d Je → (α1 , t1 ), . . . , (αn , tn)K ρ θ = e → (α1 , T ′

d Jt1 K ρ θ), . . . , (αn , T ′
d JtnK ρ θ)

T ′
d Jt = e→ (let, t0), (x, t1)K ρ θ

=




T ′
d Jt0{x 7→ x′}K ρ θ, if ∃(x′ 7→ t2) ∈ θ.t1 h t2
e→ (let, T ′

d Jt0K ρ (θ ∪ {x 7→ t1})),
(x, T ′

d Jt1K ρ θ), otherwise

Fig. 5. Transformation Rules for Distillation

The distillation transformation system proceeds in a similar manner, taking
the results of DJeK and applying Td to this LTS resulting in another LTS with a
finite set of states. In distillation however the whistle is blown when an embed-
ding of a previously encountered LTS is detected and generalization, Gd, then
ensures that a renaming of a previously encountered LTS will be found. Folding,
Fd is then applied to the LTS resulting in one with a finite set of states and then
this can be residualized into a program using the residualization rules R. The
main difference between the two systems is that in supercompilation the com-
parisons are performed on expressions, and in distillation they are performed on
LTS ’s.

The questions related to correctness and termination, as well as the details
of folding and generalization, are out of the scope of the present paper, because
they have been earlier addressed in [12,11].

As mentioned previously, both transformation systems aim to remove in-
termediate data from their inputs, resulting in a more efficient output. This is
done through removing silent transitions, defined previously. Briefly, these are
either function unfoldings, β-reductions or constructor eliminations, and these
are strongly linked to how powerful each system is. In the case of supercompi-
lation, as it looks at expressions, there can only be a constant number of silent
transitions between recursive calls of a function, the removal of which leads to
a potentially linear increase in efficiency [27]. Distillation however, allows for
an increasing number of silent transitions between recursive calls of a function,
allowing for a potentially super-linear increase in efficiency [11]. This is more
complex than supercompilation, as the LTS’s used for comparison can be infi-



A Comparison of Program Transformation Systems 41

RJeK = R′JeK ∅

R′Je → (x ,0), (#1 , t1 ), . . . , (#n, tn)K ε = x (R′Jt1 K ε) . . . (R′JtnK ε)
R′Je → (c,0), (#1 , t1 ), . . . , (#n, tn)K ε = c (R′Jt1 K ε) . . . (R′JtnK ε)
R′Je → (λx , t)K ε = λx .(R′JtK ε)
R′Je → (case, t0 )(p1 , t1 ), . . . , (pn , tk )K ε = case (R′Jt0Kε) of p1 ⇒ (R′Jt1Kε)

...
pk ⇒ (R′JtkKε)

R′Je → (let, t0 ), (x , t1 )K ε = (R′Jt0 K ε){x 7→ (R′Jt1 K ε)}
R′Je → (τc , t)K ε = R′JtK ε

R′Je → (τf , t)K ε =




f ′ x1 . . . xn , if ∃(f ′ x1 . . . xn = e) ∈ ε
f ′ x1. . . xn where f ′ = λx1 . . . xn.(R′JtK (ε ∪ {f ′ x1 . . . xn = e})),

otherwise (f ′ is fresh, {x1 . . . xn} = fv(t))

R′Je → (τβ , t)K ε =




f x1 . . . xn , if ∃(f x1 . . . xn = e) ∈ ε
f x1. . . xn where f = λx1 . . . xn.(R′JtK (ε ∪ {f x1 . . . xn = e})),

otherwise (f is fresh, {x1 . . . xn} = fv(t))

Fig. 6. Rules For Residualization

nite, whereas the expression compared in supercompilation is not, however dis-
tillation benefits from the fact that as any infinite sequence of transitions must
contain either a function unfolding or substitution, once one of these is detected,
no further comparison needs to be done.

5 Two-Level Supercompilation

There are many other approaches to our supercompilation technique, such as
supero [22,21]. However, we expect such supercompilation systems to be similar
in nature and success as our system. Another more powerful approach to the
removal of intermediate data is that of two-level supercompilation [19,18]. The
authors of this approach supercompilation as a multi-level program transforma-
tion technique, using a lower and an upper level supercompiler to transform an
input program. Like distillation, this technique is capable of obtaining a super-
linear increase in efficiency, but was originally intended as an analysis tool.

Using a multi-level approach is based upon the concept of meta-system transi-
tion presented by Turchin in [29]. Briefly, a meta-system S′ is a system composed
of copies and/or variations of another system S and means of controlling these
copies of S. If there exists another meta-system S′′ composed of copies of S′,
then the hierarchy of control in this system is obvious.

In two-level supercompilation, S′ is a hierarchical meta-system composed of
copies of a ‘classic’ supercompiler S, that each can control each other. Lower
level supercompilers generate improvement lemmas [24] - improved expressions
equivalent to an input expression - guided by the expressions labeling the nodes
of its partial process tree [19]. These improvement lemmas can then be used
to guide the upper level supercompiler in its search for improvement lemmas.



42 M. Dever, G.W. Hamilton

The supercompilers at the different levels of a two-level supercompiler can differ
in behavior, allowing for an upper and lower level supercompiler to produce
different results. Using its hierarchy of possibly differing supercompilers, it, like
distillation is capable of obtaining a super-linear increase in efficiency.

6 Comparison of Techniques

Based upon the fact that distillation is significantly more powerful than super-
compilation, we have implemented both techniques for comparison using the
popular functional language Haskell [15]. As two-level supercompilation is also
more powerful than supercompilation and can obtain results similar to that of
distillation, we would have liked to included it in our comparison, however we
had difficulties getting the tool functioning, so we have included the output of
the HOSC [19] single level supercompiler. To perform these comparisons, we
represent parsed Haskell programs into a simple representation of the language
similar to that shown in Figure 1. It is worth noting that our transformation tool
is still a work in progress, and as such our comparison is on a set of relatively
‘simpler’ programs, that match up pretty closely to the language definition, with
more advanced features of the Haskell language being disallowed.

The benchmarks we used are as follows: sumsquare [4], a function that cal-
culates the sum of the squares of two lists; wordcount, linecount and charcount
[22] are functions that respectively count the number of words, lines and charac-
ters in a file; factorial, treeflip and raytracer are programs used to benchmark
previous supercompilation work [16]; nrev represents a naive list reversal pro-
gram; and a sample of programs from the well known Haskell nofib benchmark
suite[13]. We present the results obtained after supercompiling, distilling and ap-
plying HOSC to our set of benchmarks, with focus on both execution time and
memory usage. The results of the transformation systems are shown as a per-
centage of the measure used for the unoptimized version, and a lower percentage
will obviously indicate an improvement.

6.1 Findings

In Figure 7, we present our findings of the execution time performance of our set
of benchmark programs based on seconds taken to complete execution. From left
to right, the columns describe the name of the sample program, its unoptimized
execution time (in seconds), the time taken by the supercompiled version, the
time taken by the output of HOSC, and finally, the time taken by the distilled
version.

In Figure 8 we present our findings of the memory performance of our set of
benchmark programs based on maximum memory allocated on the heap during
execution time. From left to right, the columns describe the name of the sample
program, its unoptimized total memory usage (in MB), the memory used by the
supercompiled version, the memory used by the output of HOSC, and finally,
the memory used by the distilled version.



A Comparison of Program Transformation Systems 43

Name Unoptimized Supercompilation HOSC Distillation

nrev 62.5 53.3 68.7 0.1

charcount 0.01 0.01 0.01 0.01

exp3 8 45.9 32.4 52.1 -

factorial 2.6 2.5 2.8 -

linecount 28.7 0.01 0.01 0.01

primes 79.2 75.9 104.5 -

raytracer 12.7 10.0 10.4 10.0

rfib 57.7 35.3 37.7 -

sumsquare 81.9 72.7 76.9 -

treeflip 51.2 29.9 32.2 -

wordcount 29.8 0.01 0.01 0.01

Fig. 7. Execution Time

Name Unoptimized Supercompilation HOSC Distillation

nrev 8 6 11 3

charcount 3 3 3 3

exp3 8 6 4 6 -

factorial 3 3 3 -

linecount 6 1 1 1

primes 2 2 2 -

raytracer 1011 730 732 732

rfib 2073 1061 1047 -

sumsquare 2313 2391 2221 -

treeflip 2176 1083 1069 -

wordcount 6 1 1 1

Fig. 8. Memory Usage

There are some interesting conclusions that can be drawn from both Figure
7 and Figure 8. A quick review of our execution time and memory usage find-
ings show that, while the distillation tool is incomplete at this point it in no
case underperforms either of the other two optimization techniques with respect
to execution time. It also reveals that our implementation of supercompilation
fares better than that of HOSC in terms of execution time. In the following
sections we present the following: firstly a comparison of our implementation of
supercompilation and HOSC, and secondly a comparison of the supercompila-
tion techniques and our implementation of distillation. It is worth noting at this
point that, as mentioned above, our implementation of distillation is a work in
progress, and as a result of this there are some programs that we were unable
to optimize.

Supercompilation Techniques With respect to execution time, and the test
cases involved, we find that our implementation of supercompilation results in



44 M. Dever, G.W. Hamilton

more outputs with improved efficiency than that of HOSC. We also find that
our supercompiler results in a reduced execution time, whereas HOSC does not
and in some cases results in a drastic increase in execution time.

This reduction in performance is most pronounced in the case of primes,
where for the same input, the original unoptimized version has an execution
time of 79.2 seconds, our super-compiled version takes 75.9 seconds and HOSC
takes 104.5 seconds. Compared with the original our implementation results in
a 4.16% reduction in execution time, and HOSC results in a 31.94% increase in
execution time over the original and a 37.68% increase in execution time over
our implementation of supercompilation. In the cases of charcount, linecount
and wordcount both implementations resulted in the same decrease of execution
time, with charcount seeing no increase in efficiency, which was expected and
linecount and wordcount seeing a 99.96% increase in execution time.

With respect to memory usage, and the test cases involved, we find that our
implementation of supercompilation often results in more efficient outputs than
that of HOSC. In the cases of nrev, exp3 8 and raytracer our supercompiler
gives a greater reduction in memory usage than that of HOSC, which in the case
of nrev actually has a negative impact on memory usage. The original program
has a maximum allocation of 8 MB, our supercompiled version uses 6 MB, a
reduction of 25%, and the HOSC supercompiled version uses 11 MB, an increase
of 37.5%.

However there are also some cases where HOSC seems to obtain a slight
decrease in memory usage when compared to both the original and our super-
compiler, i.e. rfib, and treeflip. In the case of sumsquare our supercompiled
version results in an output that is less efficient than both the original program
and the output of HOSC with respect to memory usage. The original program
uses 2313 MB, the output of HOSC uses 2221 MB and our supercompiled ver-
sion uses 2391 MB. Our supercompiled version represents a 3.37% increase in
memory usage, and the HOSC supercompiled version represents 3.98% decrease
in memory usage over the original and a 7.65% decrease in memory usage over
our supercompiled version.

Distillation vs. Supercompilation As our sample set of distillable programs
is limited, we have few benchmarks to draw conclusions from, namely nrev,
charcount, linecount, raytracer and wordcount. With respect to execution time
for these test cases, nrev is probably the most interesting example with the
original program taking 62.5 seconds, our supercompiled version taking 53.3
seconds, the HOSC supercompiled version taking 68.7 seconds and our distilled
version taking 0.1 seconds, representing a 14.72% increase, a 9.92% decrease
and a 99.84% increase in efficiency respectively. An increase of this order was
expected for distillation as it is capable of obtaining a super-linear increase in
efficiency.

With respect to memory usage, and the same set of benchmarks, nrev and
raytracer are the most interesting examples. In the case of nrev, the original
program uses 8 MB, our supercompiled version uses 6 MB, the HOSC super-



A Comparison of Program Transformation Systems 45

compiled version uses 11 MB and our distilled version uses 3 MB, representing
a 25% reduction, an 11% increase and a 62.5% reduction in memory usage re-
spectively. Again this is to be expected with supercompilation. In the case of
raytracer, the original program uses 1011 MB, our supercompiled version uses
730 MB, and both the distilled and the HOSC supercompiled versions use 732
MB, representing a 27.79% decrease and a 27.6% reduction respectively. What
is interesting about this is that our supercompiled version is more efficient with
respect to memory usage than our distilled version, when the opposite would be
expected.

7 Future Work

Work is progressing at present on extension of the distillation tool to allow it to
handle some of the more powerful features of the Haskell programming language.
Once it is capable of handling these more advanced features it will be applied to
the benchmarks that weren’t possible for this comparison. The results of these
optimizations will be published, alongside those of the multi-level supercompiler
mentioned previously for comparison. We aim to also support all programs in
the Nofib benchmark suite, and some more real-world programs.

8 Acknowldgements

This work was supported, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero - the Irish Software Engineering Research Centre

References

1. Augustsson, L.: Compiling pattern matching. Functional Programming Languages
and Computer Architecture (1985)

2. Bolingbroke, M., Jones, S.P.: Supercompilation by evalutation. Proceedings of the
2010 ACM SIGPLAN Haskell Symposium (2010)

3. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the Association for Computing Machinery 24(1), 44–67 (Jan-
uary 1977)

4. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion. from lists to streams to
nothing at all. In: ICFP’07 (2007)

5. Gill, A., Launchbury, J., Jones, S.P.: A shortcut to deforestation. FPCA: Pro-
ceedings of the conference on Functional programming languages and computer
architecture pp. 223–232 (1993)

6. Gordon, A.D.: Bisimilarity as a theory of functional programming. Electronic Notes
in Theoretical Computer Science 1, 232 – 252 (1995)

7. Hamilton, G.W.: Higher order deforestation. Fundamenta Informaticae 69(1-2),
39–61 (July 2005)

8. Hamilton, G.W.: Distillation: Extracting the essence of programs. Proceedings of
the ACM Workshop on Partial Evaluation and Program Manipulation (2007)



46 M. Dever, G.W. Hamilton

9. Hamilton, G.W.: Extracting the essence of distillation. Proceedings of the Sev-
enth International Andrei Ershov Memorial Conference: Perspectives of System
Informatics (2009)

10. Hamilton, G.W., Mendel-Gleason, G.: A graph-based definition of distillation. Pro-
ceedings of the Second International Workshop on Metacomputation in Russia
(2010)

11. Hamilton, G., Jones, N.: Distillation and labelled transition systems. Proceedings
of the ACM Workshop on Partial Evaluation and Program Manipulation pp. 15–24
(January 2012)

12. Hamilton, G., Jones, N.: Proving the correctness of unfold/fold program trans-
formations using bisimulation. Lecture Notes in Computer Science 7162, 153–169
(2012)

13. Haskell-Community: Nofib benchmarking suite (2012), http://darcs.haskell.

org/nofib/

14. Jones, S.P.: The Implementation of Functional Programming Languages. Prentice-
Hall (1987)

15. Jones, S.P.: Haskell 98 language and libraries - the revised report. Tech. rep. (2002)
16. Jonsson, P.A., Nordlander, J.: Positive supercompilation for a higher order call-

by-value language. SIGPLAN Not. 44(1), 277–288 (Jan 2009)
17. Klimov, A.V.: An approach to supercompilation for object-oriented languages: the

java supercompiler case study (2008)
18. Klyuchnikov, I., Romanenko, S.: Towards higher-level supercompilation. In: Sec-

ond International Valentin Turchin Memorial Workshop on Metacomputation in
Russia. pp. 82–101. Ailamazyan University of Pereslavl (2010)

19. Klyuchnikov, I.G.: Towards effective two-level supercompilation (2010)
20. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.

Program. 11(3-4), 217–242 (1991)
21. Mitchell, N.: Rethinking supercompilation. In: ICFP ’10: Proceedings of the 15th

ACM SIGPLAN Internation Conference on Functional Programming. pp. 309–320.
ACM (September 2010)

22. Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: et al., O.C. (ed.)
IFL 2007. LNCS, vol. 5083, pp. 147–164. Springer-Verlag (May 2008)

23. Pettorossi, A., Proietti, M.: Rules and strategies for transforming functional and
logic programs. ACM Comput. Surv. 28(2), 360–414 (Jun 1996)

24. Sands, D.: Total correctness by local improvement in the transformation of func-
tional programs. ACM Transactions on Programming Languages and Systems 18,
175–234 (1996)

25. Sørensen, M., Glück, R.: An algorithm of generalization in positive supercompila-
tion. International Logic Programming Symposium pp. 465–479 (1995)

26. Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of Functional
Programming 1(1) (January 1993)

27. Sørensen, M.H.: Turchin’s supercompiler revisited - an operational theory of posi-
tive information propagation (1996)

28. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems 8(3), 292–325 (June 1986)

29. Turchin, V.F.: Metacomputation: Metasystem transitions plus supercompilation.
In: Selected Papers from the Internaltional Seminar on Partial Evaluation. pp.
481–509. Springer-Verlag, London, UK, UK (1996)

30. Wadler, P.: Efficient compilation of pattern matching. In: Jones, S.P. (ed.) The
Implementation of Functional Programming Languages., pp. 78–103. Prentice-Hall
(1987)



A Comparison of Program Transformation Systems 47

31. Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248 (1990)



Overgraph Representation for Multi-Result
Supercompilation⋆

Sergei A. Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
sergei.grechanik@gmail.com

Abstract. In this paper we present a new approach to multi-result su-
percompilation based on joining together process graphs into a single
graph and welding nodes corresponding to equal configurations. We show
that this leads to a considerable reduction of nodes being built during su-
percompilation and enables more efficient configuration graph processing
algorithms on the example of an enhanced residualization algorithm.

1 Introduction

Supercompilation [15] is traditionally seen as a program transformation which
produces a single program that is equivalent in some sense to the original one.
This approach is very understandable: we usually need only one program, actu-
ally the most optimal one we can produce. But this approach goes deep down
the process of supercompilation. Being a complex transformation, supercompi-
lation consists of smaller steps (like driving, folding and generalization) that can
be applied in some order. The principle of single result dictates us to choose
a single step each time we have a choice. This means that we ought to make
decisions using some a priori heuristics which may lead us to a solution that is
far from optimal. Of course there is no purity in the world and supercompilers
often implement backtracking through generalization of an upper configuration.

The flaw of this approach becomes more pronounced when we consider a
problem that doesn’t consist in finding an optimal solution, for example proving
of equivalence of two programs. The standard approach is to supercompile both
of them and then compare the resultant programs syntactically [6, 10]. But we
don’t really need an optimal solution to do it, and since the optimal solution
is hard to find, we would increase chances of success by constructing a set of
equivalent programs for each original program and then checking if the sets
intersect. Another example – program analysis. In this case a supercompiler can
be used as a transformation that simplifies a program into one that is easier to
analyze. But “easier to analyze” might not be the same as “more efficient” and
it may be more difficult to express using heuristics.

⋆ Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



Overgraph Representation for Multi-Result Supercompilation 49

Undoubtedly it is possible to stuff the supercompiler with all sorts of heuris-
tics and then tune it to suit the specific task. This approach has the right to live.
It must be said that it is also used outside the field of supercompilation, for ex-
ample, it is common to automatically adjust the set of parameters of optimising
compilers to a certain architecture or even to a set of programs [2, 3, 11].

An alternative approach is to dismiss the idea of the single path to the opti-
mal program. Let supercompiler perform all possible steps simultaneously when
it has a choice. This idea is known as the multi-result supercompilation [9]. It
first appeared not a very long time ago and was intended to be used primarily
for program analysis. It should be noted that similar idea had appeared in the
field of optimizing compilers [14] where it enabled selecting the best program
by evaluating the programs a posteriori using global profitability heuristics; this
indicates that the idea of multiple results is advantageous for optimization prob-
lems.

The main problem of multi-resultness is lack of efficiency. Each branching
point multiplies the number of programs leading to combinatorial explosion.
This issue can be resolved by restricting branching using heuristics (which is
not desirable but seems unavoidable) or by using some better representation of
the set of programs to diminish redundancy. In this paper the latter approach
is discussed.

2 The Approach of MRSC

MRSC is a multi-result supercompilation framework written in Scala [8]1. The
goal of MRSC is to provide a set of components to rapidly build various multi-
result supercompilers. MRSC consists of a core which implements basic domain-
independent operations over process graphs, and several domain-specific (i.e.
specific to different languages and tasks) modules which give meaning to these
graphs and guide their construction.

MRSC is based on explicit construction of configuration graphs. Being a
multi-result supercompiler, it takes an initial configuration and produces a list
of corresponding configuration graphs which is then transformed into a list of
programs through the process known as residualization. MRSC issues configura-
tion graphs incrementally. In particular, this design choice makes it possible to
use MRSC as a traditional single-result supercompiler without efficiency loss by
simply taking the first issued graph. On the other hand it determines that MRSC
should use depth-first traversal to build and issue every next graph as quickly as
possible. Thus, the MRSC supercompilation algorithm can be formulated using
a stack of graphs as follows:

1. Put a graph with only one node containing the initial configuration on the
stack.

2. While the stack is not empty repeat the following steps.

1 The source code of MRSC is available at https://github.com/ilya-klyuchnikov/
mrsc



50 S.A. Grechanik

3. Pop a graph 𝑔 from the stack.
4. If the graph 𝑔 is completed, issue it.
5. If the graph is incomplete, transform it according to some domain-specific

rules and push the resultant graphs (there may be many of them as the
supercompilation is multi-result) onto the stack

It should be noted that although we talk about graphs they are actually repre-
sented as trees with back edges (which are represented differently from normal
edges).

Each graph has a list of complete nodes and a list of incomplete nodes. The
first incomplete node of a graph is called the current node and represents the
place where the graph is growing. A graph is completed if it doesn’t contain
incomplete nodes.

Fig. 1. Tree of graphs

Graph transforming rules are specified with a function that maps a graph into
a list of steps to perform on it (by “perform” we don’t mean that they actually
modify it, we apply steps in a functional way). When a step is performed, the
current node usually becomes complete and the next incomplete node becomes
current (if there are incomplete nodes left). A step can be one of the following:

1. CompleteCurrentNode – just mark the current node complete and move on to
the next incomplete node. It is usually used if the the current node contains
a fully evaluated expression as a configuration.

2. Fold(𝑏) – make a back edge from the current node to 𝑏.
3. AddChildNodes(cs) – append nodes to the current one.
4. Rebuild(𝑐) – replace the configuration of the current node with 𝑐. This step

does not make the current node complete.
5. Rollback(𝑛, 𝑐) – perform an upper rebuilding: remove the subgraph that

grows from the node 𝑛 and then replace the configuration of 𝑛 with 𝑐. 𝑛
becomes current.



Overgraph Representation for Multi-Result Supercompilation 51

If there is no step produced by the rules function, the graph is thrown away as it
is incomplete and cannot be completed. It is usually the case when the whistle
blows but there is no possibility of generalizing, or the graph doesn’t meet some
conditions we require (like the safety condition in the case of counter systems).

So what if the rules prescribe several different steps to one incomplete graph?
All of them will be performed on it simultaneously, producing several graphs.
This leads to the idea of a tree of graphs (Fig. 1). The tree of graphs is a mental
construction rather than an actual tree that resides in a memory, but it can be
used to give another formulation of MRSC supercompilation algorithm: MRSC
just performs the depth-first traversal of this tree filtering out incomplete graphs.

Fig. 2. Spaghetti-stack-based graph representation

When more than one step is applicable the number of graphs multiplies by
the number of steps, and it may seem that MRSC doesn’t cope with the problem
of combinatorial explosion very well. But actually MRSC uses a clever represen-
tation to reduce memory usage by exploiting sharing of common subgraphs. This
representation is based on spaghetti-stacks [1]. A graph represented this way can
be thought of as a configuration graph with all edges reversed (except folding
edges which are treated separately) (Fig. 2). This allows initial parts of graphs
to be shared. Moreover this representation makes it possible to work with graphs
in a functional way efficiently. Note that this optimization doesn’t interfere with
our view on graphs as separate objects.

3 Can we do better?

Certainly there is a room for improvement. Let us look when MRSC does not
work very well. Consider a configuration that being driven produces two child
nodes: 𝑏 and 𝑐. Then the node 𝑏 will become current. Let it have multiple dif-
ferent steps that can be applied to it. We get at least two different graphs with
incomplete node 𝑐 (Fig. 3). That means that the 𝑐 node will be current at least
twice (in different graphs) and thus each subgraph growing from it will be built
at least twice and won’t be shared, which might be considered as a drawback.
This happens because a graph growing from a node is usually determined by the



52 S.A. Grechanik

𝑎

𝑎

𝑏 𝑐

𝑎

𝑏

𝑠

𝑐

𝑎

𝑏

𝑡

𝑐

𝑎

𝑏

𝑠

𝑐

𝑔

𝑎

𝑏

𝑡

𝑐

𝑔

Fig. 3. Two different nodes with the same configuration and identical histories

configuration in this node and the predecessors of the node. But MRSC is too
general as it assumes that rules work on whole graphs, not just paths from a
root to a current node. So it is possible to write rules which prescribe different
steps for the node 𝑐 in the considered example. It means that we should put
more restrictions on rules in order to perform more sophisticated optimizations.

Another drawback of MRSC is a premature loss of information. As graphs
are seen as independent from a graph consumer point of view we cannot use
more efficient algorithms that can make use of their interconnections. To give
an example of such an algorithm let’s consider a problem of finding the small-
est program among the residual programs. A brute-force solution would be to
residualize all completed graphs and then compute the sizes of the programs and
find the minimum. A more clever solution would be to pick the smallest resid-
ual subprogram for each intermediate node while building the residual program.
The algorithm enabling this optimization will be discussed in more detail later
in this article.

Now we can see what representation would be more advantageous – let’s
replace a set of graphs with its description by merging the graphs into one
huge graph, which we will call an overtree to underline that the graphs are still
essentially trees with back edges. It is convenient to combine edges representing
a single step into a hyperedge with one source and several destinations (Fig. 4,
hyperedges are drawn as bundles of edges going from one point). Then it is
possible to extract a graph representing a program from an overtree by selecting



Overgraph Representation for Multi-Result Supercompilation 53

one outcoming hyperedge for each node and then removing unreachable nodes.
Note that it is convenient to consider terminal nodes (which represent constants,
variables, etc.) as having outcoming hyperedges with zero destination nodes.

𝑓(𝑔(ℎ(𝑣0)))

ℎ(𝑣2)𝑓(𝑔(𝑣1))

𝑓(𝑣3) 𝑔(ℎ(𝑣4))

𝑓(𝑔(ℎ(𝑆(𝑣5)))) 𝑓(𝑔(ℎ(𝑍)))

𝑔(𝑣7)𝑓(𝑣6)

𝑔(𝑣8) ℎ(𝑣9)

𝑓(𝑔(ℎ(𝑣10)))

Fig. 4. Overtree representation

This representation, which we will call the overtree representation, doesn’t
change the graph building algorithm very much, it actually becomes much more
similar to the traditional single-result supercompilation. This representation has
been implemented in MRSC as an experiment. This experiment unveiled some
shortcomings of the proposed representation: turned out there were a lot of equal
but unshared subtrees. It is quite clear where they were coming from. Consider
some complex program involving multiplication (implemented as a function on
Peano numbers). There will be a lot of different ways of supercompiling this
program, some of them will have the multiplication function fused with other
operations, but some will prefer to generalize it out leading to multiple equal
subgraphs corresponding to the multiplication and scattered over the overtree.
Obviously we do not want to supercompile the same thing several times, so the
next natural step is to get rid of duplicated configurations. We could have done it
by introducing cross edges similarly to back edges, but there is a cleaner solution
– let’s shift from a de facto tree representation to a fully fledged graph (Fig. 5).
That is if during supercompilation we encounter a configuration which we have
already processed, we do not create a new node for it. Thus each configuration
corresponds to no more than one node. This new representation can be called the
overgraph representation. Note that configurations equal up to renaming should
be identified.

Unlike the overtree representation this one seems to be a bit more ground-
breaking. Special folding edges are not needed anymore as they can be rep-
resented as ordinary edges. However, we cannot safely use traditional binary
whistles because possible steps cannot depend on the history of computation
(and hence unary whistles can still be used). Why is it so? Because each node
may have multiple immediate predecessors and thus multiple histories. Let us de-



54 S.A. Grechanik

𝑓(𝑔(ℎ(𝑣0)))

𝑔(ℎ(𝑣2))𝑓(𝑔(𝑣1)) 𝑓(𝑔(ℎ(𝑆(𝑣3)))) 𝑓(𝑔(ℎ(𝑍)))

ℎ(𝑣5) 𝑓(𝑣6)

𝑔(𝑣4)

Fig. 5. Overgraph representation

scribe the overgraph representation more formally and consider how these issues
can be addressed.

4 Overgraph Representation

In this section a multi-result supercompilation with overgraph representation is
discussed. A configuration graph corresponds to (and actually can be represented
by) a set of statements of the following form:

𝑠
𝑙→ (𝑑1, . . . , 𝑑𝑛)

where 𝑠 is a source configuration and 𝑑𝑖 are destination configurations. Configu-
rations are in one-to-one correspondence with nodes. The whole statement cor-
responds to a hyperedge labeled with some information 𝑙. The exact meaning of
the statements depends on the interpretation of the relation→ which is different
for different applications of supercompilation. For traditional supercompilation
of functional programs it can be like this:

𝑠
𝑓→ (𝑑1, . . . , 𝑑𝑛)

def⇐⇒ 𝑠 ◁
̃︀
𝑓(𝑑1, . . . , 𝑑𝑛)

Note the use of the improvement relation (◁
̃︀
) instead of a simple equality (=).

This is due to the necessity of ensuring correctness of folding [12,13]. Informally
𝑎 ◁
̃︀
𝑏 means that 𝑎 is not only operationally equal to 𝑏 but also more efficient

than 𝑏 (needs fewer reduction steps to be evaluated in any context). We won’t
elaborate on the topic of correctness since it is not very troublesome in the
case of one-level supercompilation, but importance of the improvement relation
consists in asymmetry it brings. When a hyperedge connects only two nodes we
cannot generally consider it undirected which could be inferred if the relation
were symmetric.

If we do not put any restrictions on the set thus representing a graph, then
we get an overgraph. If we want to represent a singular configuration graph then
we should state that each configuration can appear to the left of the → no more



Overgraph Representation for Multi-Result Supercompilation 55

than once. Several singular graphs can be merged to form an overgraph by simple
union.

The supercompilation with overgraphs is proposed to be performed in three
steps:

1. Graph construction. In this step edges and nodes are only being added.
2. Graph truncation. In this step edges and nodes are only being removed.
3. Residualization. As it will be seen this step becomes a bit more nontrivial.

For construction and truncation we will use the rules of the form

precondition

𝑠
𝑙→ (𝑑1, . . . , 𝑑𝑛)

precondition

remove(node or hyperedge)

to add a new hyperedge (together with necessary nodes) and to remove a hyper-
edge or a node (together with all incident hyperedges) correspondingly.

4.1 Graph Construction

This step seems to be rather straightforward: start with a graph containing only
a root node (with the configuration being supercompiled) and then apply the
rules until the saturation is reached, i.e. there is no applicable rule that can add a
new node or edge. There are two problems: the rules formulation and the order
of their application. The rules should ensure termination and provide enough
diversity but not too much. The traditional way of ensuring termination is to
use a whistle. But whistles have been used not only for the termination problem
but also for picking the configurations that are to be generalized. Since we use
the multi-result supercompilation the generalization can be decoupled from the
whistle and thus a much simpler whistle can be used. For example, it is possible
to simply limit the depth of nodes, although this solution does not scale very
well.

Concerning the problem of diversity, there are usually a lot of possible gen-
eralizations of a configuration, and if we take all of them, even the overgraph
representation won’t help us fight combinatorial explosion. If we pick few of them,
we risk missing some good opportunities. Obviously heuristics are unavoidable.
Limiting the number of unbound variables appeared to be a good one for pre-
venting overgeneralization. Good heuristics for multi-result supercompilation are
yet to be found and researched.

A problem of rules application order may arise when there are rules with
non-monotonic preconditions, i.e. a rule precondition can change its value from
true to false when certain nodes or edges are added to the graph. For example
consider the following rule:

¬∃𝑚 : 𝑚 ∈ 𝑉 ∧ whistle(𝑛,𝑚)

𝑛→ drive(𝑛)

where 𝑉 is the set of nodes of the graph. It prescribes a drive step for a node 𝑛
if there is no node 𝑚 in the graph which makes a binary whistle blow. If there
is another rule that adds such a node 𝑚 then these two rules won’t commute.



56 S.A. Grechanik

Since we agreed not to remove edges and nodes on the graph construction
step, there won’t be any problem if all the preconditions are monotonic. For
example it is possible to use a whistle this way: let’s allow driving if there is
another node that does not make the binary whistle blow.

4.2 Graph Truncation

This step is dual to the previous. Its purpose is to reduce the number of nodes
by removing useless ones. Useless nodes are those which are unreachable from
the root or have no outcoming edges (remember that we have agreed to consider
terminal nodes as having an outcoming edge without destination nodes). When
a node is deleted, all hyperedges incident with it must be deleted as well, leading
to new useless nodes. That’s why this procedure should be repeated until there
are no useless nodes left. It can be also described with the following rules:

¬∃𝑙, 𝑑1, . . . , 𝑑𝑛 : 𝑠
𝑙→ (𝑑1, . . . , 𝑑𝑛)

remove(s)

¬∃𝑝 : 𝑝 is a path from the root to 𝑠

remove(s)

In this step it is also possible to apply a whistle. On the one hand it may
seem a bit too late: the graph has already been built by now, so we don’t need
to ensure termination on this step. Moreover, we can’t return consumed CPU
time by removing parts of the graph (we can return some memory though). But
on the other hand experiments show that most time is being consumed later
on the residualization step, so reducing the number of nodes and edges of the
graph is a good thing to do. However it is still impossible to use a binary whistle
in a traditional way for the same reason: the traditional usage may lead to
noncommutativity of rules. At this stage to ensure commutativity preconditions
should be monotonically decreasing, and actually it is possible to use rules from
the previous step by negating their preconditions, i.e. “if the whistle doesn’t
blow, add a node” becomes “if the whistle blows, remove a node”. The only
advantage of using whistles in this step seems that now it is possible to look at
the graph as a whole and extract some useful information to adjust the whistle.

Note also that although commutativity of rules makes a supercompiler a
bit cleaner and more predictable, this property is not obligatory and can be
discarded in practice.

5 Residualization

The residualization step is special because it transforms a set of graphs repre-
sented as one graph into an actual set of graphs (or programs which are a special
case of graphs), and here the danger of explosion threatens again.

Firstly we should agree upon what graphs we will consider residual. In this
section we will study the case of trees with back edges (but without cross edges),



Overgraph Representation for Multi-Result Supercompilation 57

i.e. we won’t identify equivalent subprograms in different contexts. This choice
was initially determined by the structure of the language for which the overtree
representation had been initially implemented (it will be dicussed in the next sec-
tion). It may look a bit inconsistent: why not go further and represent programs
as graphs (especially recalling that it is a traditional program representation)?
We will return to this question later in Section 6.2.

ℛJ𝑛, ℎK = {︀
𝑛
}︀

if 𝑛 is terminal

ℛJ𝑛, ℎK = {︀
Call(𝑛)

}︀
if 𝑛 ∈ ℎ

ℛJ𝑛, ℎK = {︀
Def(𝑛)J𝑓(𝑟1, . . . , 𝑟𝑘)K

⃒⃒
𝑛

𝑓→ (𝑑1, . . . , 𝑑𝑘),

𝑟𝑖 ∈ ℛJ𝑑𝑖, ℎ ∪ {𝑛}K
}︀

otherwise

Fig. 6. Naive residualization algorithm

Consider a naive residualization algorithm (Fig. 6). It takes a node and a
history and returns a set of residual programs. It is usually applied to the root
node and the empty history: ℛJroot , ∅K. The algorithm recursively traverses the
graph memorizing visited nodes in the history ℎ. If it encounters a node that is
already in the history, it creates a function call which is designated as Call(𝑛).
If a node is not in the history and has successors, a function definition should be
created with the construction Def(𝑛)JbodyK, so as it can be called with a Call(𝑛)
construction from within the body . The implementation of Call and Def depends
on the output language, for example the Def construction can be implemented
with letrec expressions:

Def(𝑛)JbodyK = letrec 𝑛 = 𝑏𝑜𝑑𝑦 in 𝑛

Usually it is a bit more complex because of unbound variables. Note also that
practical implementations of the algorithm should create a new function defini-
tion only if there is a corresponding function call in the body, we just create a
function definition for each node for simplicity.

When applied, this residualization algorithm will visit each node the number
of times equal to the number of computation paths from the root to it. So the
problem reappeared: we need to compute (almost) the same thing many times.

5.1 Enhanced Residualization Algorithm

The solution to the problem is quite obvious – cache residual programs for inter-
mediate nodes. It cannot be applied directly though because the naive residual-
ization algorithm takes a history of computation besides a node. However, resid-
ualization doesn’t need full information contained in a history, i.e. the residual
program for a node may be the same for different histories. So if we can do with
less information, the algorithm will be feasible to memoize.



58 S.A. Grechanik

To do this we need analyze the structure of a computation history for a given
node. Let’s first give a couple of definitions.

Definition A node 𝑚 is a successor of a node 𝑛, 𝑛→* 𝑚, if there is a directed
path from 𝑛 to 𝑚 (possibly with zero length). A set of successors will be denoted
as succs(𝑛).

Definition A node 𝑚 is a predecessor of a node 𝑛 if 𝑛 is a successor of 𝑚. A
set of predecessors will be denoted as preds(𝑛).

Definition A node 𝑛 dominates a node 𝑚, 𝑛 dom 𝑚, if every path from the
root to 𝑚 contains 𝑛.

n

r

Fig. 7. Nodes whose presence in a history can influence residualization process are in
the intersection of the set of all predecessors and the set of all successors

Given a node 𝑛, the nodes that are not its predecessors are not interesting as
they won’t be in a history. The nodes that are not successors are not interesting
either because they don’t influence the residualization process (they can be in a
history but they won’t be encountered again). Thus we care only about nodes
which are successors and predecessors of 𝑛 at the same time (i.e. those which are
in the same strongly connected component with 𝑛, Fig. 7), so we just need to re-
move nodes that are not successors from history when calling the residualization
function:

ℛJ𝑛, ℎK =
{︀

Def(𝑛)J𝑓(𝑟1, . . . , 𝑟𝑘)K
⃒⃒
𝑛

𝑓→ (𝑑1, . . . , 𝑑𝑘),

𝑟𝑖 ∈ ℛJ𝑑𝑖, (ℎ ∪ {𝑛}) ∩ succs(𝑑𝑖)K
}︀

This small modification to the last equation of the residualization algorithm is
sufficient to make it ready for memoization. An interesting side-effect of the



Overgraph Representation for Multi-Result Supercompilation 59

memoization is that we get residual programs for intermediate nodes for free.
These programs can then be used to enable two-level supercompilation (although
the topic of two-level supercompilation in context of overgraph representation is
yet to be researched as few results have been obtained so far). Note though that
the residual programs for intermediate nodes are likely to be defined in terms of
other nodes, being used as if they were built-in functions.

Let’s look at the structure of a history in more detail. It can contain only
nodes from 𝑆(𝑛) = preds(𝑛) ∩ succs(𝑛). The elements of this set fall into the
following groups:

– Dominators of 𝑛 except 𝑛. These elements are always in a history.
– Dominatees of 𝑛 except 𝑛. If there is such a node in a history then the history

must also contain the node 𝑛 and this falls into the second equation of the
algorithm.

– Neither dominators nor dominatees of 𝑛. These nodes are responsible for the
diversity of possible histories.

– 𝑛 itself.

We believe that the information about the history structure can be used somehow
to develop more sophisticated residualization algorithms.

6 Implementation and Experimental Results

The described overgraph representation has been implemented as a part of
MRSC. The implementation is experimental and not language-independent yet.
The language being used is higher-order although it is meant to be used primarily
as first-order.

e ::= 𝑣 variable

| 𝜆𝑣.𝑒 𝜆-abstraction

| 𝑒1 𝑒2 application

| fix 𝑒 fixed point

| 𝑐 𝑒1 . . . 𝑒𝑛 constructor

| case 𝑒0 of {𝑐1 𝑣1 . . . 𝑣𝑘1
→ 𝑒1; . . . } case-expression

The explicit fixed point operator is meant to be the only source of nontermina-
tion. There are no let-expressions, so there is no possibility of expressing sharing.
This was done for the sake of simplicity.

Configurations are just expressions. They may contain unbound variables
which are named in some canonical way (e.g. numbered from left to right), so as
to make expressions, equal up to a renaming, syntactically equal. Configurations
are self-contained, i.e. we don’t need some external set of function definitions
to understand their meaning (this is necessary for higher-level supercompila-
tion [4]).



60 S.A. Grechanik

The following rules are used for graph construction:

depth(𝑛) = min {|𝑝| | 𝑝 is a path from the root to 𝑛}

depth(𝑛) ≤ MaxDepth (𝑓, 𝑑) = 𝑑𝑟𝑖𝑣𝑒(𝑛)

𝑛
𝑓−→ 𝑑

depth(𝑛) ≤ MaxDepth (𝑓, 𝑔, ℎ) ∈ rebuildings(𝑛) |FV(𝑔)| ≤ MaxFree

𝑛
𝑓−→ (𝑔, ℎ)

The 𝑑𝑟𝑖𝑣𝑒 function performs a drive step and returns a pair (𝑓, 𝑑) where 𝑑 is a
reduced expression, or a tuple of expressions if it is a case analysis step, and 𝑓
is a function such that 𝑓(𝑑) = 𝑛. The function rebuildings(𝑛) returns a set of
triples (𝑓𝑣, 𝑔, ℎ) where 𝑓𝑣 is a substitution function such that for all expressions
𝑥 and 𝑦

𝑓𝑣(𝑥, 𝑦) = 𝑥[𝑣 := 𝑦]

and expressions 𝑔 and ℎ are such that

𝑓𝑣(𝑔, ℎ) = 𝑔[𝑣 := ℎ] = 𝑛

where 𝑣 appears in 𝑔 exactly once. In theory, the latter restriction can be
lifted leading to the ability of introducing sharing (note that we don’t need
let-expressions as the configuration is being immediately split).

The constants MaxDepth and MaxFree limit the depth of nodes and the
maximum number of free variables in configurations respectively.

The functions Call and Def for this language look like this:

Call(𝑛) = 𝑣𝑛
−→𝑥

Def(𝑛)J𝑏K = fix (𝜆𝑣𝑛.𝜆
−→𝑥 . 𝑏)

where the variable 𝑣𝑛 has a unique name corresponding to the configuration 𝑛
and −→𝑥 is a vector of 𝑛’s free variables.

6.1 Results

The graph representations and the residualization algorithms have been assessed
on the following programs:

add = fix 𝜆𝑓𝑥𝑦.case 𝑥 of {𝑆 𝑥→ 𝑆 (𝑓 𝑥 𝑦); 𝑍 → 𝑦; }
mul = fix 𝜆𝑓𝑥𝑦.case 𝑥 of {𝑆 𝑥→ add 𝑦 (𝑓 𝑥 𝑦); 𝑍 → 𝑍; }
fict = fix 𝜆𝑓𝑥𝑦.case 𝑥 of {𝑆 𝑥→ 𝑓 𝑥 (𝑆 𝑦); 𝑍 → 𝑍; }
idle = fix 𝜆𝑓𝑥.case 𝑥 of {𝑆 𝑥→ 𝑓 (𝑓 𝑥); 𝑍 → 𝑍; }

evenBad = fix 𝜆𝑓𝑥.case 𝑥 of {𝑆 𝑥→ case (𝑓 𝑥) of {𝑇 → 𝐹 ; 𝐹 → 𝑇 ; };
𝑍 → 𝑇 ; }

nrev = fix 𝜆𝑓𝑥.case 𝑥 of {𝑆 𝑥→ add (𝑓 𝑥) (𝑆 𝑍); 𝑍 → 𝑍; }



Overgraph Representation for Multi-Result Supercompilation 61

At this stage of research some numerical characteristics of the described ideas
were measured rather than their ability to solve problems. It can be seen that
the overgraph representation leads to much fewer nodes even in comparison with
the overtree representation which enables full sharing of initial subtrees (Fig. 8).

overtree overgraph

add 7 6

mul 379 77

fict 132 30

idle 5237 139

evenBad 27307 242

nrev 46320 277

Fig. 8. Comparison of graph representations: the number of nodes created by the
supercompiler, 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 10

At the same time the results of the caching residualization algorithm look
much more modest (Fig. 9). Note that in this case the MaxDepth constant was
chosen to be 6, so the residualization could terminate in a reasonable amount of
time. The number of nodes left after truncation are shown to compare with the
number of node visits each algorithm makes. Although the caching algorithm
performs much better than the naive one, the growth of the node visits is too
rapid.

nodes after
truncation

nodes visited
residuals

naive caching

add 6 9 8 1

mul 19 81 53 4

fict 13 52 48 4

idle 33 2413 682 112

evenBad 76 33223 2751 229

nrev 30 4269 402 19

Fig. 9. Comparison of residualization algorithms, 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 6

6.2 Application to Counter Systems

There was a hypothesis that the overgraph representation would be advantageous
for other domains. It was checked on the domain of counter transition systems.
This choice was quite obvious as a considerable work had been done to implement
and evaluate a supercompiler for counter systems within MRSC [5], so we had
to simply replace the core of this supercompiler and compare it with the original
one.



62 S.A. Grechanik

Let’s briefly describe the domain. Counter systems are similar to programs
but much simpler. A system can be in some state represented by a tuple of
integers. The system can nondeterministically move from one state to another
according to certain rules. Configurations represent sets of states and are ac-
tually tuples of integers and wildcards, wildcard meaning “any number”. So a
configuration can be driven by applying rules, or generalized by replacing a num-
ber with the wildcard. The task is to find a minimal correctness proof for some
protocol modelled by a counter system. For each protocol certain states are un-
safe, so a protocol is correct if the corresponding counter system can’t turn out
in an unsafe state. A proof is actually a completed graph (i.e. each node has an
outcoming edge) without unsafe configurations. The whistle used in MRSC for
this task was a unary one, so it was used with the overgraph-based core without
any problem.

The results of applying the overgraph representation with the residualization
algorithm described above were disappointing. The supercompiler with over-
graph core not only spent much more time than the original one, but also failed
to find the minimal proofs. It is easy to see why this happened – our residual-
ization algorithm was designed to find trees with back edges, not graphs, and
thus equivalent proof parts were duplicated. On the other hand, the original
implementation of supercompiler had the ability to introduce cross edges which
made it almost as powerful as the overgraph supercompiler.

original overgraph
truncation

Synapse 12 12

MSI 10 10

MOSI 36 34

MESI 46 18

MOESI 156 57

Illinois 58 19

Berkley 50 33

Firefly 18 15

Futurebus 476106 1715

Xerox 94 43

Java 109410 12165

ReaderWriter 2540 154

DataRace 21 12

Fig. 10. Number of nodes visited by the supercompilers for each protocol

So the residualization algorithm must have been replaced with some different
algorithm. We have tried a depth-first search with pruning of too large graphs
which is exactly what MRSC was doing. So the only important difference left
was that our implementation built an overgraph explicitly. Actually there is an
advantage of explicit overgraph building: an overgraph can be truncated and thus



Overgraph Representation for Multi-Result Supercompilation 63

we can avoid obviously useless branches. It was quite difficult to compare the
implementations fairly because of multiple subtle differences affecting the results.
The comparison of the number of nodes visited during the supercompilation
by the original supercompiler and the supercompiler with overgraph truncation
enabled is shown on Figure 10. As can be seen, truncation turned out to be quite
advantageous on complex protocols.

This unsuccessful application of the presented earlier residualization algo-
rithm to another domain doesn’t mean that it is useless. It was just applied to
the kind of tasks it hadn’t been designed for, namely to the task of optimiz-
ing for size (in this case a proof size). It is very hard to divide a task of graph
minimization into subtasks of subgraph minimization because these subgraphs
may have intersections, i.e. the minimal size of the whole doesn’t equal to the
sum of the minimal sizes of the parts. However if we want the same node to be
residualized differently in different contexts, our residualization algorithm may
be used.

7 Conclusion

We have presented a more efficient representation of configuration graphs for
multi-result supercompilation and shown that this representation enables a more
efficient residualization algorithm.

The idea of representing the space of configurations as a graph rather than
a tree is quite obvious. The process of supercompilation can be viewed as some
kind of graph search similar to finding paths in mazes, and it is natural to use
the graph structure instead of unrolling it into a tree.

The overgraph representation also gives rise to a parallel to the field of opti-
mizing compilers which manifests itself in the similarity of a configuration graph
and a control flow graph. It is not yet obvious if this parallel is fruitful.

One of the closest work to this one seems to be the work on equality satura-
tion [14]. One of the most important difference is that we need to support folding
and thus we work with some directed relations rather than simple equalities to
ensure correctness.

We believe that the new approach leads to many directions of reasearch and
further improvement.

The residualization algorithm is still a bottleneck. There are many possible
solutions. It may be useful to do without residualization if the task doesn’t
actually consist in producing a program, e.g. there should be some algorithm for
proving programs equality which works directly on configuration graphs rather
than on sets of residual programs. Another way is to reduce the number of nodes
using some heuristics, especially interesting are methods that make possible to
tune how long the supercompilation will run.

As it has been seen, there should be different residualization algorithms for
different tasks. In the case of optimizing for size its goal is to extract a minimal
supgraph. Apparently there may be some residualization algorithm of this sort



64 S.A. Grechanik

which would take advantage of the overgraph representation but it hasn’t been
found yet. Besides, it may be advantageous to represent programs as graphs.

It also seems interesting to apply the new approach to different domains.
We also plan to add support for higher-level supercompilation [7] which may
benefit from sharing information among multiple lower-level supercompilation
instances.

Acknowledgements

The author would like to express his gratitude to Sergei Romanenko, Andrei
Klimov and Ilya Klyuchnikov for their comments, fruitful discussions and en-
couragement.

References

1. D. G. Bobrow and B. Wegbreit. A model and stack implementation of multiple
environments. Commun. ACM, 16:591–603, October 1973.

2. K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code
space using genetic algorithms. ACM SIGPLAN Notices, 34(7):1–9, July 1999.

3. G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendel-
son, E. Bonilla, J. Thomson, H. Leather, C. Williams, M. O’Boyle, P. Barnard,
E. Ashton, E. Courtois, and F. Bodin. MILEPOST GCC: machine learning based
research compiler. In GCC Summit, Ottawa, Canada, 2008. MILEPOST project
(http://www.milepost.eu).

4. G. W. Hamilton. Distillation: extracting the essence of programs. In Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 61–70. ACM Press New York, NY, USA, 2007.

5. A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Automatic verification
of counter systems via domain-specific multi-result supercompilation. Preprint 19,
Keldysh Institute of Applied Mathematics, 2012.

6. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

7. I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation. In
Second International Workshop on Metacomputation in Russia, 2010.

8. I. G. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-result
supercompilers. Preprint 77, Keldysh Institute of Applied Mathematics, 2011.

9. I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In E. Clarke, I. Vir-
bitskaite, and A. Voronkov, editors, Perspectives of Systems Informatics, 8th An-
drei Ershov Informatics Conference, PSI 2011, Akademgorodok, Novosibirsk, Rus-
sia, June 27 – July 01, 2011, volume 7162 of Lecture Notes in Computer Science,
pages 210–226. Springer, 2012.

10. A. Lisitsa and M. Webster. Supercompilation for equivalence testing in meta-
morphic computer viruses detection. In Proceedings of the First International
Workshop on Metacomputation in Russia, 2008.



Overgraph Representation for Multi-Result Supercompilation 65

11. Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler optimiza-
tions for automatic performance tuning. In CGO, pages 319–332. IEEE Computer
Society, 2006.

12. D. Sands. Proving the correctness of recursion-based automatic program transfor-
mations. Theor. Comput. Sci., 167(1-2):193–233, 1996.

13. D. Sands. Total correctness by local improvement in the transformation of func-
tional programs. ACM Trans. Program. Lang. Syst., 18(2):175–234, 1996.

14. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new approach
to optimization. SIGPLAN Not., 44:264–276, January 2009.

15. V. Turchin. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(3):292–325, 1986.



A Hierarchy of Program Transformers

G. W. Hamilton

School of Computing
Dublin City University

Dublin 9
Ireland

e-mail: hamilton@computing.dcu.ie

Abstract. In this paper, we describe a hierarchy of program transform-
ers in which the transformer at each level of the hierarchy builds on top of
the transformers at lower levels. The program transformer at the bottom
of the hierarchy corresponds to positive supercompilation, and that at
the next level corresponds to the first published definition of distillation
[4]. We then show how the more recently published definition of distil-
lation [5] can be described using this hierarchy. We see that this moves
up through the levels of the transformation hierarchy until no further
improvements can be made. The resulting definition of distillation uses
only finite data structures, as opposed to the definition in [5], and we
therefore argue that it is easier to understand and to implement.

1 Introduction

It is well known that programs written using functional programming languages
often make use of intermediate data structures and this can be inefficient. Sev-
eral program transformation techniques have been proposed to eliminate some of
these intermediate data structures; for example partial evaluation [7], deforesta-
tion [17] and supercompilation [15]. Positive supercompilation [14] is a variant
of Turchin’s supercompilation that was introduced in an attempt to study and
explain the essentials of Turchin’s supercompiler. Although strictly more pow-
erful than both partial evaluation and deforestation, Sørensen has shown that
positive supercompilation (and hence also partial evaluation and deforestation)
can only produce a linear speedup in programs [13].

The distillation algorithm was originally motivated by the need for automatic
techniques for obtaining superlinear speedups in programs. The original defini-
tion of distillation [4] was very similar in its formulation to positive supercompila-
tion; the main difference being that in positive supercompilation, generalization
and folding are performed with respect to expressions, while in distillation, they
are performed with respect to graphs. The graphs which were used in distillation
for this purpose were in fact those produced by positive supercompilation, so we
can see that this definition of distillation was built on top of positive supercompi-
lation. This suggests the existence of a hierarchy of program transformers, where
the transformer at each level is built on top of those at lower levels, and higher



A Hierarchy of Program Transformers 67

level transformers are more powerful. In this paper, we define such a hierarchy
inductively, with positive supercompilation as the base case at the bottom level,
and each new level defined in terms of the previous ones. The original definition
of distillation is therefore at the second level in this hierarchy, while the more
recently published definition of distillation [5] does not actually belong to any
single level of the hierarchy, but in fact moves up through the levels until no
further improvements can be made. We also define this more recent version of
distillation using our program transformer hierarchy.

The remainder of this paper is structured as follows. In Section 2, we de-
fine the syntax and semantics of the higher-order functional language on which
the described transformations are performed. In Section 3, we define labelled
transition systems, which are used to represent the results of transformations.
In Section 4, we define the program transformer hierarchy, where the trans-
former at the bottom level corresponds to positive supercompilation, and each
successive transformer is defined in terms of the previous ones. In Section 5, we
describe the more recent definition of distillation using the program transformer
hierarchy, and show how it moves up through the levels of this hierarchy until
no further improvements can be made. Section 6 concludes and considers related
work.

2 Language

In this section, we describe the higher-order functional language that will be
used throughout this paper. It uses call-by-name evaluation.

Definition 1 (Language Syntax). The syntax of this language is as shown
in Fig. 1.

e ::= x Variable
| c e1 . . . ek Constructor Application
| λx .e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 ñ e1 | � � � | pk ñ ek Case Expression
| let x � e0 in e1 Let Expression
| e0 where f1 � e1 . . . fn � en Local Function Definitions

p ::= c x1 . . . xk Pattern

Fig. 1. Language Grammar

A program in the language is an expression which can be a variable, construc-
tor application, λ-abstraction, function call, application, case, let or where.
Variables introduced by λ-abstraction, let or case patterns are bound; all other



68 G. W. Hamilton

variables are free. We write e1 � e2 if e1 and e2 differ only in the names of bound
variables.

It is assumed that the input program contains no let expressions; these are
only introduced during transformation. Each constructor has a fixed arity; for
example Nil has arity 0 and Cons has arity 2. In an expression c e1 . . . en , n
must equal the arity of c. The patterns in case expressions may not be nested.
No variable may appear more than once within a pattern. We assume that the
patterns in a case expression are non-overlapping and exhaustive. It is also
assumed that erroneous terms such as pc e1 . . . enq e where c is of arity n and
case pλx.eq of p1 ñ e1 | � � � | pk ñ ek cannot occur.

Example 1. An example program in our language which calculates the nth fi-
bonacci number is shown in Fig. 2.

fib n
where
fib � λn.case n of

Z ñ S Z
| S n 1 ñ case n 1 of

Z ñ S Z
| S n2 ñ add pfib n2q pfib n 1q

add � λx .λy .case x of
Z ñ y

| S x 1 ñ S padd x 1 yq

Fig. 2. Example Program

Definition 2 (Substitution). θ � tx1 ÞÑ e1, . . . , xn ÞÑ enu denotes a substi-
tution. If e is an expression, then eθ � etx1 ÞÑ e1, . . . , xn ÞÑ enu is the result
of simultaneously substituting the expressions e1, . . . , en for the corresponding
variables x1, . . . , xn, respectively, in the expression e while ensuring that bound
variables are renamed appropriately to avoid name capture.

Definition 3 (Renaming). σ � tx1 ÞÑ x11, . . . , xn ÞÑ x1nu, where σ is a
bijective mapping, denotes a renaming. If e is an expression, then etx1 ÞÑ
x11, . . . , xn ÞÑ x1nu is the result of simultaneously replacing the variables x1, . . . , xn
with the corresponding variables x11, . . . , x

1
n, respectively, in the expression e.

Definition 4 (Shallow Reduction Context). A shallow reduction context
R is an expression containing a single hole  in the place of the redex, which can
have one of the two following possible forms:

R ::�  e | pcase  of p1 ñ e1 | . . . | pk ñ ekq

Definition 5 (Evaluation Context). An evaluation context E is represented
as a sequence of shallow reduction contexts (known as a zipper [6]), representing



A Hierarchy of Program Transformers 69

the nesting of these contexts from innermost to outermost within which the
expression redex is contained. An evaluation context can therefore have one of
the two following possible forms:

E ::� xy | xR : Ey

Definition 6 (Insertion into Evaluation Context). The insertion of an ex-
pression e into an evaluation context κ, denoted by κe, is defined as follows:

xye = e
xp e1q : κye = κpe e1q
xpcase  of p1 ñ e1 | . . . | pk ñ ekq : κye

= κpcase e of p1 ñ e1 | . . . | pk ñ ekq

Free variables within the expression e may become bound within κe; if κe is
closed then we call κ a closing context for e.

Definition 7 (Unfolding). The unfolding of a function in the redex of expres-
sion e with function environment ∆ is defined as shown in Fig. 3.

Urress ∆ � U 1rress xy H ∆

U 1rrx ss κ ρ ∆ =

"
U 1rrρpx qss κ ρ ∆, if x P dompρq
κx , otherwise

U 1rrc e1 . . . ek ss κ ρ ∆ = κpc e1 . . . ek q
U 1rrλx .ess κ ρ ∆ = κpλx .eq
U 1rrf ss κ ρ ∆ = κe where pf � eq P ∆
U 1rre0 e1 ss κ ρ ∆ = U 1rre0 ss xp e1q : κy ρ ∆
U 1rrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ ∆

= U 1rre0 ss xpcase  of p1 ñ e1 | � � � | pk ñ ek q : κy ρ ∆
U 1rrlet x � e0 in e1 ss κ ρ ∆ = let x � e0 in U 1rre1 ss κ pρY tx ÞÑ e0uq ∆
U 1rre0 where f1 � e1 . . . fn � en ss κ ρ ∆

= U 1rre0ss κ ρ p∆Y tf1 � e1, . . . , fn � enuq
where f1 � e1 . . . fn � en

Fig. 3. Function Unfolding

Within these rules, the context around the redex is built up within κ, the values
of let variables are stored in ρ and the set of function definitions are stored in
∆. If the redex is a variable which has a value within ρ, then that value is sub-
stituted into the redex position. If the redex can itself be divided into an inner
redex and shallow reduction context, then the shallow reduction context is added
to the overall context and the inner redex is further unfolded. If the innermost
redex is a function then it is replaced by its definition within ∆; otherwise this
innermost redex is simply inserted back into its context.

The call-by-name operational semantics of our language is standard: we define
an evaluation relation ó between closed expressions and values, where values



70 G. W. Hamilton

are expressions in weak head normal form (i.e. constructor applications or λ-

abstractions). We define a one-step reduction relation
r
; inductively as shown

in Fig. 4, where the reduction r can be f (unfolding of function f), c (elimination
of constructor c) or β (β-substitution).

ppλx.e0q e1q
β
; pe0tx ÞÑ e1uq plet x � e0 in e1 q

β
; pe1tx ÞÑ e0uq

f � e

f
f
; e

e0
r
; e10

pe0 e1q
r
; pe10 e1q

pi � c x1 . . . xn

pcase pc e1 . . . enq of p1 : e11| . . . |pk : e1kq
c
; peitx1 ÞÑ e1, . . . , xn ÞÑ enuq

e0
r
; e10

pcase e0 of p1 : e1| . . . pk : ekq
r
; pcase e10 of p1 : e1| . . . pk : ekq

Fig. 4. One-Step Reduction Relation

We use the notation e
r
; if the expression e reduces, e ò if e diverges, e ó if e

converges and e ó v if e evaluates to the value v. These are defined as follows,

where
r
;

�
denotes the reflexive transitive closure of

r
;:

e
r
;, iff De1.e

r
; e1 eó, iff Dv.eóv

eóv, iff e
r
;

�
v ^ pv

r
;q eò, iff @e1.e

r
;

�
e1 ñ e1

r
;

We assume that all expressions are typable under system F , and that types
are strictly positive. This ensures that all infinite sequences of reductions must
include the unfolding of a function.

Definition 8 (Observational Equivalence). Observational equivalence, de-
noted by �, equates two expressions if and only if they exhibit the same termi-
nation behaviour in all closing contexts i.e. e1 � e2 iff @κ  pκ  e1ó iff κ  e2óq.

3 Labelled Transition Systems

In this section, we define the labelled transition systems (LTSs) which are used
to represent the results of our transformations.

Definition 9 (Labelled Transition System). The LTS associated with pro-
gram e is given by t � pE , e,Ñ, Actq where:

– E is the set of states of the LTS each of which is either an expression or the
end-of-action state 0.

– t always contains as root the expression e, denoted by rootptq � e.



A Hierarchy of Program Transformers 71

– Ñ � E�Act�E is a transition relation that relates pairs of states by actions
according to Fig. 5. We write e Ñ pα1, t1q, . . . , pαn, tnq for a LTS with root
state e where t1 . . . tn are the LTSs obtained by following the transitions
labelled α1 . . . αn respectively from e.

– If e P E and pe, α, e1q P Ñ then e1 P E .
– Act is a set of actions α that can be silent or non-silent. A non-silent action

may be: x, a variable; c, a constructor; @, the function in an application;
#i, the ith argument in an application; λx, an abstraction over variable x;
case, a case selector; p, a case branch pattern; or let, an abstraction. A
silent action may be: τf , unfolding of the function f ; τc, elimination of the
constructor c; or τβ , β-substitution.

Lrrx ss ρ ∆ = xÑ px,0q
Lrrc e1 . . . en ss ρ ∆ = pc e1 . . . enq Ñ pc,0q, p#1,Lrre1 ss ρ ∆q, . . . , p#n,Lrren ss ρ ∆q
Lrrλx .ess ρ ∆ = pλx.eq Ñ pλx,Lrress ρ ∆q
Lrrf ss ρ ∆ =

"
f Ñ pτf ,0q, if f P ρ
f Ñ pτf ,Lrress pρY tfuq ∆q, otherwise where pf � eq P ∆

Lrre0 e1 ss ρ ∆ = pe0 e1q Ñ p@,Lrre0 ss ρ ∆q, p#1,Lrre1 ss ρ ∆q
Lrre � pcase e0 of p1 ñ e1 | � � � | pk ñ ek qss ρ ∆

= eÑ pcase,Lrre0 ss ρ ∆q, pp1,Lrre1 ss ρ ∆q, . . . , ppk,Lrrek ss ρ ∆q
Lrre � plet x � e0 in e1 qss ρ ∆

= eÑ plet,Lrre1 ss ρ ∆q, px,Lrre0 ss ρ ∆q
Lrre0 where f1 � e1 . . . fn � en ss ρ ∆

= Lrre0 ss ρ p∆Y tf1 � e1, . . . , fn � enuq

Fig. 5. LTS Representation of a Program

Within the rules L shown in Fig. 5 for converting a program to a corre-
sponding LTS, the parameter ρ is the set of previously encountered function
calls and the parameter ∆ is the set of function definitions. If a function call is
re-encountered, no further transitions are added to the constructed LTS. Thus,
the constructed LTS will always be a finite representation of the program.

Example 2. The LTS representation of the program in Fig. 2 is shown in Fig. 6.

Within the actions of a LTS, λ-abstracted variables, case pattern variables and
let variables are bound; all other variables are free. We use fvptq and bvptq to
denote the free and bound variables respectively of LTS t.

Definition 10 (Extraction of Residual Program from LTS). A residual
program can be constructed from a LTS using the rules R as shown in Fig. 7.
Within these rules, the parameter ε contains the set of new function calls that
have been created, and associates them with the expressions they replaced. On
encountering a renaming of a previously replaced expression, it is also replaced
by the corresponding renaming of the associated function call.



72 G. W. Hamilton

fib n

fib

@

n

#1

0

n

λn.case n of . . .

τfib

case n of . . .

λn

n

case

0

n

S Z

Z

0

S

Z

#1

0

Z

case n1 of . . .

S n1

n1

case

0

n1

S Z

Z

0

S

Z

#1

0

Z

add pfib n2q pfib n1q

S n2

add pfib n2q

@

add

@

λx.λy.case x of . . .

τadd

λy.case x of . . .

λx

case x of . . .

λy

x

case

0

x

y

Z

0

y

S padd x1 yq

S x1

0

S

add x1 y

#1

add x1

@

add

@

0

τadd

x1

#1

0

x1

y

#1

0

y

fib n2

#1

fib

@

0

τfib

n2

#1

0

n2

fib n1

#1

fib

@

0

τfib

n1

#1

0

n1

Fig. 6. LTS Corresponding to fib n

Fig. 6. LTS Corresponding to fib n



A Hierarchy of Program Transformers 73

Rrrtss � R1rrtss H

R1rre Ñ px ,0qss ε = x
R1rre Ñ pc,0q, p#1 , t1 q, . . . , p#n, tnqss ε

= c pR1rrt1 ss εq . . . pR1rrtn ss εq
R1rre Ñ pλx , tqss ε = λx .pR1rrtss εq
R1rre Ñ p@, t0 q, p#1 , t1 qss ε

= pR1rrt0 ss εq pR1rrt1 ss εq
R1rre Ñ pcase, t0 qpp1 , t1 q, . . . , ppn , tk qss ε

= case pR1rrt0 ss εq of p1 ñ pR1rrt1 ss εq | � � � | pk ñ pR1rrtk ss εq
R1rre Ñ plet, t0 q, px1 , t1 q, . . . , pxn , tnqss ε

= let x1 � pR1rrt1 ss εq in . . . let xn � pR1rrtn ss εq in pR1rrt0 ss εq

R1rre Ñ pτf , tqss ε =

$&
%
e1θ, if Dpe1 � e2q P ε  e � e2θ
f 1 x1. . . xn where f 1 � λx1 . . . xn.pR1rrtss pεY tf 1 x1 . . . xn � euqq,

otherwise (f 1 is fresh, tx1 . . . xnu � fvptqq
R1rre Ñ pτβ , tqss ε = R1rrtss ε
R1rre Ñ pτc , tqss ε = R1rrtss ε

Fig. 7. Rules For Residualization

Example 3. The residual program constructed from the LTS in Fig. 6 is esentially
that shown in Fig. 2 (modulo renaming of functions).

4 A Hierarchy of Program Transformers

In this section, we define a hierarchy of program transformers in which the
transformer at each level of the hierarchy makes use of those at lower levels. Each
transformer takes as its input the original program and produces as its output
a labelled transition system, from which a new (hopefully improved) program
can be residualized. In all the transformers, LTSs corresponding to previously
encountered terms are compared to the LTS for the current term. If a renaming
of a previously encountered LTS is detected, then folding is performed. If an
embedding of a previously encountered LTS is detected, then generalization is
performed. The use of LTSs rather than expressions when checking for renaming
or embedding allows us to abstract away from the specific function names which
are used within expressions and to focus on their underlying recursive structure.

Definition 11 (LTS Renaming). LTS t1 is a renaming of LTS t2 iff there is
a renaming σ such that t1 hH

σ t2, where the reflexive, transitive and symmetric
relation hρσ is defined as follows:

pxÑ px,0qq hρσ px1 Ñ px1,0qq, if xσ � x1

peÑ pτf , tqq hρσ pe1 Ñ pτf 1 , t1qq, if ppf, f 1q P ρq _ pt hρYtpf,f
1qu

σ t1q
peÑ pα1, t1q, . . . , pαn, tnqq hρσ pe1 Ñ pα11, t

1
1q, . . . , pα

1
n, t

1
nqq,

if @i P t1 . . . nu  pDσ1  pαi σ
1 � α1i ^ ti h

ρ
σYσ1 t1iqq



74 G. W. Hamilton

The rules for renaming are applied in top-down order, where the final rule is
a catch-all. Two LTSs are renamings of each other if the same transitions are
possible from each corresponding state (modulo variable renaming according to
the renaming σ). The definition also handles transitions that introduce bound
variables (λ, case and let); in these cases the corresponding bound variables
are added to the renaming σ. The parameter ρ is used to keep track of the
corresponding function names which have been matched with each other.

Definition 12 (LTS Embedding). LTS t1 is embedded within LTS t2 iff there
is a renaming σ such that t1 À

H
σ t2, where the reflexive, transitive and anti-

symmetric relation Àρσ is defined as follows:

t Àρσ t
1, if pt �ρσ t

1q _ pt 'ρσ t
1q

t �ρσ peÑ pα1, t1q, . . . , pαn, tnqq, if Di P t1 . . . nu  t Àρσ ti
pxÑ px,0qq 'ρσ px

1 Ñ px1,0qq, if xσ � x1

peÑ pτf , tqq '
ρ
σ pe

1 Ñ pτf 1 , t1qq, if ppf, f 1q P ρq _ pt À
ρYtpf,f 1qu
σ t1q

peÑ pα1, t1q, . . . , pαn, tnqq '
ρ
σ pe

1 Ñ pα11, t
1
1q, . . . , pα

1
n, t

1
nqq,

if @i P t1 . . . nu  pDσ1  pαi σ
1 � α1i ^ ti À

ρ
σYσ1 t1iqq

The rules for embedding are applied in top-down order, where the final rule is a
catch-all. One LTS is embedded within another by this relation if either diving
(denoted by �ρσ) or coupling (denoted by 'ρσ) can be performed. In the rules
for diving, a transition can be followed from the current state in the embedding
LTS that is not followed from the current state in the embedded one. In the
rules for coupling, the same transitions are possible from each of the current
states. Matching transitions may contain different free variables; in this case the
transition labels should respect the renaming σ. Matching transitions may also
introduce bound variables (λ, case and let); in these cases the corresponding
bound variables are added to the renaming σ. The parameter ρ is used to keep
track of the corresponding function names which have been coupled with each
other.

Definition 13 (Generalization of LTSs). The function Grrtssrrt1ss θ that gen-
eralizes LTS t with respect to LTS t1 is defined in Fig. 8, where θ is the set of
previous generalizations which can be reused. The result of this function is the
generalization of the LTS t, in which some sub-components have been extracted
from t using lets.

Within the rules G1, γ is the set of bound variables within the LTS being gen-
eralized and ρ is used to keep track of the corresponding function names which
have been matched with each other. The rules are applied in top-down order. If
two corresponding states have the same transitions, these transitions remain in
the resulting generalized LTS, and the corresponding targets of these transitions
are then generalized. Matching transitions may introduce bound variables (λ,
case and let); in these cases the bound variables are added to the set of bound
variables γ. Unmatched LTS components are extracted into a substitution and
replaced by variable applications. The arguments of the variable applications



A Hierarchy of Program Transformers 75

Grrtssrrt1ss θ � Arrtgss θ1
where
ptg, θ1q � G1rrtssrrt1ss θ H H

G1rreÑ px,0qssrre1 Ñ px1,0qss θ γ ρ = ppeÑ px,0qq,Hq
G1rreÑ pc,0q, p#1, t1q, . . . , p#n, tnqssrre

1 Ñ pc,0q, p#1, t11q, . . . , p#n, t
1
nqss θ γ ρ

= ppeÑ pc,0q, p#1, tg1q, . . . , p#n, t
g
nqq,

�n
i�1 θiq

where
@i P t1 . . . nu  ptgi , θiq � G1rrtissrrt1iss θ γ ρ

G1rreÑ pλx, tqssrre1 Ñ pλx1, t1qss θ γ ρ = ppeÑ pλx, tgqq, θ1q
where
ptg, θ1q � G1rrtssrrt1ss pγ Y txuq ρ

G1rreÑ p@, t0q, p#1, t1qssrre
1 Ñ p@, t10q, p#1, t11qss θ γ ρ

= ppeÑ p@, tg0q, p#1, tg1qq, θ0 Y θ1q
where
@i P t0, 1u  ptgi , θiq � Grrtissrrt1iss θ γ ρ

G1rreÑ pcase, t0q, pp1, t1q, . . . , ppn, tnqssrre
1 Ñ pcase, t10q, pp

1
1, t

1
1q, . . . , pp

1
n, t

1
nqss θ γ ρ

= ppeÑ pcase, tg0q, pp1, t
g
1q, . . . , ppn, t

g
nqq,

�n
i�0 θiq

where
@i P t1 . . . nu  pDσ  pi � p1iσq
ptg0, θ0q � G1rrt0ssrrt10ss θ γ ρ
@i P t1 . . . nu  ptgi , θiq � G1rrtissrrt1iss θ pγ Y fvppiqq ρ

G1rreÑ plet, t0q, px1, t1q, . . . , pxn, tnqssrre
1 Ñ plet, t10q, px

1
1, t

1
1q, . . . , px

1
n, t

1
nqss θ γ ρ

= ppeÑ plet, tg0q, px1, t
g
1q, . . . , pxn, t

g
nqq,

�n
i�0 θiq

where
ptg0, θ0q � G1rrt0ssrrt10ss θ γ ρ
@i P t1 . . . nu  ptgi , θiq � G1rrtissrrt1iss θ γ ρ

G1rreÑ pτf , tqssrre
1 Ñ pτf 1 , t1qss θ γ ρ =

$''&
''%

ppeÑ pτf , tqq,Hq, if pf, f 1q P ρ
ppeÑ pτf , t

gqq, θ1q, otherwise
where
ptg, θ1q � G1rrtssrrt1ss θ γ pρY tpf, f 1quq

G1rreÑ pτβ , tqssrre
1 Ñ pτβ , t

1qss θ γ ρ = G1rrtssrrt1ss θ γ ρ
G1rreÑ pτc, tqssrre

1 Ñ pτc, t
1qss θ γ ρ = G1rrtssrrt1ss θ γ ρ

G1rrtssrrt1ss θ γ ρ =

"
pBrrxÑ px,0qss γ1,Hq, if Dpx, t1q P θ  t1 hH

H t2
pBrrxÑ px,0qss γ1, tx ÞÑ t2uq, otherwise (x is fresh)

where
γ1 � fvptq X γ
t2 � Crrtss γ1

Arrtss tx1 ÞÑ t1, . . . , xn ÞÑ tnu � rootptq Ñ plet, tq, px1, t1q, . . . , pxn, tnq

Brrtss tx1 . . . xnu � rootptq Ñ p@, p. . . rootptq Ñ p@, tq, p#1, x1 Ñ px1,0qq . . .qq, p#1, xn Ñ pxn,0qq

Crrtss tx1 . . . xnu � rootptq Ñ pλx1, . . . rootptq Ñ pλxn, tq . . .q

Fig. 8. Rules for Generalization
Fig. 8. Rules for Generalization

introduced are the free variables of the LTS component which are also contained
in the set of overall bound variables γ; this ensures that bound variables are
not extracted outside their binders. If an extracted LTS component is contained
in the set of previous generalizations θ, then the variable name from this pre-



76 G. W. Hamilton

vious generalization is reused. Otherwise, a new variable is introduced which is
different and distinct from all other program variables.

4.1 Level 0 Transformer

We now define the level 0 program transformer within our hierarchy, which corre-
sponds closely to the positive supercompilation algorithm. The transformer takes
as its input the original program and produces as its output a labelled transition
system, from which a new (hopefully improved) program can be residualized.
The level 0 transformer effectively performs a normal-order reduction of the
input program. The (LTS representation of) previously encountered terms are
‘memoized’. If the (LTS representation of the) current term is a renaming of a
memoized one, then folding is performed, and the transformation is complete.

introduced are the free variables of the LTS component which are also contained
in the set of overall bound variables γ; this ensures that bound variables are
not extracted outside their binders. If an extracted LTS component is contained
in the set of previous generalizations θ, then the variable name from this pre-
vious generalization is reused. Otherwise, a new variable is introduced which is
different and distinct from all other program variables.

4.1 Level 0 Transformer

We now define the level 0 program transformer within our hierarchy, which corre-
sponds closely to the positive supercompilation algorithm. The transformer takes
as its input the original program and produces as its output a labelled transition
system, from which a new (hopefully improved) program can be residualized.

T0rrx ss κ ρ θ ∆ = T 10 rrxÑ px,0qss κ ρ θ ∆
T0rre � c e1 . . . en ss xy ρ θ ∆

= eÑ pc,0q, p#1, T0rre1 ss xy ρ θ ∆q, . . . , p#n, T0rren ss xy ρ θ ∆q
T0rre � c e1 . . . en ss pκ � xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κ1yq ρ θ ∆

= pκeq Ñ pτc, T0rre 1itx1 ÞÑ e1 , . . . , xn ÞÑ enuss κ
1 ρ θ ∆q

where pi � c x1 . . . xn
T0rre � λx .e0 ss xy ρ θ ∆

= eÑ pλx, T0rre0 ss xy ρ θ ∆q
T0rre � λx .e0 ss pκ � xp e1 q : κ1yq ρ θ ∆

= pκeq Ñ pτβ , T0rre0 tx ÞÑ e1 uss κ
1 ρ θ ∆q

T0rrf ss κ ρ θ ∆ =

$&
%
pκfq Ñ pτf ,0q, if Dt1 P ρ, σ  t1 hH

σ t

T0rrRrrGrrtssrrt 1ss θssss xy ρ θ H, if Dt1 P ρ, σ  t1 'Hσ t
pκfq Ñ pτf , T0rrUrrκf ss ∆ss xy pρY ttuq θ ∆q, otherwise

where t � Lrrκf ss H ∆
T0rre0 e1 ss κ ρ θ ∆ = T0rre0ss xp e1 q : κy ρ θ ∆
T0rrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ θ ∆

= T0rre0ss xpcase  of p1 ñ e1 | � � � | pk ñ ek q : κy ρ θ ∆
T0rre � let x � e0 in e1 ss κ ρ θ ∆

= pκeq Ñ plet, T0rre1 ss κ pρY tx ÞÑ e0uq θ ∆q, px, T0rre0 ss xy ρ θ ∆q
T0rre0 where f1 � e1 . . . fn � en ss κ ρ θ ∆

= T0rre0 ss κ ρ θ p∆Y tf1 � e1, . . . , fn � enuq

T 10 rrtss xy ρ θ ∆ = t
T 10 rrtss xp eq : κy ρ θ ∆

= T 10 rrpt eq Ñ p@, tq, p#1, T0rress xy ρ θ ∆qss κ ρ θ ∆
T 10 rrxÑ px,0qss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆

= pcase x of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ
pcase, tq, pp1, T0rrpκe11qtx ÞÑ p1uss xy ρ θ ∆q, . . . , ppk, T0rrpκe1kqtxÞÑ pkuss xy ρ θ ∆q

T 10 rrtss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆
= pcase prootptqq of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ

pcase, tq, pp1, T0rre11ss κ ρ θ q, . . . , ppk, T0rre1kss κ ρ θ ∆q

Fig. 9. Level 0 Transformation Rules
Fig. 9. Level 0 Transformation Rules



A Hierarchy of Program Transformers 77

If the (LTS representation of the) current term is an embedding of a memo-
ized one, then generalization is performed, and the resulting generalized term
is further transformed. Generalization ensures that a renaming of a previously
encountered term is always eventually encountered, and that the transformation
therefore terminates. The rules for level 0 transformation are as shown in Fig. 9.

The rules T0 are defined on an expression and its surrounding context, de-
noted by κ. The parameter ρ contains the LTS representations of memoized
terms; for our language it is only necessary to add LTSs to ρ for terms in which
the redex is a function, as any infinite sequence of reductions must include such
terms. The parameter θ contains terms which have been extracted using a let
expression as a result of generalization. If an identical term is subsequently ex-
tracted as a result of further generalization, then the extraction is removed and
the same variable is used as for the previous extraction. The parameter ∆ con-
tains the set of function definitions.

The rules T 1
0 are defined on an LTS and its surrounding context, also denoted

by κ. These rules are applied when the normal-order reduction of the input pro-
gram becomes ‘stuck’ as a result of encountering a variable in the redex position.
In this case, the context surrounding the redex is further transformed. If the
context surrounding a variable redex is a case, then information is propagated
to each branch of the case to indicate that this variable has the value of the
corresponding branch pattern.

Example 4. The result of transforming the fib program in Fig. 2 using the level 0
transformer is shown in Fig. 10 (due to space constraints, we present the results
of transformation in this and further examples as residualized programs rather
than LTSs). As we can see, this is no real improvement over the original program.

f n
where
f � λn.case n of

Z ñ S Z
| S n 1 ñ case n 1 of

Z ñ S Z
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 10. Result of Level 0 Transformation



78 G. W. Hamilton

4.2 Level n � 1 Transformer

We now define the transformers at all levels above 0 within our hierarchy. Each
of these transformers makes use of the transformers below it in the hierarchy.
The rules for a level n� 1 transformer are actually very similar to those for the
level 0 transformer; the level n�1 transformer also takes as its input the original
program, performs normal-order reduction on it, and produces as its output a
labelled transition system. Where the level n � 1 transformer differs from that
at level 0 is that the LTSs, which are memoized for the purposes of comparison
when determining whether to fold or generalize, are those resulting from the
level n transformation of previously encountered terms.

After the LTS resulting from level n transformation has been memoized, it is
residualized, unfolded and further transformed. If a renaming of a memoized LTS
is encountered, then folding is performed. If an embedding of a memoized LTS is
encountered, then generalization is performed; this generalization will have the
effect of adding an extra layer of lets around the LTS. Thus, each successive

4.2 Level n � 1 Transformer

We now define the transformers at all levels above 0 within our hierarchy. Each
of these transformers makes use of the transformers below it in the hierarchy.
The rules for a level n� 1 transformer are actually very similar to those for the
level 0 transformer; the level n�1 transformer also takes as its input the original
program, performs normal-order reduction on it, and produces as its output a
labelled transition system. Where the level n � 1 transformer differs from that
at level 0 is that the LTSs, which are memoized for the purposes of comparison
when determining whether to fold or generalize, are those resulting from the
level n transformation of previously encountered terms.

Tn�1rrx ss κ ρ θ ∆ = T 1n�1rrxÑ px,0qss κ ρ θ ∆
Tn�1rre � c e1 . . . en ss xy ρ θ ∆

= eÑ pc,0q, p#1, Tn�1rre1 ss xy ρ θ ∆q, . . . , p#n, Tn�1rren ss xy ρ θ ∆q
Tn�1rre � c e1 . . . en ss pκ � xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κ1yq ρ θ ∆

= pκeq Ñ pτc, Tn�1rre
1
itx1 ÞÑ e1 , . . . , xn ÞÑ enuss κ

1 ρ θ ∆q
where pi � c x1 . . . xn

Tn�1rre � λx .e0 ss xy ρ θ ∆
= eÑ pλx, Tn�1rre0 ss xy ρ θ ∆q

Tn�1rre � λx .e0 ss pκ � xp e1 q : κ1yq ρ θ ∆
= pκeq Ñ pτβ , Tn�1rre0 tx ÞÑ e1 uss κ

1 ρ θ ∆q

Tn�1rrf ss κ ρ θ ∆ =

$&
%
pκfq Ñ pτf ,0q, if Dt1 P ρ, σ  t1 hH

σ t

Tn�1rrRrrGrrtssrrt 1ss θssss xy ρ θ H, if Dt1 P ρ, σ  t1 'Hσ t
pκfq Ñ pτf , Tn�1rrUrrRrrtssss Hss xy pρY ttuq θ Hq, otherwise

where t � Tnrrf ss κ H θ ∆
Tn�1rre0 e1 ss κ ρ θ ∆

= Tn�1rre0ss xp e1 q : κy ρ θ ∆
Tn�1rrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ θ ∆

= Tn�1rre0ss xpcase  of p1 ñ e1 | � � � | pk ñ ek q : κy ρ θ ∆
Tn�1rre � let x � e0 in e1 ss κ ρ θ ∆

= pκeq Ñ plet, Tn�1rre1 tx ÞÑ e0 uss κ pρY tx ÞÑ e0uq θ ∆q, px, Tn�1rre0 ss xy ρ θ ∆q
Tn�1rre0 where f1 � e1 . . . fn � en ss κ ρ θ ∆

= Tn�1rre0 ss κ ρ θ p∆Y tf1 � e1, . . . , fn � enuq

T 1n�1rrtss xy ρ θ ∆ = t
T 1n�1rrtss xp eq : κy ρ θ ∆

= T 1n�1rrpt eq Ñ p@, tq, p#1, Tn�1rress xy ρ θ qss κ ρ θ ∆
T 1n�1rrxÑ px,n� 1qss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆

= pcase x of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ
pcase, tq, pp1, Tn�1rrpκe

1
1qtxÞÑ p1uss xy ρ θ ∆q, . . . , ppk, Tn�1rrpκe

1
kqtxÞÑ pkuss xy ρ θ ∆q

T 1n�1rrtss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆
= pcase rootptq of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ

pcase, tq, pp1, Tn�1rre
1
1ss κ ρ θ ∆q, . . . , ppk, Tn�1rre

1
kss κ ρ θ ∆q

Fig. 11. Level n� 1 Transformation RulesFig. 11. Level n� 1 Transformation Rules



A Hierarchy of Program Transformers 79

level in the transformer hierarchy will have the effect of adding an extra layer of
lets around the LTS representation of the current term.

As over-generalization may occur at each level in the transformer hierarchy,
the extracted terms at each level are substituted back in at the next succes-
sive level. The lets themselves are retained as the extracted terms could be re-
encountered in further generalization, and the let variables reused; if they are not
reused, then the let can be removed in a post-processing phase. Note that at each
successive level in the transformer hierarchy, the size of the components which
are extracted by generalization must get smaller as they are sub-components of
the result of transformation at the previous level.

The level n � 1 transformation rules are defined as shown in Fig. 11. The
parameters used within these rules are the same as those for the level 0 trans-
former, except that the memoization environment ρ contains the LTSs resulting
from the level n transformation of previously encountered terms.

Example 5. If the result of the level 0 transformation of the fib program shown
in Fig. 10 is further transformed within a level 1 transformer, then the level 0
result as shown in Fig. 12 is encountered.

f n
where
f � λn.case n of

Z ñ S S Z
| S n 1 ñ case n 1 of

Z ñ S S S Z
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 12. Further Result of Level 0 Transformation

Generalization is therefore performed with respect to the previous level 0
result in Fig. 10 to obtain the level 1 result shown in Fig. 13. We can see that an
extra layer of lets has been added around this program. If this level 1 program
is further transformed within a level 2 transformer, then the level 1 result as
shown in Fig. 14 is encountered.

Generalization is therefore performed with respect to the previous level 1
result in Fig. 13 to obtain the level 2 result shown in Fig. 15. Again, we can
see that an extra layer of lets has been added around this program. If this
level 2 program is further transformed within a level 3 transformer, then the
level 2 result as shown in Fig. 16 is encountered. Generalization is therefore
performed with respect to the previous level 2 result in Fig. 15 to obtain the



80 G. W. Hamilton

let x1 � S Z
in let x2 � S S Z

in f n
where
f � λn.case n of

Z ñ S x1
| S n 1 ñ case n 1 of

Z ñ S x2
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 13. Result of Level 1 Transformation

let x3 � S S S Z
in let x4 � S S S S S Z

in f n
where
f � λn.case n of

Z ñ S S x3
| S n 1 ñ case n 1 of

Z ñ S S S x4
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 14. Further Result of Level 1 Transformation

level 3 result shown in Fig. 17. In this case, we can see that an extra layer of
lets has not been added around the program; this is because the components
which would have been extracted had been extracted previously, so the variables
from these previous extractions were reused. If this level 3 program is further
transformed within a level 4 transformer, then the level 3 result as shown in Fig.
18 is encountered.

We can now see that the level 3 result in Fig. 18 is a renaming of the level 3
result in Fig. 17. Folding is therefore performed to obtain the result in Fig. 19
(for the sake of brevity, this program has been compressed, but the actual result
can be obtained from this by performing a couple of function unfoldings).

We can see that the original program which contained double recursion has
been transformed into one with single recursion. Note that the result we have



A Hierarchy of Program Transformers 81

let x5 � λx .S x
in let x6 � λx .S S x

in let x3 � S x2
in let x4 � S S x3

in f n
where
f � λn.case n of

Z ñ S px5 x3 q
| S n 1 ñ case n 1 of

Z ñ S px6 x4 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 15. Result of Level 2 Transformation

let x9 � λx .S S S x
in let x10 � λx .S S S S S x

in let x7 � S S S x4
in let x8 � S S S S S x7

in f n
where
f � λn.case n of

Z ñ S px9 x7 q
| S n 1 ñ case n 1 of

Z ñ S px10 x8 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 16. Further Result of Level 2 Transformation

obtained is not the linear version of the fib function which we might have ex-
pected. This is because the addition operation within the original program is
not a constant-time operation; it is a linear-time operation defined on Peano
numbers. If we had used a constant-time addition operator, then we would have
obtained the linear version of the fib function using transformers at level 1 and
upwards. This requires building the addition operator into our language, and
defining specific transformation rules for such built-in operators which trans-
form their arguments in sequence.



82 G. W. Hamilton

let x9 � λx .x5 px6 x q
in let x10 � λx .x6 px5 px6 x qq

in let x7 � x5 px6 x4 q
in let x8 � x6 px5 px6 x4 qq

in f n
where
f � λn.case n of

Z ñ S px9 x7 q
| S n 1 ñ case n 1 of

Z ñ S px10 x8 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 17. Result of Level 3 Transformation

let x13 � λx .x9 px10 x q
in let x14 � λx .x10 px9 px10 x qq

in let x11 � x9 px10 x8 q
in let x12 � x10 px9 px10 x8 qq

in f n
where
f � λn.case n of

Z ñ S px13 x11 q
| S n 1 ñ case n 1 of

Z ñ S px14 x12 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 18. Further Result of Level 3 Transformation

5 Distillation

In this section, we show how distillation can be described within our hierarchy of
program transformers. One difficulty with having such a hierarchy of transform-
ers is knowing which level within the hierarchy is sufficient to obtain the desired
results. For example, for many of the examples in the literature of programs
which are improved by positive supercompilation (level 0 in our hierarchy), no
further improvements are obtained at higher levels in the hierarchy. However,
only linear improvements in efficiency are possible at this level [13]. Higher levels



A Hierarchy of Program Transformers 83

case n of
Z ñ S Z

| S n 1 ñ case n 1 of
Z ñ S Z

| S n2 ñ f n2 pλx .S x q pλx .S S x q Z Z
where
f � λn.λg .λh.λx .λy .case n of

Z ñ S pg x q
| S n 1 ñ case n 1 of

Z ñ Sph yq
| S n2 ñ f n2 pλx .g ph x qq pλx .h pg ph x qqq pg x q ph yq

Fig. 19. Overall Result of Level 4 Transformation

5 Distillation

In this section, we show how distillation can be described within our hierarchy of
program transformers. One difficulty with having such a hierarchy of transform-
ers is knowing which level within the hierarchy is sufficient to obtain the desired
results. For example, for many of the examples in the literature of programs
which are improved by positive supercompilation (level 0 in our hierarchy), no
further improvements are obtained at higher levels in the hierarchy. However,
only linear improvements in efficiency are possible at this level [13]. Higher levels
in the hierarchy are capable of obtaining super-linear improvements in efficiency,
but are overkill in many cases.

We therefore give a formulation of distillation which initially performs at
level 0 in our hierarchy, and only moves to higher levels when necessary. Moving
to a higher level in the hierarchy is only necessary if generalization has to be
performed at the current level. Thus, when generalization is performed, the result
of the generalization is memoized and is used for comparisons at the next level
when checking for renamings or embeddings.

The rules for distillation are shown in Fig. 20. These rules are very simi-
lar to those for the transformers within the hierarchy; they take the original
program as input, perform normal-order reduction, and produce a labelled tran-
sition system as output. The rules differ from those for the transformers within
the hierarchy in that when generalization has to be performed, the LTS resulting
from generalization at the current level is memoized, residualized, unfolded and
then transformed at the next level up in the transformer hierarchy. Thus, each
generalization will have the effect of moving up to the next level in the trans-
former hierarchy in addition to adding an extra layer of lets around the LTS
representation of the current term.

We have already seen that at each successive level in the transformer hierar-
chy, the size of the components which are extracted by generalization must get
smaller as they are sub-components of the result of transformation at the previ-
ous level. A point must therefore always be reached eventually at which extracted

Fig. 19. Overall Result of Level 4 Transformation

in the hierarchy are capable of obtaining super-linear improvements in efficiency,
but are overkill in many cases.

We therefore give a formulation of distillation which initially performs at
level 0 in our hierarchy, and only moves to higher levels when necessary. Moving
to a higher level in the hierarchy is only necessary if generalization has to be
performed at the current level. Thus, when generalization is performed, the result
of the generalization is memoized and is used for comparisons at the next level
when checking for renamings or embeddings.

The rules for distillation are shown in Fig. 20. These rules are very simi-
lar to those for the transformers within the hierarchy; they take the original
program as input, perform normal-order reduction, and produce a labelled tran-
sition system as output. The rules differ from those for the transformers within
the hierarchy in that when generalization has to be performed, the LTS resulting
from generalization at the current level is memoized, residualized, unfolded and
then transformed at the next level up in the transformer hierarchy. Thus, each
generalization will have the effect of moving up to the next level in the trans-
former hierarchy in addition to adding an extra layer of lets around the LTS
representation of the current term.

We have already seen that at each successive level in the transformer hierar-
chy, the size of the components which are extracted by generalization must get
smaller as they are sub-components of the result of transformation at the previ-
ous level. A point must therefore always be reached eventually at which extracted
components re-occur, and the same generalization variables will be reused with-
out introducing new lets. At this point, no further generalization will be done
and the distiller will not move any further up the transformer hierarchy and
must terminate at the current level.

Example 6. The result of transforming the fib program in Fig. 2 using distillation
is the same as that of the level 4 transformer within our transformation hierarchy
shown in Fig. 19.



84 G. W. Hamilton

Dnrrx ss κ ρ θ ∆ = D1nrrxÑ px,0qss κ ρ θ ∆
Dnrre � c e1 . . . en ss xy ρ θ ∆

= eÑ pc,0q, p#1,Dnrre1 ss xy ρ θ ∆q, . . . , p#n,Dnrren ss xy ρ θ ∆q
Dnrre � c e1 . . . en ss pκ � xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κ1yq ρ θ ∆

= pκeq Ñ pτc,Dnrre 1itx1 ÞÑ e1 , . . . , xn ÞÑ enuss κ
1 ρ θ ∆q

where pi � c x1 . . . xn
Dnrre � λx .e0 ss xy ρ θ ∆

= eÑ pλx,Dnrre0 ss xy ρ θ ∆q
Dnrre � λx .e0 ss pκ � xp e1 q : κ1yq ρ θ ∆

= pκeq Ñ pτβ ,Dnrre0 tx ÞÑ e1 uss κ
1 ρ θ ∆q

Dnrrf ss κ ρ θ ∆ =

$''&
''%

pκfq Ñ pτf ,0q, if Dt1 P ρ, σ  t1 hH
σ t

Dn�1rrUrrRrrtgssss Hss xy ttgu θ H, if Dt1 P ρ, σ  t1 'Hσ t
where tg � Grrtssrrt 1ss θ
pκfq Ñ pτf ,DnrrUrrRrrtssss Hss xy pρY ttuq θ Hq, otherwise

where t � Tnrrf ss κ H θ ∆
Dnrre0 e1 ss κ ρ θ ∆

= Dnrre0ss xp e1 q : κy ρ θ ∆
Dnrrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ θ ∆

= Dnrre0ss xpcase  of p1 ñ e1 | � � � | pk ñ ek q : κy ρ θ ∆
Dnrre � let x � e0 in e1 ss κ ρ θ ∆

= pκeq Ñ plet,Dnrre1 tx ÞÑ e0 uss κ pρY tx ÞÑ e0uq θ ∆q, px,Dnrre0 ss xy ρ θ ∆q
Dnrre0 where f1 � e1 . . . fn � en ss κ ρ θ ∆

= Dnrre0 ss κ ρ θ p∆Y tf1 � e1, . . . , fn � enuq

D1nrrtss xy ρ θ ∆ = t
D1nrrtss xp eq : κy ρ θ ∆

= D1nrrpt eq Ñ p@, tq, p#1,Dnrress xy ρ θ qss κ ρ θ ∆
D1nrrxÑ px,n� 1qss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆

= pcase x of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ
pcase, tq, pp1,Dnrrpκe11qtxÞÑ p1uss xy ρ θ ∆q, . . . , ppk,Dnrrpκe1kqtxÞÑ pkuss xy ρ θ ∆q

D1nrrtss xpcase  of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆
= pcase rootptq of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ

pcase, tq, pp1,Dnrre11ss κ ρ θ ∆q, . . . , ppk,Dnrre1kss κ ρ θ ∆q

Fig. 20. Distillation Transformation Rules

components re-occur, and the same generalization variables will be reused with-
out introducing new lets. At this point, no further generalization will be done
and the distiller will not move any further up the transformer hierarchy and
must terminate at the current level.

Example 6. The result of transforming the fib program in Fig. 2 using distillation
is the same as that of the level 4 transformer within our transformation hierarchy
shown in Fig. 19.

Fig. 20. Distillation Transformation Rules

6 Conclusion and Related Work

We have defined a hierarchy of transformers in which the transformer at each
level of the hierarchy makes use of the transformers at lower levels. At the bot-
tom of the hierarchy is the level 0 transformer, which corresponds to positive
supercompilation [14], and is capable of achieving only linear improvements in
efficiency. The level 1 transformer corresponds to the first published definition
of distillation [4], and is capable of achieving super-linear improvements in effi-
ciency. Further improvements are possible at higher levels in the hierarchy, but
the difficulty is in knowing the appropriate level at which to operate for an ar-
bitrary input program. We have also shown how the more recently published
definition of distillation [5] moves up through the levels of the transformation
hierarchy until no further improvements can be made.



A Hierarchy of Program Transformers 85

Previous works [9,2,1,18,13] have noted that the unfold/fold transformation
methodology is incomplete; some programs cannot be synthesized from each
other. This is because the transformation methodologies under consideration
correspond to level 0 in our hierarchy; higher levels are required to achieve the
desired results.

There have been several attempts to work on a meta-level above supercom-
pilation, the first one by Turchin himself using walk grammars [16]. In this ap-
proach, traces through residual graphs are represented by regular grammars
that are subsequently analysed and simplified. This approach is also capable of
achieving superlinear speedups, but no automatic procedure is defined for it; the
outlined heuristics and strategies may not terminate.

The most recent work on building a meta-level above supercompilation is
by Klyuchnikov and Romanenko [8]. They construct a hierarchy of supercom-
pilers in which lower level supercompilers are used to prove lemmas about term
equivalences, and higher level supercompilers utilise these lemmas by rewriting
according to the term equivalences (similar to the “second order replacement
method” defined by Kott [10]). This approach is also capable of achieving super-
linear speedups, but again no automatic procedure is defined for it; the need to
find and apply appropriate lemmas introduces infinite branching into the search
space, and various heuristics have to be used to used to try to limit this search.

Logic program transformation is closely related, and the equivalence of partial
deduction and driving has been argued by Glück and Sørensen [3]. Superlinear
speedups can be achieved in logic program transformation by goal replacement
[11,12]: replacing one logical clause with another to facilitate folding. Techniques
similar to the notion of “higher level supercompilation” [8] have been used to
prove correctness of goal replacement, but have similar problems regarding the
search for appropriate lemmas.

Acknowledgements

The work presented here owes a lot to the input of Neil Jones, who provided many
useful insights and ideas in our collaboration during the sabbatical of the author
at the Department of Computer Science, University of Copenhagen (DIKU). This
work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

References

1. Amtoft, T.: Sharing of Computations. Ph.D. thesis, DAIMI, Aarhus University
(1993)

2. Andersen, L., Gomard, C.: Speedup Analysis in Partial Evaluation: Preliminary
Results. In: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM). pp. 1–7 (1992)

3. Glück, R., Jørgensen, J.: Generating Transformers for Deforestation and Super-
compilation. In: Proceedings of the Static Analysis Symposium. Lecture Notes in
Computer Science, vol. 864, pp. 432–448. Springer-Verlag (1994)



86 G. W. Hamilton

4. Hamilton, G.W.: Distillation: Extracting the Essence of Programs. In: Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. pp. 61–70 (2007)

5. Hamilton, G.W., Jones, N.D.: Distillation with Labelled Transition Systems. In:
Proceedings of the SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation. pp. 15–24 (2012)

6. Huet, G.: The Zipper. Journal of Functional Programming 7(5), 549–554 (1997)
7. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program

Generation. Prentice Hall (1993)
8. Klyuchnikov, I., Romanenko, S.: Towards Higher-Level Supercompilation. In: Pro-

ceedings of the Second International Workshop on Metacomputation in Russia
(META) (2010)

9. Kott, L.: A System for Proving Equivalences of Recursive Programs. In: Proceed-
ings of the Fifth Conference on Automated Deduction (CADE). pp. 63–69 (1980)

10. Kott, L.: Unfold/Fold Transformations. In: Nivat, M., Reynolds, J. (eds.) Algebraic
Methods in Semantics, chap. 12, pp. 412–433. CUP (1985)

11. Petterossi, A., Proietti, M.: A Theory of Totally Correct Logic Pro- gram Transfor-
mations. In: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM). pp. 159–168 (2004)

12. Roychoudhury, A., Kumar, K., Ramakrishnan, C., Ramakrishnan, I.: An Un-
fold/Fold Transformation Framework for Definite Logic Programs. ACM Trans-
actions on Programming Language Systems 26(3), 464–509 (2004)

13. Sørensen, M.H.: Turchin’s Supercompiler Revisited. Master’s thesis, Department
of Computer Science, University of Copenhagen (1994), DIKU-rapport 94/17

14. Sørensen, M.H., Glück, R., Jones, N.: A Positive Supercompiler. Journal of Func-
tional Programming 6(6), 811–838 (1996)

15. Turchin, V.: The Concept of a Supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 90–121 (Jul 1986)

16. Turchin, V.: Program Transformation With Metasystem Transitions. Journal of
Functional Programming 3(3), 283–313 (1993)

17. Wadler, P.: Deforestation: Transforming programs to eliminate trees. Lecture Notes
in Computer Science 300, 344–358 (1988)

18. Zhu, H.: How Powerful are Folding/Unfolding Transformations? Journal of Func-
tional Programming 4(1), 89–112 (1994)



Obfuscation by Partial Evaluation
of Distorted Interpreters

(Invited Talk)

Neil D. Jones

Computer Science Department
University of Copenhagen

2100 Copenhagen, Denmark
e-mail: neil@diku.dk

Abstract. How to construct a general program obfuscator? We present a
novel approach to automatically generating obfuscated code P ′ from any
program P whose source code is given. Start with a (program-executing)
interpreter interp for the language in which P is written. Then “distort”
interp so it is still correct, but its specialization P ′ w.r.t. P is trans-
formed code that is equivalent to the original program, but harder to
understand or analyze. Potency of the obfuscator is proved with respect
to a general model of the attacker, modeled as an approximate (abstract)
interpreter. A systematic approach to distortion is to make program P
obscure by transforming it to P ′ on which (abstract) interpretation is
incomplete. Interpreter distortion can be done by making residual in the
specialization process sufficiently many interpreter operations to defeat
an attacker in extracting sensible information from transformed code.
Our method is applied to: code flattening, data-type obfuscation, and
opaque predicate insertion. The technique is language independent and
can be exploited for designing obfuscating compilers.

Keywords: Obfuscation, semantics, partial evaluation, program trans-
formation, program interpretation, abstract interpretation.

The talk is based on joint work with Roberto Giacobazzi and Isabella Mastroeni
[1].

References

1. Roberto Giacobazzi, Neil D. Jones, and Isabella Mastroeni. Obfuscation by partial
evaluation of distorted interpreters. In Proceedings of the ACM SIGPLAN 2012
workshop on Partial evaluation and program manipulation, PEPM ’12, pages 63–
72, New York, NY, USA, 2012. ACM.



Superlinear Speedup by
Program Transformation

(Extended Abstract)

Neil D. Jones G.. W. Hamilton

Computer Science Department School of Computing
University of Copenhagen Dublin City University
2100 Copenhagen, Denmark Dublin 9, Ireland
e-mail: neil@diku.dk hamilton@computing.dcu.ie

There seems to be, at least in practice, a fundamental conflict within program
transformations. One way: hand transformations can yield dramatic speedups,
but seem to require human insight. They are thus are only suited to small pro-
grams and have not been successfully automated. On the other hand, there exist
a number of well-known automatic program transformations; but these have been
proven to give at most linear speedups.

This work in progress addresses this apparent conflict, and concerns the prin-
ciples and practice of superlinear program speedup. A disclaimer: we work in a
simple sequential program context: no caches, parallelism, etc.

Many interesting program transformations (by Burstall-Darlington, Bird,
Pettorossi, and many others) have been published that give superlinear pro-
gram speedups on some program examples. However, these techniques all seem
to require a “Eureka step” where the transformer understands some essential
property relevant to the problem being solved (e.g., associativity, commutativ-
ity, occurrence of repeated subproblems, etc.). Such transformations have proven
to be very difficult to automate.

On the other hand a number of fully automatic transformers exist, includ-
ing: classical compiler optimisations, deforestation, partial evaluation and super-
compilation. Mostly these give only linear speedups. (There are, however, two
Refal-based exceptions: the supercompiler work by Turchin, and Nemytykhs su-
percompiler SCP4.)

The limitation to linear time improvement has been proven in some cases,
e.g., by Jones and colleagues for partial evaluation (using call-by-value), and by
Sørensen for positive supercompilation (using call-by-name).

An instance: a goal for several years was automatically to achieve the speedup
of the Knuth-Morris-Pratt string pattern matching algorithm. The KMP speedup
is still linear though, although the constant speedup coefficient can be propor-
tional to the length of the pattern being searched for.

What principles can lead to superlinear speedup? Some examples that suggest
principles to be discovered and automated:

1. In functional programs:
– finding shared subcomputations (e.g., the Fibonacci example)



Superlinear Speedup by Program Transformation 89

– finding unneeded computations (e.g., most of the computation done by
“naive reverse”)

2. In imperative programs:
– finding unneeded computations (e.g., major speedups can result from

generalising the usual compiler “dead code” analysis also to span over
program loops)

– finding shared subcomputations (e.g., the factorial sum example)
– code motion to move an entire nested loop outside an enclosing loop
– strength reduction
– common subexression elimination across loop boundaries, e.g., extending

“value numbering”

In 2007 Hamilton showed that the “distillation” transformation (a further de-
velopment of positive supercompilation) can sometimes yield superlinear speedups.
Distillation has automatically transformed the quadratic-time “naive reverse”
program, and the exponential-time “Fibonacci” program, each into a linear-time
equivalent program that uses accumulating parameters.

On the other hand, there are subtleties, e.g., distillation works with a higher-
order call-by-name source language. Further, distillation is a very complex al-
gorithm, involving positive information propagation, homeomorphic embedding,
generalisation by tree matching, and folding. A lot of the complexity in the algo-
rithm arises from the use of potentially infinite data structures and the need to
process these in a finite way. It is not yet clear which programs can be sped up
so dramatically, and when and why this speedup occurs. It is as yet also unclear
whether the approach can be scaled up to use in practical, industrial-strength
contexts, as can classical compiler optimisations.

The aim of this work in progress is to discover an essential “inner core”
to distillation. Our approach is to study a simpler language, seeking programs
that still allow superlinear speedup. Surprisingly, it turns out that asymptotic
speedups can be obtained even for first-order tail recursive call-by-value pro-
grams (in other words, imperative flowchart programs). An example discovered
just recently concerned computing f(n) = 1!+2!+...+n!. Distillation transforms
the natural quadratic time factorial sum program into a linear time equivalent.

Even though distillation achieves many of these effects automatically, the
principles above seem to be buried in the complexities of the distillation algo-
rithm and the subtleties of its input language.

One goal of our current work is to extract the essential transformations
involved. Ideally, one could extend classical compiler optimisations (normally
only yielding small linear speedups) to obtain a well-understood and automated
“turbo” version that achieves substantially greater speedups, and is efficient
enough for daily use.

References

1. R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.



90 N. D. Jones, G. W. Hamilton

2. Søren Debois. Imperative program optimization by partial evaluation. In Heintze
and Sestoft [5], pages 113–122.

3. Geoffrey William Hamilton and Neil D. Jones. Distillation with labelled transition
systems. In PEPM (ACM SIGPLAN 2012 Workshop on Partial Evaluation and
Program Manipulation), pages 15–24. ACM, 2012.

4. Geoffrey William Hamilton and Neil D. Jones. Proving the correctness of unfold/fold
program transformations using bisimulation. In Proceedings of the 8th Andrei Ershov
Informatics Conference, volume 7162 of Lecture Notes in Computer Science, pages
150–166. Springer, 2012.

5. Nevin Heintze and Peter Sestoft, editors. Proceedings of the 2004 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based Program Manipulation, 2004,
Verona, Italy, August 24-25, 2004. ACM, 2004.

6. Neil D. Jones. Transformation by interpreter specialisation. Sci. Comput. Program.,
52:307–339, 2004.

7. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.



Why Multi-Result Supercompilation Matters:
Case Study of Reachability Problems for

Transition Systems

Andrei V. Klimov?

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
klimov@keldysh.ru

Abstract. We sum up some current results of the theoretical study of
the reasons of successful application of supercompilers to verification of
monotonic counter systems representing the models of practical protocols
and other parallel systems. Three supercompilation-like algorithms for
forward analysis of counter systems and a procedure interactively invok-
ing a supercompiler to solve the coverability problem are presented. It
always terminates for monotonic counter systems. The algorithms are
considered as an instance of multi-result supercompilation (proposed
by I. Klyuchnikov and S. Romanenko) for special-purpose analysis of
counter systems.

We speculate on the insufficiency of single-result supercompilation for
solving the reachability and coverability problems and the necessity of
multi-result supercompilation. Related work by Gilles Geeraerts et al.
on the algorithmic schema referred to as ‘Expand, Enlarge and Check’
(EEC) is discussed. We regard the work on EEC as a theory of domain-
specific multi-result supercompilation for well-structured transition sys-
tems. The main purpose of the theory is to prune combinatorial search
for suitable residual graphs as much as possible. Based of the EEC the-
ory and our results, several levels of the restrictions of the combinatorial
search dependent on the properties of a subject transition system are
revealed: some minimal restrictions when solving reachability for arbi-
trary transition systems; more efficient search (according to the EEC
schema) in the case of well-structured transitions systems; iterative calls
of a single-result supercompiler with a varying parameter of generaliza-
tion for monotonic counter systems. On the other hand, no reasonable
practical class of transition systems, for which the reachability or cover-
ability is always solvable by a version of single-result supercompilation
is known yet.

Keywords: multi-result supercompilation, verification, reachability, cov-
erability, well-structured transition systems, counter systems.

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



92 A. V. Klimov

1 Introduction

Supercompilation [27] is a forward analysis and transformation method. For-
ward means that the traces of program execution are elaborated starting from a
set of initial states to a certain depth. Respectively, backward analysis is based
on elaboration of traces backwards from a set of final states. Many other for-
ward and backward analysis techniques have been developed for specific classes
of algorithm systems, and their comparison with supercompilation and cross-
fertilization is a productive research topic.1

Traditionally supercompilation has been developed for programs, while in
this paper we deal with transition systems and solving the reachability problems
(reachability and coverability) for them.

Programs (algorithms) and transition systems differ in some respects:

– (Essential) The result of evaluation of a program is its final state. (In more
detail: the sense of a program is a mapping from a set of initial states to a
set of final states). The outcome of a transition system comprises all states
reachable from a set of initial states and even more up to the set of all
traces. Different outcomes are considered depending on a problem under
consideration. For the reachability problems the set of all reachable states is
used.

– (Inessential) Programs are usually deterministic, while transition systems
nondeterministic. Nondeterministic systems are somewhat technically sim-
pler for supercompilation. (There is no need of propagating negative condi-
tions to else branches.)

The tasks of verification of programs or transition systems allows for easy
and natural comparison of methods: if some method proves more properties
than another one, the former is more “powerful” than the latter. I. Klyuchnikov
and S. Romanenko came to the idea of multi-result supercompilation (MRSC)
[15] while dealing with proving program equivalence by supercompilation: two
programs are equivalent when the respective residual terms coincide. A multi-
result supercompiler, which returns a set of residual programs instead of just one
in case of single-results supercompilation, allows for proving the equivalence of
more programs: two programs are equivalent when the respective sets of residual
programs intersect.

Solving the reachability problem (whether a given set of states is reachable
from a given set of initial states by a program or a transition system) turned
out to be even more sensible to the use of multi-result supercompilation instead
of single-result one.

The goal of this paper is to demonstrate and argue that, and under what con-
ditions, multi-result supercompilation is capable of solving the reachability and
coverability problems for transition systems, while single-result supercompilers
solve the problem only occasionally.

1 “Backward supercompilation” is also a promising topic, as well as “multi-directed”
analysis from arbitrary intermediate program points in both directions. V. Turchin
initiated this research in [25,28], but much work is still required.



Why Multi-Result Supercompilation Matters 93

History and Related Work. This paper continues research [12,13,14] into
why and how supercompilers are capable of solving the reachability and cover-
ability problems for counter systems where the set of target states is upward-
closed and the set of initial states has a certain form. The idea of verification
by supercompilation stems from the pioneering work by V. Turchin [26]. The
fact that a supercompiler can solve these problems for a lot of practically in-
teresting counter systems has been experimentally discovered by A. Nemytykh
and A. Lisitsa [19,21] with a Refal supercompiler SCP4 [24] and then the re-
sult has been reproduced with the Java supercompiler JScp [10,11] and other
supercompilers.

In paper [14] two classic versions of the supercompilation algorithm are for-
mulated for counter systems, using the notation close to the works on Petri nets
and transition systems. Another paper [13] contains a simplification of one of
them (namely, with the so-called lower-node generalization) by clearing out the
details that have been found formally unnecessary for solving the coverability
problem. The algorithms are reproduced here.

It has been found that the coverability problem for monotonic counter sys-
tems is solvable by iterative application of a supercompiler varying an integer
parameter l = 0, 1, 2, . . . , that controls termination of driving and generalization
of integers: small non-negative integers less than l are not allowed to be gener-
alized to a variable.2 Papers [13,14] contain a proof that there exists such value
l that the supercompiler solves the problem. (Remarkably, the proof is based on
the existence of a non-computable upper estimate of l.)

In [14] (and here in Algorithms 2 and 3) this rule is used together with the
traditional whistle3 based on a well-quasi-order: the whistle is not allowed to
blow if two configurations under test differ only in integers less than l. In [13]
(and here in Algorithm 1) this rule is used in pure form as an imperative: every
integer greater or equal to l is immediately generalized.

The iterative procedure of application a supercompiler demonstrates useful-
ness of gradual specialization: starting with a trivial result of supercompilation
gradually produce more and more specialized versions until one is obtained that
satisfies the needs. This differs from the traditional design of supercompilers,
which try to produce the most specific residual code at once.

These algorithms may be considered as an instance of multi-result super-
compilation [15]: to solve a problem one varies some of the degrees of freedom
inherent in supercompilation, obtains several residual programs and chooses a
better one w.r.t. his specific goals. They have shown the usefulness of multi-result
supercompilation for proving the equivalence of expressions and in two-level su-
percompilation.

In our work, a problem unsolvable by single-result supercompilation is solv-
able by enumerating a potentially infinite set of supercompilation results param-
eterized by an integer.

2 In terms of Petri net theory this phrase sounds as follows: integer values less than l
are not allowed to be accelerated, i.e., be replaced with a special value ω.

3 In supercompilation jargon, a whistle is a termination rule.



94 A. V. Klimov

The decidability of the coverability problem for well-structured transition sys-
tems, which counter systems belong to, is well-known [1]. The iterative procedure
of application of the supercompilers presented below is close to the algorithmic
schema referred to as ‘Expand, Enlarge and Check’ (EEC) [5,6] for solving the
coverability problem of well-structured transition systems (WSTS). We discuss
their relation is Section 4.

Outline. The paper is organized as follows.
In Section 2 we recall some known notions from the theory of transition

systems as well as give specific notions from supercompilation theory used in
the algorithms presented in Section 3.3. The algorithms are reproduced from
[13,14] to illustrate the idea of multi-result supercompilation applied to solving
the coverability problem. (If you are familiar with these papers, you may go
immediately to Section 4 and return back when needed.)

Section 4 contains a new contribution and answers the question in the title: it
takes a more general look at the methods of solving the reachability problems for
transition systems; discusses the related work by G. Geeraerts et al., which we
regard as a theory of multi-result supercompilation for well-structured transition
systems (WSTS); and reveal an hierarchy of properties of transition systems,
which allows for pruning extra enumeration of residual graphs and making multi-
result supercompilation more efficient. Monotonic counter systems turned out to
be the most efficient case in this hierarchy.

In Section 5 we discuss related work and in Section 6 conclude.

2 Basic Notions

2.1 Transition Systems

We use the common notions of transition system, monotonic transition system,
well-structured transition system, counter system and related ones.

A transition system S is a tuple 〈S,⇒〉 such that S is a possibly infinite set
of states, ⇒⊆ S × S a transition relation.

A transition function Post(S, s) is used to denote the set {s′ | s ⇒ s′} of
one-step successors of s.4

Post∗(S, s) denotes the set {s′ | s ∗⇒ s′} of successors of s.
Reach(S, I) denotes the set

⋃
s∈I Post

∗(S, s) of states reachable from a set of
states I.

We say a transition system 〈S,⇒〉 is (quasi-, partially) ordered if some
(quasi-,5 partial6) order 4 is defined on its set of states S.

For a quasi-ordered set X, ↓X denotes {x | ∃y ∈ X : x 4 y}, the downward
closure of X. ↑X denotes {x | ∃y ∈ X : x < y}, the upward closure of X.

4 For effectiveness, we assume the set of one-step successors is finite.
5 A quasi-order (preorder) is a reflexive and transitive relation.
6 A partial order is an antisymmetric quasi-order.



Why Multi-Result Supercompilation Matters 95

The covering set of a quasi-ordered transition system S w.r.t. an initial set
I, noted Cover(S, I), is the set ↓Reach(S, I), the downward closure of the set of
states reachable from I.

The coverability problem for a quasi-ordered transition system S, an initial set
of states I and an upward-closed target set of states U asks a question whether
U is reachable from I: ∃s ∈ I, s′ ∈ U : s

∗⇒ s′.7

A quasi-order 4 is a well-quasi-order iff for every infinite sequence {xi} there
are two positions i < j such that xi 4 xj .

A transition system 〈S,⇒〉 equipped with a quasi-order 4 ⊆ S × S is said
to be monotonic if for every s1, s2, s3 ∈ S such that s1 ⇒ s2 and s1 4 s3 there
exists s4 ∈ S such that s3

∗⇒ s4 and s2 4 s4.
A transition system is called well-structured (WSTS) if it is equipped with a

well-quasi-order 4 ⊆ S × S and is monotonic w.r.t. this order.
A k-dimensional counter system S is a transition system 〈S,⇒〉 with states

S = Nk, k-tuples of non-negative integers. It is equipped with the component-
wise partial order 4 on k-tuples of integers:

s1 4 s2 iff ∀i ∈ [1, k] : s1(i) ≤ s2(i),

s1 ≺ s2 iff s1 4 s2 ∧ s1 6= s2.

Proposition 1. The component-wise order 4 of k-tuples of non-negative inte-
gers is a well-quasi order. A counter system equipped with this order is a well-
structured transitions system.

2.2 Configurations

In supercompilation the term configuration denotes a representation of a set of
states, while in Petri net and transition system theories the same term stands
for a ground state. In this paper the supercompilation terminology is used. Our
term configuration is equivalent to ω-configuration and ω-marking in Petri net
theory.

The general rule of construction of the notion of a configuration in a super-
compiler from that of the program state in an interpreter is as follows: add con-
figuration variables to the data domain and allow these to occur anywhere where
a ground value can occur. A configuration represents the set of states that can be
obtained by replacing configuration variables with all possible values. Thus the
notion of a configuration implies a set represented by some constructive means
rather than an arbitrary set.

A state of a counter system is a k-tuple of integers. According to the above
rule, a configuration should be a tuple of integers and configuration variables.
For the purpose of this paper we use a single symbol ω for all occurrences of
variables and consider each occurrence of ω a distinct configuration variable.

7 In other words, the coverability problem asks a question whether such a state r is
reachable from I that ↓{r} ∩ U 6= ∅, where there is no requirement that the target
set U is upward-closed.



96 A. V. Klimov

Thus, in supercompilation of k-dimensional counter systems configurations
are k-tuples over N∪{ω}, and we have the set of all configurations C = (N∪{ω})k.

A configuration c ∈ C represents a set of states noted [[c]]:

[[c]] = {〈x1, . . . , xk〉 | xi ∈ N if c(i) = ω, xi = c(i) otherwise, 1 ≤ i ≤ k}.

These notations agree with that used in Petri net and counter system the-
ories. Notice that by using one symbol ω we cannot capture information about
equal unknown values represented by repeated occurrences of a variable. How-
ever, when supercompiling counter systems, repeated variables do not occur in
practice, and such simplified representation satisfies our needs.

We also use an extension of [[·]] to sets of configurations to denote all states
represented by the configurations from a set C: [[C]] =

⋃
c∈C [[c]].

Definition 1 (Coverability set). A coverability set is a finite set of configura-
tions C that represents the covering set in the following way: ↓[[C]] = Cover(S, I).

Notice that if we could find a coverability set, we could solve the coverability
problem by checking its intersection with the target set U .

2.3 Residual Graph, Tree and Set

Definition 2 (Residual graph and residual set). Given a transition system
S = 〈S,⇒〉 along with an initial set I ⊆ S and a set C of configurations, a
residual graph is a tuple T = 〈N,B, n0, C〉, where N is a set of nodes, B ⊆ N×N
a set of edges, n0 ∈ N a root node, C : N → C a labeling function of the nodes
by configurations, and

1. [[I]] ⊆ [[C(n0)]], and for every state s ∈ S reachable from I there exists a node
n ∈ N such that s ∈ [[C(n)]], and

2. for every node n ∈ N and states s, s′ such that s ∈ [[C(n)]] and s⇒ s′ there
exists an edge 〈n, n′〉 ∈ B such that s′ ∈ [[C(n′)]].

We call the set {C(n) | n ∈ N} of all configurations in the graph a residual set.

Notice that a residual set is a representation of an over-approximation of the
set of reachable states: ↓[[{C(n) | n ∈ N}]] ⊇ Reach(S, I).

The term residual is borrowed from the metacomputation terminology, where
the output of a supercompiler is referred to as a residual graph and a residual
program. The literature on transition systems lacks a term for what we call
residual set. They use only the term coverability set, which means a specific
case of a residual set, where it is a precise representation of the covering set
Cover(S, I) = ↓Reach(S, I).

The value of these notions for our purpose is as follows. To solve the cover-
ability problem it is sufficient to find a coverability set among the residual sets:
then we check whether all configurations in the coverability set are disjoint with
the target set or not. Unfortunately, computing a coverability set is undecidable



Why Multi-Result Supercompilation Matters 97

for counter systems of our interest. Fortunately, this is not necessary. It is suf-
ficient to build a sequence of residual sets that contains a coverability set. We
may not know which one among the residual sets is a coverability set (this is
incomputable), it is sufficient to know it exists in the sequence. This is the main
idea of our algorithm and the ‘Expand, Enlarge and Check’ (EEC) algorithmic
schema of [6].

Notice that such procedure of solving the coverability problem does not use
the edges of the residual graph, and we can keep in B only those edges that are
needed for the work of our versions of supercompilation algorithms. Hence the
definition of a residual tree:

Definition 3 (Residual tree). A residual tree is a spanning tree of a residual
graph. The root of the tree is the root node n0 of the graph.

2.4 Operations on Configurations

To define a supercompiler we need the transition function Post on states to be
extended to the corresponding function Drive on configurations. It is referred to
as (one-step) driving in supercompilation and must meet the following properties
(where s ∈ S, c ∈ C):

1. Drive(S, s) = Post(S, s) — a configuration with ground values represents a
singleton and its successor configurations are respective singletons;

2. [[Drive(S, c)]] ⊇ ⋃{Post(S, s) | s ∈ [[c]]} — the configurations returned by
Drive over-approximate the set of one-step successors. This is the sound-
ness property of driving. The over-approximation suits well for applications
to program optimization, but for verification the result of Drive must be
more precise. Hence the next property:

3. [[Drive(S, c)]] ⊆ ↓⋃{Post(S, s) | s ∈ [[c]]} — for solving the coverability prob-
lem it is sufficient to require that configurations returned by Drive are subsets
of the downward closure of the set of the successors.

For the practical counter systems we experimented with, the transition func-
tion Post is defined in form of a finite set of partial functions taking the coordi-
nates vi of the current state to the coordinates v′i of the next state:

v′i = if Gi(v1, . . . , vk) then Ei(v1, . . . , vk), i ∈ [1, k],

where the ‘guards’ Gi are conjunctions of elementary predicates vj ≥ a and
vj = a, and the arithmetic expressions Ei consist of operations x+ y, x+ a and
x− a, where x and y are variables or expressions, a ∈ N a constant.

The same partial functions define the transition function Drive on configura-
tions, the operations on ground data being generalized to the extended domain
N ∪ {ω}: ∀a ∈ N : a < ω and ω + a = ω − a = ω + ω = ω.



98 A. V. Klimov

2.5 Restricted Ordering of Configurations of Counter Systems

To control termination of supercompilers we use a restricted partial order on
integers 4l parameterized by l ∈ N. For a, b ∈ N ∪ {ω}, we have:

a 4l b iff l ≤ a ≤ b < ω.

This partial order makes two integers incompatible when one of them is less
than l. The order is a well-quasi-order.

Then the partial order on states and configurations of counter systems is the
respective component-wise comparison: for c1, c2 ∈ C = (N ∪ {ω})k,

c1 4l c2 iff ∀i ∈ [1, k] : c1(i) 4l c2(i).

This order is also a well-quasi-order. It may be regarded as a specific case
of the homeomorphic embedding of terms used in supercompilation to force
termination. As we will see in the supercompilation algorithms below, when two
configurations c1 and c2 are met on a path such that c1 ≺l c2, ‘a whistle blows’
and generalization of c1 and c2 is performed. Increasing parameter l prohibits
generalization of small non-negative integers and makes ‘whistle’ to ‘blow’ later.
When l = 0, the order is the standard component-wise well-quasi-order on tuples
of integers. When l = 1, value 0 does not compare with other positive integers
and generalization of 0 is prohibited. And so on.

2.6 Generalization

When the set of states represented by a configuration c is a subset of the set
represented by a configuration g, [[c]] ⊆ [[g]], we say the configuration g is more
general than the configuration c, or g is a generalization of c.8 Let v denote a
generalization relation v∈ C × C: c v g iff [[c]] ⊆ [[g]], c @ g iff [[c]] ( [[g]].

For termination of traditional supercompilers generalization must meet the
requirement of the finiteness of the number of possible generalization for each
configuration:

∀c ∈ C : {g ∈ C | c v g} is finite.

In Section 4 we speculate on a possibility to lift this restriction for multi-result
supercompilation.

We use a function Generalize : C × C → C to find a configuration g that is
more general than two given ones. Usually Generalize(c1, c2) returns the least
general configuration, however this is not formally required for the soundness
and termination of supercompilation, as well as for the results of this paper,
although it is usually desirable for obtaining ‘better’ residual programs.

In the case of counter systems and the set of configurations defined above,
function Generalize(c1, c2) sets to ω those coordinates where configurations c1
and c2 differ:

Generalize(c1, c2) = c s.t. ∀i ∈ [1, k] : c(i) = c1(i) if c1(i) = c2(i), ω otherwise.

8 In Petri net and counter system theories generalization is referred to as acceleration.



Why Multi-Result Supercompilation Matters 99

Notice that the function Generalize has no parameter l. However in the su-
percompilation algorithms below it is called in cases where c1 ≺l c2. Hence gen-
eralization is not performed when one of the integers is less than l.

In Algorithm 1 a generalization function Generalizel(c) with an integer pa-
rameter l and one configuration argument c is used. It sets to ω those coordinates
that are greater or equal than l:

Generalizel(c) = g s.t. ∀i ∈ [1, k] : g(i) = c(i) if c(i) < l, ω otherwise.

Because of the importance of the parameter l, we write it in a special position:
as the index of the function names that take it as an argument.

3 Supercompilation-Based Algorithms for Solving
Reachabiliy Problems

In this section we present an algorithm to solve the reachability problem for
transition systems. It is applicable to an arbitrary transition system provided
the basic functions Drive, Generalizel and Generalize are properly defined, but
has been proven to terminate only for well-structured transition systems when
solving the coverability problem, provided the basic functions satisfy certain
properties. In the previous section we gave an example of their definition for
counter systems. The theory by G. Geeraerts et al. [5,6] explains how to define
them for well-structured transition systems.

The algorithm consists of the main function Reachable(S, I, U) (Algorithm 0
Approximate) that contains the top level loop, which invokes functions Overl(S, I)
and Underl(S, I) to iteratively compute more and more precise over- and under-
approximations of the set of reachable states, while increasing parameter l.

We give three versions of the definition of the approximation functions. The
simplest one (Algorithm 1) fits the EEC schema. Another two are based on
domain-specific versions for transition systems of classical supercompilation al-
gorithms with lower-node and upper-node generalization (Algorithm 2 ScpL and
Algorithm 3 ScpU respectively).

3.1 Main Function

Main function Reachable(S, I, U) takes a transition system S, an initial con-
figuration I and a target set U and iteratively applies functions Underl(S, I)
and Overl(S, I) with successive values of the parameter of generalization l =
0, 1, 2, . . . When it terminates, it returns an answer whether the set U is reach-
able or not. The algorithm is rather natural.9 Reachability is determined when
some under-approximation returned by Underl(S, I) intersects with U . Unreach-
ability is determined when some over-approximation returned by Overl(S, I) is
disjoint with U .

9 The algorithm is close to but even simpler than analogous Algorithm 4.1 in [5, page
122] and Algorithm 5.2 in [5, page 141].



100 A. V. Klimov

Algorithm 0: Reachable(S, I, U): Solving the coverability problem for a
monotonic counter system

Data: S a monotonic counter system
Data: I an initial configuration (representing a set of initial states)
Data: U an upward-closed target set
Result: Is U reachable from I?

Reachable(S, I, U)
for l = 0, 1, 2, . . . do

if [[Underl(S, I)]] ∩ U 6= ∅ then
return ‘Reachable’

if [[Overl(S, I)]] ∩ U = ∅ then
return ‘Unreachable’

We regard this algorithm as a domain-specific multi-result supercompilation
when the approximation functions are implemented by means of single-result
supercompilation.

3.2 Simplest Approximation Function

Function Approximatel(over ,S, I) is invoked by functions Overl(S, I) and
Underl(S, I) with a Boolean parameter over that tells either an over- or under-
approximation is to be computed. The approximation depends on parameter
l.

The set of residual configurations that is a partially evaluated approximation
is collected in variable R starting from the initial configuration I. Untreated
configurations are kept in a set T (‘to treat’). The algorithm terminates when
T = ∅.

At each step an arbitrary untreated configuration c is picked up from T and
driving step is performed: the successors of c are evaluated by function Drive and
each new configuration c′ is processed as follows:

1. The current configuration c′ is checked whether it is covered or not by one
of the configurations collected in R: @c̄ ∈ R : c̄ w c′. If covered (such c̄ exists)
there is no need to proceed c′ further, as its descendants are covered by the
descendants of the existing configuration c̄.

2. In the case of under-approximation, it is checked whether the current config-
uration c′ is not to be generalized by comparing it with g = Generalizel(c

′).
If it is to be generalized, the configuration c′ is not proceeded further. In
such a way, configurations reachable from the initial configuration I without
generalization are collected in R. They form an under-approximation.

3. The (possibly) generalized current configuration g is added to the sets R and
T . Additionally, the configurations from R and T covered by the new one
are deleted from the sets.



Why Multi-Result Supercompilation Matters 101

Algorithm 1: Approximatel(over ,S, I), Overl(S, I): Underl(S, I), Building
over- and under-approximations of a set of reachable states of a transition
system

Data: S a transition system
Data: I an initial configuration
Data: l an integer parameter of generalization
Data: over = true an over-approximation, false an under-approximation
Result: R an under- or over-approximation of a set of reachable states

Approximatel(over ,S, I)
R← {I}
T ← {I}
while T 6= ∅ do

select some configuration c ∈ T
T ← T \ {c}
foreach c′ ∈ Drive(S, c) do

g ← Generalizel(c
′)

if @c̄ ∈ R : c̄ w c′ ∧ (over ∨ g = c′) then
R← R ∪ {g} \ {c̄ ∈ R | c̄ @ g}
T ← T ∪ {g} \ {c̄ ∈ T | c̄ @ g}

return R

Overl(S, I) = Approximatel(true,S, I)
Underl(S, I) = Approximatel(false,S, I)

The algorithm Reachable(S, I, U) with this definition of approximation func-
tions and the Drive and Generalizel functions from the previous section does
not always terminate for an arbitrary counter system S but do terminate for a
monotonic counter system and an upward-closed target set U .

3.3 Supercompilation of Transition Systems

In this section we define two classic supercompilation algorithms for well-quasi-
ordered transition systems.

Supercompilation is usually understood as an equivalence transformation of
programs, transition systems, etc., from a source one to a residual one. However,
for the purpose of this paper the supercompilation algorithms presented here re-
turns a part of information sufficient to extract the residual set of configurations
rather than a full representation of a residual transition system.

Two algorithms, Algorithm 2 ScpL and Algorithm 3 ScpU, have very much
in common. They take a transition system S, a quasi-order ≺ on the set of
configurations and an initial configuration I, and return a residual tree, which
represents an over-approximation of the set of states reachable from the initial
configuration I. The order ≺ is a parameter that controls the execution of the
algorithms, their termination and influences resulting residual trees. If the order



102 A. V. Klimov

Algorithm 2: ScpL: Supercompilation of a quasi-ordered transition system
with lower-node generalization.

Data: S a transition system
Data: I an initial configuration
Data: ≺ a quasi-order on configurations, a binary whistle
Result: T a residual tree

ScpL(S, I,≺)
T ← 〈N,B, n0, C〉 where N = {n0}, B = ∅, C(n0) = I, n0 a new node
T ← {n0}
while T 6= ∅ do

select some node n ∈ T
T ← T \ {n}
if ∃n̄ ∈ N : C(n̄) w C(n) then — terminate the current path (1)

do nothing
else if ∃n̄ : B+(n̄, n) ∧ C(n̄) ≺ C(n) ∧ C(n̄) 6@ C(n) then

— generalize on whistle (2)
n̄← some node such that B+(n̄, n) ∧ C(n̄) ≺ C(n)
C(n)← Generalize(C(n̄), C(n))
mark n as generalized
T ← T ∪ {n}

else — unfold (drive) otherwise (3)
foreach c ∈ Drive(S, C(n)) do

n′ ← a new node
C(n′)← c
N ← N ∪ {n′}
B ← B ∪ {〈n, n′〉}
T ← T ∪ {n′}

return T

Overl(S, I) = let 〈N,B, n0, C〉 = ScpL(S, I,≺l) in {C(n) | n ∈ N}
Underl(S, I) = let 〈N,B, n0, C〉 = ScpL(S, I,≺l) in {C(n) | n ∈ N ∧

∀n̄ s.t. B∗(n̄, n) : n̄ is not marked as generalized}

is a well-quasi-order the algorithms terminates for sure. Otherwise, in general,
the algorithms sometimes terminate and sometimes do not.

The residual trees are gradually constructed from the root node n0.

The nodes are labeled with configurations by a labeling function C : N → C,
initially C(n0) = I.

Untreated leaves are kept in a set T (‘to treat’) in Algorithm 2 and in a stack
T in Algorithm 3. The first algorithm is non-deterministic and takes leaves from
set T in arbitrary order. The second algorithm is deterministic and takes leaves
from stack T in the FIFO order. The algorithms terminate when T = ∅ and
T = ε (the empty sequence) respectively.

At each step, one of three branches is executed, marked in comments as (1),
(2) and (3). Branches (1) and (3) are almost identical in the two algorithms.



Why Multi-Result Supercompilation Matters 103

Algorithm 3: ScpU: Supercompilation of a quasi-ordered transition system
with upper-node generalization.

Data: S a transition system
Data: I an initial configuration
Data: ≺ a quasi-order on configurations, a binary whistle
Result: T a residual tree

ScpU(S, I,≺)
T ← 〈N,B, n0, C〉 where N = [n0], B = ∅, C(n0) = I, n0 a new node
T ← [n0]
while T 6= ε do

n← Last(T )
T ← T \ {n}
if ∃n̄ ∈ N : C(n̄) w C(n) then — terminate the current path (1)

do nothing
else if ∃n̄ : B+(n̄, n) ∧ C(n̄) ≺ C(n) then — generalize on whistle (2)

n̄← the highest node such that B+(n̄, n) ∧ C(n̄) ≺ C(n)
C(n̄)← Generalize(C(n̄), C(n))
mark n̄ as generalized
T ← RemoveSubtreeExceptRoot(n̄, T )
T ← T \ {n | B+(n̄, n)} — drop nodes lower than n̄
T ← Append(T, n̄)

else — unfold (drive) otherwise (3)
foreach c ∈ Drive(S, C(n)) do

n′ ← a new node
C(n′)← c
N ← N ∪ {n′}
B ← B ∪ {〈n, n′〉}
T ← Append(T, n′)

return T

Overl(S, I) = let 〈N,B, n0, C〉 = ScpU(S, I,≺l) in {C(n) | n ∈ N}
Underl(S, I) = let 〈N,B, n0, C〉 = ScpU(S, I,≺l) in {C(n) | n ∈ N ∧

∀n̄ s.t. B∗(n̄, n) : n̄ is not marked as generalized}

– Branches (1): if a configuration C(n̄) more general than the current one C(n)
exists in the already constructed tree, the current path is terminated and
nothing is done.

– Branches (3): if the conditions on branches (1) and (2) do not hold, a driving
step is performed: the successors of the current configuration C(n) are eval-
uated by the function Drive; for each new configuration c a new node n′ is
created; edges from the current node n to the new ones are added to the tree
and the new nodes are added to set (or respectively, stack) T of untreated
nodes.

– Branches (2) check whether on the path to the current node n (call it lower)
there exists a node n̄ (call it upper) with the configuration C(n̄) which is



104 A. V. Klimov

less than the current one C(n), generalize the two configurations and assign
the generalized configuration to the lower node in Algorithm 2 ScpL and to
the upper node in Algorithm 3 ScpU. In the latter case the nodes below n̄
are deleted from the residual tree and from stack T of untreated nodes. The
nodes where generalization has been performed are marked as ‘generalized’.
These marks are used in the Algorithm 0.

Over- and under-approximations Overl(S, I) and Underl(S, I) are extracted
from the residual tree. The over-approximation is the set of all configurations in
the residual tree. The under-approximation is comprised of the configurations
developed from the initial configuration without generalization (where all nodes
on the path are not marked as ‘generalized’).

The two supercompilation algorithms always terminate for a quasi-ordered
transition systems with a set of configuration such that every configuration has
finitely many generalizations. The algorithm Reachable(S, I, U) with these def-
initions of approximation functions and the proper definition of the Drive and
Generalizel functions, does not terminate for an arbitrary transition system, even
for an well-structured transition systems. It terminates for so called degener-
ated transition systems (see discussion in Section 4), which strongly monotonic
counter systems belong too, as well as for monotonic counter systems, which
may be not degenerated, but guarantee the termination as well.

4 Why Multi-Result Supercompilation Matters?

In this section we recap the ideas, on which solving the reachability problems
(reachability and coverability) is based, and argue that multi-result supercompi-
lation is powerful enough to solve the reachability problems for transition systems
under certain conditions. The main problem of multi-result supercompilation is
the blow-up of the exhaustive search of a suitable residual graph. An efficient
multi-result supercompiler should prune as much extra search branches as pos-
sible. Possibilities to do so depend on the properties of transition system under
analysis.

Papers [6,7] and the PhD thesis [5] by G. Geeraerts demonstrate that (and
how) a kind of multi-result supercompilation solves the coverability problem
for well-structured transition systems (WSTS) with some combinatorial search.
Also they showed that several classes of monotonic counter systems belong to a
“degenerated” case, which allows for limited enumeration of residual graphs. In
[13,14] we strengthened this result by showing that this is true for all monotonic
counter systems, provided the counter system and the driving function are good
enough ([[Drive(S, c)]] ⊆ ↓Post(S, c)).

Let us discuss when the reachability problem for transition systems can be
solved in principle, when and how multi-result supercompilation can find a so-
lution, how the combinatorial search can be pruned based on the properties
of a transition system, a set of configurations and driving and generalization
functions.



Why Multi-Result Supercompilation Matters 105

But first, notice an important difference between single- and multi-result
supercompilation. One of the main properties of a single-result supercompiler
is its termination. The respective property of multi-result supercompilation is
the fairness of enumeration of residual graphs. The notion of fairness depends
on the problem under consideration: a fair multi-result supercompiler should
enumerate either all residual graphs, or at least a subset of them sufficient to
solve the problem.

4.1 Reachability Problem for Transition Systems

To implement a supercompiler for a transition system S one needs a set of con-
figurations C, a driving function Drive, and a generalization function Generalize
that enumerates generalizations of a given configuration. Solving the reachabil-
ity problem by supercompilation (as well as any forward analysis) is based on
two ideas:

1. The supercompiler returns a residual set of configurations R ⊂ C which is a
fixed point of the driving function:

[[I]] ⊆ [[R]] ∧ [[Drive(S, R)]] ⊆ [[R]].

2. To prove that a target set U is unreachable from I we check:

[[R]] ∩ U = ∅.

This is a necessary condition: if such R does not exist, no supercompiler can
solve the reachability problem even if U is unreachable from I indeed.

This observation allows us to see the most essential limitation of the super-
compilation method for solving the reachability problem: if the set of configura-
tions C includes the representations of all such fixed points then we may expect
of multi-result supercompilation to solve the problem when such a solution ex-
ists; if not we cannot expect. Designing such a complete set of configurations
faces a conflict with the requirement that any configuration should have finitely
many generalizations, which is used in traditional single-result supercompilers
to guarantee termination. It is also used in the supercompilation-like algorithms
presented above since they iteratively call the single-result supercompilers. In
multi-result supercompilation, where the finiteness of the whole process is not
expected (as it enumerates infinitely many residual graphs), this restriction of
the finiteness of the number of generalizations could be lifted. However, this
topic is not studied yet.

Thus, multi-result supercompilation could, in principle, solve the reachability
problem when a solution is representable in form of a fixed point of Drive. The
main problem is the exponential blow-up of the search space.

4.2 Pruning Enumeration of Residual Graphs

Do all residual sets are actually needed?



106 A. V. Klimov

The first step of pruning the search space is based on the monotonicity of
Drive (as a set function) and is applicable to any forward analysis solving the
reachability problem: It is sufficient for a multi-result supercompiler to return
not all fixed points R such that R ⊇ I, rather for every such fixed point R it
should return at least one fixed point R′ ⊆ R such that R′ ⊇ I.

This allows for a multi-result supercompiler to consider at each step of driving
only the most specific generalizations among suitable ones. Unfortunately, there
are many of them in general case, and fortunately, there is just one in our
algorithms for monotonic counter systems.

This idea is utilized in the ‘Expand, Enlarge and Check’ (EEC) method by
G. Geeraerts et al. The idea suffices to formulate the algorithmic schema and
to prove that it terminates and solves the reachability problem when driving
is perfect and the solution is representable in C. (It is representable indeed for
well-structured transition system.)

4.3 Ordered and Well-Structured Transition Systems

Now let us turn to transition systems with ordered sets of states (at least quasi-
ordered) and to the coverability problem, which implies the target set of states
is upward-closed. Two properties of transition systems may be formulated in
terms of the ordering:

1. the order may be a well-quasi-order;

2. the transition system may be monotonic w.r.t. this order.

How does these properties influence the problem of the completeness of the
set of configurations and the requirements of driving?

The well-quasi ordering of the set of states allows for a finite representation
of all downward-closed sets. This is based on that any upward-closed subset of
a well-quasi-ordered set has a finite number of generators, its minimal elements
that uniquely determine the subset. A downward-closed set is the complement of
some upward-closed set, and hence the generators of the complement determines
it as well. However, such a “negative” representation may be inconvenient in
practice (to implement driving), and G. Geeraerts et al. required that there
exists a set of constructive objects called limits such that any downward closed
set is representable by a finite number of limits. In terms of supercompilation,
the limits are non-ground configurations.

The monotonicity of the transition system allows for using only
downward-closed sets as configurations. That is, for solving the cover-
ability problem, the Drive function may generalize configurations down-
wards at each step: [[Drive(S, c)]] ⊆ ↓Post(S, {c}), rather than be perfect:
[[Drive(S, c)]] = Post(S, {c}).

These are the main ideas the EEC algorithmic schema for solving the cov-
erability problem for WSTS is based upon, except the last one described in the
next subsection.



Why Multi-Result Supercompilation Matters 107

4.4 Coverability Problem for WSTS: EEC Schema of Algorithms

The ‘Expand, Enlarge and Check’ algorithmic schema (EEC) suggests to split
enumeration of residual graphs in two levels. Our algorithm with the Approximate
function fits well the EEC schema and is actually its simplest instance. Refer to
it as an example.

To define an EEC algorithm one selects an expanding sequence of finite sets
of configurations such that Cl ⊆ Cl+1 and C =

⋃
l Cl. For example, for counter

systems Algorithm Approximate uses Cl = {1, . . . , l, ω}k, sets of configurations
with coordinates not greater than l or equal to ω .

An EEC algorithm consists of a top level loop and a multi-result
supercompilation-like algorithm invoked in each iteration with the requirement
that only configurations from Cl are used in construction of the set of residual
graphs. Since Cl is finite, the set of residual graphs is finite as well, hence each
iteration surely terminates.

Thus, the lower level of enumeration of residual graphs is performed in each
iteration, and the upper level of enumeration is organized by the top level loop.

Notice that the other two Algorithms ScpL and ScpU do not fit the EEC
schema exactly, since the sets of configurations are not fixed in advance. But
they also forcedly restrict the sets of possible residual graphs explored in each
iteration by making the set of graphs finite for a given transition system and a
given initial configuration with the use of the well-quasi-order 4l parameterized
by integer l.

It is an open problem for future work to device direct multi-result super-
compilation algorithms that efficiently enumerate residual graphs in one process
rather than in sequential calls of a single-result supercompiler. In [12] an exam-
ple of such a monolithic algorithm obtained by manually fusing the top level
loop with Algorithm Approximate is presented.

4.5 Coverability Problem for Monotonic Counter Systems

We saw that in the general case after each driving step the exploration of all
most specific suitable generalizations is required in order not to loose residual
graphs. However, there may be such a case that the most specific generalization
(represented as a finite set of allowed configurations) is just one. G. Geeraerts
[5,6] calls this case degenerated. This depends on the specifics of a transition
system and the sets of configurations Cl. In [5,6] such sets of configurations are
called perfect and it is proved that for strongly monotonic counter systems sets
of configurations Cl = {1, . . . , l, ω}k are perfect.

Our proofs of termination of the above algorithms [13,14] shows that the re-
quirement of the strong monotonicity can be weaken to the general monotonicity.

Thus, in the degenerated case of monotonic counter systems many residual
graphs are produced due to the top level loop only, while in the loop body the
use of a single-result supercompiler is sufficient.



108 A. V. Klimov

5 Related Work

Supercompilation. This research originated from the experimental work by
A. Nemytykh and A. Lisitsa on verification of cache-coherence protocols and
other models by means of the Refal supercompiler SCP4 [18,19,20,21]. It came
as a surprise that all of the considered correct models had been successfully
verified rather than some of the models had been verified while others had not,
as is a common situation with supercompiler applications. It was also unclear
whether the evaluation of the heuristic parameter to control generalization of
integers discovered by A. Nemytykh could be automated. Since then the theo-
retical explanation of these facts was an open problem.

In invited talk [22] A. Lisitsa and A. Nemytykh reported that supercompila-
tion with upper-node generalization and without the restriction of generalization
(i.e., with l = 0) was capable of solving the coverability problem for ordinary
Petri nets, based on the model of supercompilation presented in their paper [21].

In this paper the problem has been solved for a larger class, and the sense
of the generalization parameter has been uncovered. However the problem to
formally characterize some class of non-monotonic counter systems verifiable by
the same algorithm, which the other part of the successful examples belongs to,
remains open.

We regard the iterative invocation of single-result supercompilation with a
varying parameter as a domain-specific instance of multi-result supercompila-
tion suggested by I. Klyuchnikov and S. Romanenko [15]. As they argue and as
this paper demonstrates, multi-result supercompilation is capable of significantly
extending the class of program properties provable by supercompilation.

Partial Deduction. Similar work to establish a link between algorithms in
Petri net theory and program specialization has been done in [8,16,17]. Espe-
cially close is the work [17] where a simplified version of partial deduction is
put into one-to-one correspondence with the Karp&Miller algorithm [9] to com-
pute a coverability tree of a Petri net. Here a Petri net is implemented as a
(non-deterministic) logic program and partial deduction is applied to produce a
specialized program from which a coverability set can be directly obtained.

(Online) partial deduction and supercompilation has many things in com-
mon. The method of [17] can be transferred from partial deduction to super-
compilation, and our work is a step forward in the same direction after [17].

Petri Nets and Transition Systems. Transition systems and their subclass-
es—Petri nets and counter systems—have been under intensive study during last
decades: [1,2,4,5,6,7,9], just to name a few. Supercompilation resembles forward
analysis algorithms proposed in the literature.

A recent achievement is an algorithmic schema referred to as ‘Expand, En-
large and Check’ (EEC). In paper [6] and in the PhD thesis by G. Geeraerts [5] a
proof is given that any algorithm that fits EEC terminates on a well-structured



Why Multi-Result Supercompilation Matters 109

transition systems (WSTS) and an upper-closed target set and solves the cover-
ability problem.

The first of the presented algorithm fits the EEC schema, and could be proved
correct by reduction to EEC. Other two Algorithms ScpL and ScpU do not fit
EEC exactly, but are very close.

Algorithm 2 ScpL can be seen as a further development of the classic
Karp&Miller algorithm [9] to compute a coverability set of a Petri net, and
Algorithm 3 ScpU resembles the minimal coverability tree (MCT) algorithm by
A. Finkel [4] (in which an error has been found [7]) and later attempts to fix it
[7,23].10

6 Conclusion

We presented three versions of supercompilation-based algorithms, which solve
the coverability problem for monotonic counter systems. Although the algo-
rithms are rather short they present the main notions of supercompilation: con-
figurations, driving and configuration analysis of two kinds—with lower-node
and upper-node generalization.

The idea of multi-result supercompilation was demonstrated by these algo-
rithms and future work to develop more powerful domain-specific multi-result
supercompilers that would solve the coverability problem for well-structured
transition systems as well as the reachability problem for some specific classes
of non-monotonic transition systems, was discussed. This seems impossible with
single-result supercompilation.

Acknowledgements. I am very grateful to Sergei Abramov, Robert Glück,
Sergei Grechanik, Arkady Klimov, Yuri Klimov, Ilya Klyuchnikov, Alexei Lisitsa,
Andrei Nemytykh, Anton Orlov, Sergei Romanenko, Artem Shvorin, Alexander
Slesarenko and other participants of the Moscow Refal seminar for the pleasure
to collaborate with them and exchange ideas on supercompilation and its ap-
plications. My work and life have been greatly influenced by Valentin Turchin
whom we remember forever.

References

1. Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
July 27–30, 1996, pages 313–321. IEEE Computer Society, 1996.

2. Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: ac-
celeration from theory to practice. International Journal on Software Tools for
Technology Transfer, 10(5):401–424, 2008.

10 The master thesis by K. Luttge [23] is beyond my reach. But its essence is explained
in the PhD thesis by G. Geeraerts [5, pages 172–174].



110 A. V. Klimov

3. Ed Clarke, Irina Virbitskaite, and Andrei Voronkov, editors. Perspectives of Sys-
tems Informatics, 8th Andrei Ershov Informatics Conference, PSI 2011, Akadem-
gorodok, Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162 of Lecture
Notes in Computer Science. Springer, 2012.

4. Alain Finkel. The minimal coverability graph for Petri nets. In Grzegorz Rozen-
berg, editor, Advances in Petri Nets 1993, Papers from the 12th International
Conference on Applications and Theory of Petri Nets, Gjern, Denmark, June 1991,
volume 674 of Lecture Notes in Computer Science, pages 210–243. Springer, 1993.

5. Gilles Geeraerts. Coverability and Expressiveness Properties of Well-Structured
Transition Systems. PhD thesis, Université Libre de Bruxelles, Belgique, May
2007.

6. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, Enlarge
and Check: New algorithms for the coverability problem of WSTS. Journal of
Computer and System Sciences, 72(1):180–203, 2006.

7. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On the efficient
computation of the minimal coverability set of Petri nets. In K.S. Namjoshi
et al., editor, Proceedings of ATVA’07 – 5th International Symposium on Auto-
mated Technology for Verification and Analysis, volume 4762 of Lecture Notes in
Computer Science, pages 98–113. Springer, 2007.

8. Robert Glück and Michael Leuschel. Abstraction-based partial deduction for solv-
ing inverse problems – a transformational approach to software verification. In
Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors, Perspectives
of System Informatics, Third International Andrei Ershov Memorial Conference,
PSI’99, Akademgorodok, Novosibirsk, Russia, July 6-9, 1999. Proceedings, volume
1755 of Lecture Notes in Computer Science, pages 93–100. Springer, 2000.

9. Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147–195, 1969.

10. Andrei V. Klimov. JVer Project: Verification of Java programs by the Java Super-
compiler. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
2008. : http://pat.keldysh.ru/jver/.

11. Andrei V. Klimov. A Java Supercompiler and its application to verification of
cache-coherence protocols. In Perspectives of Systems Informatics, 7th Interna-
tional Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia, June
15-19, 2009. Revised Papers, volume 5947 of Lecture Notes in Computer Science,
pages 185–192. Springer, 2010.

12. Andrei V. Klimov. Multi-result supercompilation in action: Solving coverability
problem for monotonic counter systems by gradual specialization. In R. Glück
M. Bulyonkov, editor, International Workshop on Program Understanding (PU
2011), July 2–5, 2011, Novososedovo, Russia., pages 25–32. Novosibirsk: Ershov
Institute of Informatics Systems, 2011.

13. Andrei V. Klimov. Yet another algorithm for solving coverability problem for
monotonic counter systems. In Valery Nepomnyaschy and Valery Sokolov, editors,
Second Workshop “Program Semantics, Specification and Verification: Theory and
Applications”, PSSV’11, St. Petersburg, Russia, June 12–13, 2011, pages 59–67.
Yaroslavl State University, 2011.

14. Andrei V. Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In Clarke et al. [3], pages 193–209.

15. Ilya Klyuchnikov and Sergei Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In Clarke et al. [3],
pages 207–223.



Why Multi-Result Supercompilation Matters 111

16. Michael Leuschel and Helko Lehmann. Coverability of reset Petri nets and other
well-structured transition systems by partial deduction. In John W. Lloyd et al.,
editor, Computational Logic – CL 2000, First International Conference, London,
UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer
Science, pages 101–115. Springer, 2000.

17. Michael Leuschel and Helko Lehmann. Solving coverability problems of Petri nets
by partial deduction. In Proceedings of the 2nd international ACM SIGPLAN
conference on principles and practice of declarative programming, September 20-
23, 2000, Montreal, Canada, pages 268–279. ACM, 2000.

18. Alexei P. Lisitsa and Andrei P. Nemytykh. Towards verification via supercompi-
lation. In Proceedings of the 29th Annual International Computer Software and
Applications Conference (COMPSAC’05), 25-28 July 2005, Edinburgh, Scotland,
UK, pages 9–10. IEEE Computer Society, 2005.

19. Alexei P. Lisitsa and Andrei P. Nemytykh. Experiments on verification via super-
compilation. Program Systems Instiute, Russian Academy of Sciences, 2007. :
http://refal.botik.ru/protocols/.

20. Alexei P. Lisitsa and Andrei P. Nemytykh. Verification as a parameterized testing
(experiments with the SCP4 supercompiler). Programming and Computer Soft-
ware, 33(1):14–23, 2007.

21. Alexei P. Lisitsa and Andrei P. Nemytykh. Reachability analysis in verification via
supercompilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

22. Alexei P. Lisitsa and Andrei P. Nemytykh. Solving coverability problems by su-
percompilation. Invited talk. In The Second Workshop on Reachability Problems
in Computational Models (RP08), Liverpool, UK, September 15–17, 2008, 2008.

23. K. Luttge. Zustandsgraphen von Petri-Netzen. Humboldt-Universität zu Berlin,
Germany, 1995.

24. Andrei P. Nemytykh. The supercompiler SCP4: General structure. In Manfred
Broy and Alexandre V. Zamulin, editors, Perspectives of Systems Informatics,
5th International Andrei Ershov Memorial Conference, PSI 2003, Akademgorodok,
Novosibirsk, Russia, July 9-12, 2003. Revised Papers, volume 2890 of Lecture Notes
in Computer Science, pages 162–170. Springer, 2003.

25. Valentin F. Turchin. The language Refal, the theory of compilation and metasystem
analysis. Courant Computer Science Report 20, Courant Institute of Mathematical
Sciences, New York University, 1980.

26. Valentin F. Turchin. The use of metasystem transition in theorem proving and
program optimization. In J. W. de Bakker and Jan van Leeuwen, editors, ICALP,
volume 85 of Lecture Notes in Computer Science, pages 645–657. Springer, 1980.

27. Valentin F. Turchin. The concept of a supercompiler. Transactions on Program-
ming Languages and Systems, 8(3):292–325, 1986.

28. Valentin F. Turchin. Program transformation with metasystem transitions. Journal
of Functional Programming, 3(3):283–313, 1993.



Automatic Verification of Counter Systems
via Domain-Specific Multi-Result

Supercompilation?

Andrei V. Klimov, Ilya G. Klyuchnikov, and Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. We consider an application of supercompilation to the anal-
ysis of counter systems. Multi-result supercompilation enables us to find
the best versions of the analysis by generating a set of possible re-
sults that are then filtered according to some criteria. Unfortunately, the
search space may be rather large. However, the search can be drastically
reduced by taking into account the specifics of the domain. Thus, we
argue that a combination of domain-specific and multi-result supercom-
pilation may produce a synergistic effect. Low-cost implementations of
domain-specific supercompilers can be produced by using prefabricated
components provided by the MRSC toolkit.

1 Introduction

Supercompilation is a program manipulation technique that was originally intro-
duced by V. Turchin in terms of the programming language Refal (a first-order
applicative functional language) [37], for which reason the first supercompilers
were designed and developed for the language Refal [35,39,29].

Further development of supercompilation led to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the
original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [32,33,3]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [6].

Also, despite the fact that from the very beginning supercompilation was
regarded as a tool for both program optimization and program analysis [36],
the research in supercompilation, for a long time, was primarily focused only on
program optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs
[25,12,10].

Multi-result supercompilation is a technique of constructing supercompilers
that, given an input program, are able to produce a set of residual programs,
rather than just a single one [13,8].

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



Automatic Verification of Counter Systems 113

The purpose of the present work is to show, by presenting a concrete example,
that multi-result, domain-specific supercompilation is not a theoretical curiosity,
but rather a workhorse having certain advantages over general-purpose, single-
result (deterministic) supercompilation. Some of the reasons are the following.

– Tautologically speaking, a general-purpose supercompiler should deal with
programs written in a general-purpose subject language that, by definition, is
not dedicated to a particular problem domain. Thus, for a given domain, the
subject language may be too sophisticated, but, on the other hand, lacking
in certain features.

– In cases where supercompilation is used for the purposes of analysis and
verification, the problem of reliability and correctness of the supercompiler
itself becomes rather actual. Can we trust the results produced by a (large
and intricate) general-purpose supercompiler?

– On the other hand, it is only natural for a domain-specific supercompiler to
accept programs in a domain-specific language (DSL) that provides domain-
specific operations and control constructs whose mathematical properties
may be known in advance. This domain knowledge can be hard-coded into
the supercompiler, thereby increasing its power and enabling it to achieve
better results at program analysis and transformation, as compared to “pure”
supercompilation.

– The subject language of a domain-specific supercompiler may be very limited
in its means of expression, in which case some parts of the supercompiler
can be drastically simplified. For example, in some areas there is no need to
deal with nested function calls in configurations. The simplifications of that
kind increase the reliability of the supercompiler and make it easier to prove
its correctness by formal methods (as was shown by Krustev [15]).

– The implementation of a domain-specific supercompiler may be very cheap
if it is done on the basis of prefabricated components (for example, by means
of the MRSC toolkit [13,14]), so that the costs of implementation can be re-
duced by an order of magnitude, as compared to implementations of general-
purpose supercompilers.



114 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

2 Analyzing the behavior of systems by means of
supercompilation

One of the approaches to the analysis of systems consists in representing systems
by programs. Thus the task of analyzing the behavior of a system is reduced to
the task of inferring and analyzing the properties of a program p.

The program p, modeling the original system, may in turn be analyzed us-
ing the transformational approach, in which case p is transformed into another
program p′ (equivalent to p), so that some non-obvious properties of p become
evident in the program p′.

For example, suppose that the original program p is complicated in structure
and contains statements return False. Can this program return False? This
question is not easy to answer. Suppose, however, that by transforming p we
get a trivial program p′ whose body consists of a single statement return True.
Then we can immediately conclude that p′ can never return False. Since p′ is
equivalent to p, it implies that p also can never return False.

Initial states:
(i, 0, 0, 0)

Transitions:
(i, e, s,m) | i ≥ 1 −→ (i− 1, 0, s+ e+m+ 1, 0)
(i, e, s,m) | e ≥ 1 −→ (i, e− 1, s,m+ 1)
(i, e, s,m) | s ≥ 1 −→ (i+ e+ s+m− 1, 1, 0, 0)
(i, e, s,m) | i ≥ 1 −→ (i+ e+ s+m− 1, 1, 0, 0)

Unsafe states:
(i, e, s,m) |m ≥ 2
(i, e, s,m) | s ≥ 1 ∧m ≥ 1

Fig. 1: MESI protocol: a protocol model in form of a counter system

One of the applications of the transformational approach is the verification
of communication protocols modeled by counter systems [1]. For instance, let
us consider a model of the MESI protocol in form of a counter system that is
informally described in Fig. 1.

The states of the system are represented by quadruples of natural numbers.
The specification of the system includes the description of a set of initial states
and a set of transition rules of the form

(i, e, s,m) | p −→ (i′, e′, s′,m′)

where i, e, s, m are variables, p is a condition on the variables which must be
fulfilled for the transition to be taken, and i′, e′, s′, m′ are expressions that may
contain the variables i, e, s, m.

The system is non-deterministic, as several rules may be applicable to the
same state.



Automatic Verification of Counter Systems 115

The specification of a protocol model also includes the description of a set of
unsafe states. The analysis of such a protocol model is performed for the purpose
of solving the reachability problem: in order to prove that unsafe states are not
reachable from the initial states.

As was shown by Leuschel and Lehmann [21,18,19,16], reachability prob-
lems for transition systems of that kind can be solved by program specializa-
tion techniques. The system to be analyzed can be specified by a program in
a domain-specific language (DSL) [21]. The DSL program is then transformed
into a Prolog program by means of a classic partial evaluator LOGEN [5,17] by
using the first Futamura projection [2]. The Prolog program thus obtained is
then transformed by means of ECCE [22,20], a more sophisticated specializer,
whose internal workings are similar to those of supercompilers.

Lisitsa and Nemytykh [24,25,26] succeeded in verification of a number of com-
munication protocols by means of the supercompiler SCP4 [29,28,27]. The input
language of SCP4 is Refal, a first-order functional language developed by Turchin
[36]. SCP4 is a descendant of earlier supercompilers for Refal [35,36,39,37,38].

According to the approach by Lisitsa and Nemytykh, protocol models are rep-
resented as Refal programs. For instance, the MESI protocol [1,27,23] is modeled
by the Refal program in Fig. 2. The program is written in such a way that, if an
unsafe state is reached, it returns the symbol False and terminates.

The supercompiler SCP4 takes this program as input and produces the resid-
ual program shown in Fig. 3, which contains no occurrences of the symbol False.
This suggests the conclusion that the residual program is unable to return False.
However, strictly speaking, this argument is not sufficient in the case of a dynam-
ically typed language (like Lisp, Scheme and Refal): a program can still return
False, even if False does not appear in the text of the program. Namely, the
program may receive False via its input data and then transfer it to the out-
put. And, indeed, “engineering solutions” of that kind are extremely popular
with hackers as a means of attacking web-applications [34]. Fortunately, there
exist relatively simple data flow analysis techniques that are able to compute an
upper approximation to the set of results that can be produced by a function,
even for dynamically-typed languages [4], and which are able to cope with Refal
programs like that in Fig. 3.



116 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

*$MST_FROM_ENTRY;

*$STRATEGY Applicative;

*$LENGTH 0;

$ENTRY Go {e.A (e.I) =

<Loop (e.A) (Invalid e.I)(Modified )(Shared )(Exclusive ) >;}

Loop {

() (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Result (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>;

(s.A e.A) (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Loop (e.A)

<RandomAction s.A

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>>;

}

RandomAction {

* rh Trivial

* rm

A (Invalid s.1 e.1) (Modified e.2) (Shared e.3) (Exclusive e.4) =

(Invalid e.1) (Modified ) (Shared s.1 e.2 e.3 e.4 ) (Exclusive );

* wh1 Trivial

*wh2

B (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive s.4 e.4) =

(Invalid e.1)(Modified s.4 e.2)(Shared e.3)(Exclusive e.4);

* wh3

C (Invalid e.1)(Modified e.2)(Shared s.3 e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified )(Shared )(Exclusive s.3);

* wm

D (Invalid s.1 e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified )(Shared )(Exclusive s.1);

}

Result{

(Invalid e.1)(Modified s.2 e.2)(Shared s.3 e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified s.21 s.22 e.2)(Shared e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) = True;

}

Fig. 2: MESI protocol: a protocol model in form of a Refal program



Automatic Verification of Counter Systems 117

* InputFormat: <Go e.41 >

$ENTRY Go {

(e.101 ) = True ;

A e.41 (s.103 e.101 ) = <F24 (e.41 ) (e.101 ) s.103 > ;

D e.41 (s.104 e.101 ) = <F35 (e.41 ) (e.101 ) s.104 > ;

}

* InputFormat: <F35 (e.109 ) (e.110 ) s.111 e.112 >

F35 {

() (e.110 ) s.111 e.112 = True ;

(A e.109 ) (e.110 ) s.111 s.118 e.112 =

<F24 (e.109 ) (e.112 e.110 ) s.118 s.111 > ;

(A e.109 ) (s.119 e.110 ) s.111 = <F24 (e.109 ) (e.110 ) s.119 s.111 >;

(B ) (e.110 ) s.111 e.112 = True ;

(B A e.109 ) (e.110 ) s.111 s.125 e.112 =

<F24 (e.109 ) (e.112 e.110 ) s.125 s.111 > ;

(B A e.109 ) (s.126 e.110 ) s.111 =

<F24 (e.109 ) (e.110 ) s.126 s.111> ;

(B D e.109 ) (e.110 ) s.111 s.127 e.112 =

<F35 (e.109 ) (s.111 e.112 e.110) s.127 > ;

(B D e.109 ) (s.128 e.110 ) s.111 =

<F35 (e.109 ) (s.111 e.110 ) s.128> ;

(D e.109 ) (e.110 ) s.111 s.120 e.112 =

<F35 (e.109 ) (s.111 e.112 e.110) s.120 > ;

(D e.109 ) (s.121 e.110 ) s.111 = <F35 (e.109 ) (s.111 e.110 ) s.121 >;

}

* InputFormat: <F24 (e.109 ) (e.110 ) s.111 e.112 >

F24 {

() (e.110 ) s.111 e.112 = True ;

(A e.109 ) (s.114 e.110 ) s.111 e.112 =

<F24 (e.109 ) (e.110 ) s.114 s.111 e.112 > ;

(C e.109 ) (e.110 ) s.111 e.112 =

<F35 (e.109 ) (e.110 ) s.111 e.112 >;

(D e.109 ) (s.115 e.110 ) s.111 e.112 =

<F35 (e.109 ) (s.111 e.112 e.110) s.115 > ;

}

Fig. 3: MESI protocol: the residual Refal program.



118 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

3 Domain-specific supercompilation as a means of
analysis

3.1 Drawbacks of general-purpose supercompilation

An obvious advantage of general-purpose supercompilation is just its being
general-purpose. Upon having designed and implemented a general-purpose su-
percompiler, we can apply it to various problems again and again, in theory,
without any extra effort. However, there are some disadvantages associated with
general-purpose supercompilation. As an example, let us consider the use of the
specializer SCP4 for the analysis of counter systems [28,24,25,26], in which case
the tasks for the supercompiler are formulated as Refal programs [27,23]. This
causes the following inconveniences.

– Natural numbers in input programs are represented by strings of star sym-
bols, and their addition by string concatenation. This representation is used
in order to take into account the behavior of some general-purpose algo-
rithms embedded in SCP4 (the whistle, the generalization), which know
nothing about the specifics of counter systems. Thus, the representation of
data has to conform to subtle details of the internal machinery of SCP4,
rather than comply with the problem domain.

– The programs modeling counter systems have to be supplemented with some
directions (in form of comments) for SCP4, which control some aspects of its
behavior. In this way SCP4 is given certain information about the problem
domain, and without such directions, residual programs produced by SCP4
would not possess desirable properties. Unfortunately, in order to be able to
give right directions to SCP4, the user needs to understand its internals.

– There remains the following question: to what extent can we trust the results
of the verification of counter systems, obtained with the aid of SCP4? The
internals of SCP4 are complicated and the source code is big. Thus the
problem of verifying SCP4 itself seems to be intractable.

3.2 Domain-specific algorithms of supercompilation

Which techniques and devices embedded into SCP4 are really essential for the
analysis of counter systems? This question was investigated by Klimov who
has developed a specialized supercompilation algorithm that was proven to be
correct, always terminating, and able to solve reachability problems for a certain
class of counter systems [6,7,10,8].

It was found that, in the case of counter systems, supercompilation can be
simplified in the following ways.

– The structure of configurations is simpler, as compared to the case of classic
supercompilation for functional languages.
• There are no nested function calls.
• There are no multiple occurrences of variables.



Automatic Verification of Counter Systems 119

• A configuration is a tuple, all configurations consisting of a fixed number
of components.
• A component of a configuration is either a natural number n, or the

symbol ω (a wildcard, representing an arbitrary natural number).
– The termination of the supercompilation algorithm is ensured by means of a

very simple generalization algorithm: if a component of a configuration is a
natural number n, and n ≥ l, where l is a constant given to the supercompiler
as one of its input parameters, then n must be replaced with ω (and in this
way the configuration is generalized). It can be easily seen that, given an l,
the set of all possible configurations is finite.

3.3 Domain-specific supercompilers for domain-specific languages

The domain-specific supercompilation algorithm developed by Klimov [6,7,10,8]
turned out to be easy to implement with the aid of the MRSC toolkit [13,14].
The simplicity of the implementation is due to the following.

– We have only to implement a simplified supercompilation algorithm for a
domain-specific language, rather than a sophisticated general-purpose algo-
rithm for a general-purpose language.

– The MRSC toolkit is based on the language Scala that provides power-
ful means for implementing embedded DSLs. The implementations can be
based either on interpretation (shallow embedding) or on compilation (deep
embedding).

– The MRSC toolkit provides prefabricated components for the construction
of graphs of configurations (by adding/removing graph nodes), for manip-
ulating sets of graphs and pretty-printing graphs. When implementing a
supercompiler, it is only necessary to implement the parts that depend on
the subject language and on the structure of configurations.

When we develop a domain-specific supercompiler, it seems logical for its
subject language also to be domain-specific, rather than general-purpose.

In this case the formulations of problems that are submitted to the supercom-
piler can be concise and natural, since the programs written in the subject DSL
may be very close to the informal formulations of these problems. For instance,
consider the 3 specifications of the MESI protocol: the informal one (Fig. 1), the
one in form of a Refal program (Fig. 2), and the one written in a domain-specific
language (Fig. 4).

A protocol model encoded as a DSL program is, in terms of Scala, an object
implementing the trait Protocol (Fig. 5). Thus this program is not a first-order
value (as is implicitly assumed in the classic formulation of the Futamura pro-
jections [2]), but rather is a mixture of first-order values (numbers, lists) and
higher-order values (functions). This approach is close to the DSL implementa-
tion technique known as “shallow embedding”.

By supercompiling the model of the MESI protocol, we obtain the graph of
configurations shown in Fig. 6.



120 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

object MESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0)
val rules: List[TransitionRule] = List(
{case List(i, e, s, m) if i>=1 => List(i-1, 0, s+e+m+1, 0)},
{case List(i, e, s, m) if e>=1 => List(i, e-1, s, m+1)},
{case List(i, e, s, m) if s>=1 => List(i+e+s+m-1, 1, 0, 0)},
{case List(i, e, s, m) if i>=1 => List(i+e+s+m-1, 1, 0, 0)})

def unsafe(c: Conf) = c match {
case List(i, e, s, m) if m>=2 => true
case List(i, e, s, m) if s>=1 && m>=1 => true
case _ => false

}

}

Fig. 4: MESI protocol: a protocol model in form of a DSL program

package object counters {
type Conf = List[Expr]
type TransitionRule = PartialFunction[Conf, Conf]
...

}

sealed trait Expr { ... }

trait Protocol {
val start: Conf
val rules: List[TransitionRule]
def unsafe(c: Conf): Boolean

}

Fig. 5: DSL for specifying counter systems: the skeleton of its implementation in
Scala

4 Using multi-result supercompilation for finding short
proofs

When analyzing a transition system, a graph of configurations produced by
supercompilation describes an upper approximation of the set of reachable states.
This graph can be transformed in a human-readable proof that any reachable
state satisfy some requirements (or, in other words, cannot be “unsafe”).

The smaller the graph the easier it is to understand, and the shorter is the
proof that can be extracted from this graph. However, a traditional single-result
supercompiler returns a single graph that may not be the smallest one.

However, a multi-result supercompiler returns a set of graphs, rather than a
single graph. Thus the set of graphs can be filtered, in order to select “the best”



Automatic Verification of Counter Systems 121

ω, 0, 0, 0

ω, 0, 1, 0 ω, 1, 0, 0

ω, 1, 0, 0ω, 0, ω, 0

ω, 0, ω, 0 ω, 1, 0, 0

ω, 0, 2, 0 ω, 0, 0, 1 ω, 1, 0, 0

ω, 0, 2, 0 ω, 1, 0, 0

1 4

1
4

1 3,4

1 2
4

1
4

Fig. 6: MESI protocol: the graph of configurations (single-result supercompila-
tion)

ω, 0, ω, 0

ω, 0, ω, 0 ω, 1, 0, 0

ω, 0, 2, 0 ω, 0, 0, 1 ω, 1, 0, 0

ω, 0, 2, 0 ω, 1, 0, 0

1 3,4

1 2
4

1
4

Fig. 7: MESI protocol: the minimal graph of configurations (multi-result super-
compilation)

ones. In the simplest case, “the best” means “the smallest”, although the graphs
can be filtered according to other criteria (for example, we may select the graphs
that are, in a sense, “well-structured”, to transform them into “well-structured”
proofs).



122 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

For example, the graph produced for the MESI protocol (see Fig. 6) by single-
result positive supercompilation [32,33] contains 12 nodes, while, by filtering the
set of graphs produced by multi-result supercompilation, we can find the graph
shown in Fig. 7, which only contains 8 nodes.

The point is that single-result supercompilers, especially those meant for
program optimization try to avoid the generalization of configurations by all
means. This strategy is reasonable and natural in the case of optimizing super-
compilation, but it is unlikely to produce minimal graphs. In the above example,
single-result supercompilation starts from the configuration (ω, 0, 0, 0) and, af-
ter a while, comes to the configuration (ω, 0, ω, 0), which is more general than
(ω, 0, 0, 0).

However, multi-result supercompilation, by “a sudden flash of inspiration”,
starts with generalizing the initial configuration. From the viewpoint of opti-
mizing supercompilation, this action appears to be strange and pointless. But it
leads to producing the graph shown in Fig. 7, which is a subgraph of the graph
in Fig. 6

Another interesting point is that in the case of single-result supercompilation
the whistle and the generalization algorithm are tightly coupled, since general-
ization is performed at the moments when the whistle blows, in order to ensure
termination of supercompilation. For this reason, the whistle and the general-
ization algorithm, to be consistent, have to be developed together. In the case
of multi-result supercompilation, however, the whistle and generalization are
completely decoupled. In particular, configurations can be generalized at any
moment, even if the whistle does not regard the situation as dangerous. As a
result, a multi-result supercompiler can find graphs that are not discovered by
single-result supercompilation.

As an example, let us consider the verification of the MOESI protocol (Fig. 8).
The graph produced by single-result supercompilation (Fig. 9) contains 20 nodes,
while the graph discovered by multi-result supercompilation (Fig. 10) contains
8 nodes only.

This is achieved due to a “brilliant insight” of multi-result supercompilation
that the initial configuration (ω, 0, 0, 0, 0) can be immediately generalized to the
configuration (ω, 0, ω, 0, ω). This leads to an 8-node graph that is not contained
as a subgraph in the 20-node graph produced by single-result supercompilation.
Note that the configuration (ω, 0, ω, 0, ω) does not appear in the 20-node graph,
and, in general, the structure of the graphs in Fig. 9 and Fig.10 is completely
different.

It should be noted that there exists a domain-specific supercompilation al-
gorithm for counter systems (developed by Klimov [10]) that, in some cases,
is able to reduce the number of nodes in the graphs, because, as compared to
general-purpose optimizing supercompilers, it generalizes configurations more
energetically. For instance, for the MESI protocol, it generates the same graph
(Fig. 7), as that produced by multi-result supercompilation.

The idea of Klimov’s algorithm [10] is the following. Suppose, in the process
of supercompilation there appears a configuration c, such that c is an instance



Automatic Verification of Counter Systems 123

case object MOESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0, 0)
val rules: List[TransitionRule] =
List({ // rm

case List(i, m, s, e, o) if i>=1 =>
List(i-1, 0, s+e+1, 0, o+m)

}, { // wh2

case List(i, m, s, e, o) if e>=1 =>
List(i, m+1, s, e-1, o)

}, { // wh3

case List(i, m, s, e, o) if s+o>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

}, { // wm

case List(i, m, s, e, o) if i>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

})

def unsafe(c: Conf) = c match {
case List(i, m, s, e, o) if m>=1 && e+s+o>=1 => true
case List(i, m, s, e, o) if m>=2 => true
case List(i, m, s, e, o) if e>=2 => true
case _ => false

}

}

Fig. 8: MOESI protocol: a protocol model as a DSL program

of a configuration c′ that is already present in the graph. Then c has to be
generalized to c′.

Unfortunately, this algorithm is not always successful in generating minimal
graphs. For example, in the case of the MOESI protocol, multi-result supercom-
pilation finds such configurations that are not appear in the process of classic
positive supercompilation [32,33].

The table in Fig. 11 compares the results of verifying 13 communication
protocols. The column SC shows the number of nodes in the graphs produced
by classic single-result positive supercompilation, and the column MRSC shows
the number of nodes in the graphs produced by straightforward multi-result
supercompilation derived from positive supercompilation [32,33] according to
the scheme described in [14]. It is evident that, practically always, multi-result
supercompilation is able to find graphs of smaller size than those produced by
single-result supercompilation.



124 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

ω, 0, 0, 0, 0

ω, 0, 1, 0, 0 ω, 0, 0, 1, 0

ω, 0, ω, 0, 0 ω, 0, 0, 1, 0

ω, 0, ω, 0, 0 ω, 0, 0, 1, 0

ω, 0, 2, 0, 0 ω, 1, 0, 0, 0 ω, 0, 0, 1, 0

ω, 0, 1, 0, 1 ω, 0, 0, 1, 0

ω, 0, ω, 0, 1 ω, 0, 0, 1, 0

ω, 0, ω, 0, 1 ω, 0, 0, 1, 0

1 4

1 3, 4

1
3, 4

1 2 4

1 3,4

1 3,4

1 3,4

Fig. 9: MOESI protocol: the graph of configurations (single-result supercompila-
tion)

5 Domain-specific residualization of the graphs of
configurations

Traditionally, general-purpose supercompilation is performed in two steps. At
the first step, there is produced a finite graph of configurations. At the second
step, this graph is “residualized”, i.e. transformed into a residual program. For
example, the supercompiler SCP4 generates residual programs in the language
Refal (see Fig. 3)

When the purpose of supercompilation is the analysis of counter systems,
residual programs are not executed, but analyzed to see whether they possess
some desirable properties. For example, as regards the program in Fig. 3, all
that matters is whether it can return False, or not? This can be determined
either by asking a human’s opinion, or, in a more rigorous way, by submitting
the program to a data flow analysis algorithm [4].



Automatic Verification of Counter Systems 125

ω, 0, ω, 0, ω

ω, 0, ω, 0, ω ω, 0, 0, 1, 0

ω, 0, 2, 0, 0 ω, 1, 0, 0, 0 ω, 0, 0, 1, 0

ω, 0, 1, 0, 1 ω, 0, 0, 1, 0

1 3,4

1 2
4

1
4

Fig. 10: MOESI protocol: the minimal graph of configurations (multi-result su-
percompilation)

SC MRSC

Synapse 11 6
MSI 8 6
MOSI 26 14
MESI 14 9
MOESI 20 9
Illinois 15 13
Berkley 17 6
Firefly 12 10
Futurebus 45 24
Xerox 22 13
Java 35 25
ReaderWriter 48 9
DataRace 9 5

Fig. 11: Single-result vs. multi-result supercompilation: the size of proofs (repre-
sented by graphs of configurations)

However, when using supercompilation for the analysis of counter systems,
we can take an easier way: it turns out that graphs of configurations are easier
to analyze, than residual programs. Thus, we can dispense with the generation
of residual programs for the purposes of separating the good outcomes of super-
compilation from the bad ones. Moreover, upon selecting a graph with desirable
properties, instead of generating a residual program in a programming language,
we can transform the graph into a script for a well-known proof assistant [16],
in order to verify the results obtained by supercompilation.

In particular, we have implemented a domain-specific supercompiler that
transforms graphs of configurations into scripts for the proof assistant Isabelle
[30]. A script thus produced specifies the reachability problem for a communi-



126 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

theory mesi

imports Main

begin

inductive mesi :: "(nat * nat * nat * nat) => bool" where
"mesi (i, 0, 0, 0)" |

"mesi (Suc i, e, s, m) ==> mesi (i, 0, Suc (s + e + m), 0)" |
"mesi (i, Suc e, s, m) ==> mesi (i, e, s, Suc m)" |
"mesi (i, e, Suc s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)" |
"mesi (Suc i, e, s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)"

inductive unsafe :: "(nat * nat * nat * nat) => bool" where
"unsafe (i, e, s, Suc (Suc m))" |

"unsafe (i, e, Suc s, Suc m)"

inductive mesi’ :: "(nat * nat * nat * nat) => bool" where
"mesi’(_, Suc 0, 0, 0)" |

"mesi’(_, 0, 0, Suc 0)" |

"mesi’(_, 0, _, 0)"

lemma inclusion: "mesi c ==> mesi’ c"
apply(erule mesi.induct)

apply(erule mesi’.cases | simp add: mesi’.intros)+

done

lemma safety: "mesi’ c ==> ∼unsafe c"
apply(erule mesi’.cases)

apply(erule unsafe.cases | auto)+

done

theorem valid: "mesi c ==> ∼unsafe c"
apply(insert inclusion safety, simp)

done

end

Fig. 12: MESI protocol: the script for the proof assistant Isabelle produced by
the domain-specific supercompiler.

cation protocol and, in addition, a number of tactics that instruct Isabelle how
to formally prove that all reachable states are safe.

For example, in the case of the MESI protocol, there is produced the script
shown in Fig. 12. The script comprises the following parts.



Automatic Verification of Counter Systems 127

– Inductive definitions of the predicate mesi, specifying the set of reachable
states, and the predicate unsafe, specifying the set of unsafe states (unsafe),
which are the same (modulo notation) as in the source DSL program.

– An inductive definition of the predicate mesi’, specifying a set of states that
is an upper approximation to the set specified by mesi. This definition (mod-
ulo notation) enumerates configurations appearing in the graph in Fig. 7. In
order to reduce the size of the script, there is applied a simple optimization:
if the graph contains two configurations c′ and c, where c′ is an instance
of c, then c′ is not included into the definition of the predicate mesi’. The
definition of mesi’ is the most important (and non-trivial) part of the script.

– The lemma inclusion, asserting that any reachable state belongs to the set
specified by mesi’, or, in other words, for any state c, mesic implies mesi’c.

– The lemma safety, asserting that all states in the set specified by mesi’
are safe, or, in other words, for any state c, mesi’ c implies ¬unsafe c.

– The main theorem: any reachable state is safe. In other words, for all states c,
mesi c implies ¬unsafe c. This trivially follows from the lemmas inclusion
and safety).

The fundamental difference between the definitions of mesi and mesi’ is that
mesi is defined inductively, while the definition of mesi’ is just an enumeration
of a finite number of cases. For this reason, the lemma safety can be proven by
tedious, yet trivial case analysis.

Thus the rôle of supercompilation in the analysis of counter systems amounts
to generalizing the description of the set of reachable states in such a way that
proving the safety of reachable states becomes trivial. Therefore, supercompi-
lation can be regarded as a useful supplement to other theorem-proving and
verification techniques.

6 Improving the efficiency of supercompilation by taking
into account the specifics of the domain

6.1 Exploiting the mathematical properties of domain-specific
operations

As was shown by Klimov [6,7,10,8], in the case of supercompilation for counter
systems it is sufficient to deal with configuration of the form (a1, . . . , an), whose
each component ai is either a natural number N , or the symbol ω. As regards
driving, it is sufficient to deal with tests of the form either e = N , or e ≥ N ,
where N is a natural number and e is an arithmetic expression that can only
contain the operators +, −, natural numbers and ω. All necessary operations
over such expressions are easy to implement in terms of the language Scala (see
Fig.13).

But, if we use a general-purpose supercompiler, dealing with programs in a
general-purpose language, the supercompiler does not have any knowledge about
the problem domain and the operations over domain-specific data structures. For
example, when the supercompiler SCP4 is used for the verification of protocols,



128 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

package object counters {
...

implicit def intToExpr(i: Int): Expr = Num(i)
}

sealed trait Expr {
def +(comp: Expr): Expr
def -(comp: Expr): Expr
def >=(i: Int): Boolean
def ===(i: Int): Boolean

}

case class Num(i: Int) extends Expr {
def +(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i + j)

}

def -(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i - j)

}

def ===(j: Int) = i == j
def >=(j: Int) = i >= j

}

case object Omega extends Expr {
def +(comp: Expr) = Omega
def -(comp: Expr) = Omega
def >=(comp: Int) = true
def ===(j: Int) = true

}

Fig. 13: Counter systems: operations over components of configurations imple-
mented in Scala.

natural numbers have to be encoded as strings of the star symbol, and addition of
natural numbers as concatenation of strings (see Fig. 2 and 3). As a consequence,
it becomes difficult (both for humans and for supercompilers) to see that a
program operates on natural numbers.

6.2 Handling non-determinism in a direct way

When a supercompiler is a general-purpose one, its subject language is usually
designed for writing deterministic programs. This causes some inconveniences
in cases where supercompilation is used for the analysis of non-deterministic
systems. If a model of a non-deterministic system has to be encoded as a de-
terministic program, there arises the need for using various tricks and artificial



Automatic Verification of Counter Systems 129

workarounds, which, certainly, complicates the program and obscures its mean-
ing.

Consider, for example, the model of the MESI protocol in Fig. 2, encoded as
a Refal program. The entry point of the program is the function Go which takes
2 parameters: e.A and e.I [27,23].

$ENTRY Go {e.A (e.I) =

<Loop (e.A) (Invalid e.I)(Modified )(Shared )(Exclusive ) >;}

The parameter e.I is used for building the initial state, while the parameter
e.A has been artificially introduced in order to simulate non-determinism. Since
the rules describing the transition system are not mutually exclusive, more than
one rule can be applicable at the same time, and the value of the parameter e.A
is a sequence of rule names, prescribing which rule must be applied at each step.

Unfortunately, this additional parameter, pollutes not only the source pro-
gram, but also the configurations emerging during supercompilation and, finally,
the residual program (see Fig. 3), thereby obscuring its meaning.

However, if a model of a non-deterministic system is encoded as a program
in a non-deterministic language (see Fig. 4), then there disappears the need for
using tricks and workarounds related to non-determinism. Also note that non-
determinism, by itself, does not create additional problems for supercompilation,
as, unlike an ordinary interpreter, a supercompiler has to consider all possible
ways of executing a program (for a given set of initial states) [18,19].

6.3 Filtering graphs of configurations, rather than residual
programs

As has been discussed in Section 2, multi-result supercompilation can be used
for finding residual programs satisfying some criteria. Since a multi-result super-
compiler may produce hundreds, or even thousands of residual programs, there
is a need for automatic filtering of residual programs.

For example, when applying a general-purpose supercompiler for the analysis
of counter systems, we need a filter for selecting residual problems that are
certain not to return False, and such a filter can be constructed on the basis of
well-known data-flow analysis algorithms [4].

In the case of domain-specific supercompilation, however, “residual programs”
may not be programs in traditional sense of the word. For instance, the result
produced by analyzing a counter system can be presented as a script for an au-
tomatic proof assistant (see Section 5). So the filtering of programs should be
replaced with the filtering of something else.

Fortunately, it turns out that filtering of the final results of supercompilation
can be replaced with filtering of graphs of configurations. Moreover, taking into
account the specifics of the domain allows the process of filtering to be optimized
by discarding some graphs that are in construction, without waiting for them to
be completed. This can considerably reduce the amount of work performed by a
multi-result supercompiler, because discarding an incomplete graph prunes the
whole set of graphs that would be generated by completing the discarded graph.



130 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

SC1 SC2 SC3 SC4 SC5

Synapse
completed 48 37 3 3 1
pruned 0 0 0 0 2
commands 321 252 25 25 15

MSI
completed 22 18 2 2 1
pruned 0 0 0 0 1
commands 122 102 15 15 12

MOSI
completed 1233 699 6 6 1
pruned 0 0 0 0 5
commands 19925 11476 109 109 35

MESI
completed 1627 899 6 3 1
pruned 0 0 27 20 21
commands 16329 9265 211 70 56

MOESI
completed 179380 60724 81 30 2
pruned 0 0 0 24 36
commands 2001708 711784 922 384 126

Illinois
completed 2346 1237 2 2 1
pruned 0 0 21 17 18
commands 48364 26636 224 74 61

Berkley
completed 3405 1463 30 30 2
pruned 0 0 0 0 14
commands 26618 12023 282 282 56

Firefly
completed 2503 1450 2 2 1
pruned 0 0 2 2 3
commands 39924 24572 47 25 21

Futurebus
completed - - - - 4
pruned - - - - 148328
commands - - - - 516457

Xerox
completed 317569 111122 29 29 2
pruned 0 0 0 0 1
commands 5718691 2031754 482 482 72

Java
completed - - - - 10
pruned - - - - 329886
commands - - - - 1043563

ReaderWriter
completed 892371 402136 898 898 6
pruned 0 0 19033 19033 1170
commands 24963661 11872211 123371 45411 3213

DataRace
completed 51 39 8 8 3
pruned 0 0 0 0 4
commands 360 279 57 57 31

Fig. 14: Resources consumed by different versions of the multi-result supercom-
piler



Automatic Verification of Counter Systems 131

As regards counter systems, the specifics of the domain are the following.
The predicate unsafe must be monotonic with respect to configurations: for
all configurations c and c′, such that c is an instance of c′, unsafe c implies
unsafe c′. Another point is that if a configuration c has appeared in a graph
of configurations, it can be removed by supercompilation only by replacing c
with a more general configuration c′ (such that c is an instance of c′). Thus,
if c is unsafe, it can only be replaced with an unsafe configuration (due to the
monotonicity of the predicate unsafe). Therefore, if a graph contains an unsafe
configuration, it can be discarded immediately, since all graphs produced by
completing that graph would also contain unsafe configurations.

The detection of unsafe configurations can be performed at various places
in the supercompilation algorithm, and the choice of such places bears great
influence on the efficiency of multi-result supercompilation.

The next optimization, depending on the specifics of the domain, takes into
account the properties of the set of all possible generalizations of a given config-
uration c.

Namely, all generalizations of c can be obtained by replacing some numeric
components of c with ω. Thus, the configuration (0, 0) can be generalized in 3
ways, to produce (ω, 0), (0, ω) and (ω, ω). Note that (ω, ω) is a generalization
with respect to (ω, 0) and (0, ω).

A näıve multi-result supercompilation algorithm, when trying to rebuild a
configuration c by replacing it with a more general configuration c′, considers all
possible generalizations of c immediately. If a generalization c′ is not a maximal
one, after a while, it will be, in turn, generalized. For instance, (ω, 0), and (0, ω)
will be generalized to (ω, ω). Thus the same graph of configurations will be pro-
duced 3 times: by immediately generalizing (0, 0) to (ω, ω), and by generalizing
(0, 0) to (ω, ω) in two steps, via (ω, 0), and (0, ω).

The number of graphs, considered during multi-result supercompilation, can
be significantly reduced, by allowing only minimal generalization of a config-
uration, which can be obtained by replacing a single numeric component in a
configuration with ω.

We have studied the performance of 5 variations of a supercompilation algo-
rithm for counter systems: SC1, SC2, SC3, SC4 and SC5. Each variant differs
from the previous one in that it introduces an additional optimization.

– SC1. Filtering and generation of graphs are completely decoupled. A graph
is examined by the filter only after having been completed. Thus, no use
is made of the knowledge about domain-specific properties of generalization
(its decomposability into elementary steps) and the predicate unsafe (its
monotonicity). This design is modular, but inefficient.

– SC2. The difference from SC1 is that, when rebuilding a configuration c, SC2
only considers the set of “minimal” generalizations (produced by replacing
a single component of c with ω).

– SC3. The difference from SC2 is that the configurations produced by gen-
eralization are checked for being safe, and the unsafe ones are immediately
discarded.



132 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

– SC4. The difference from SC3 is that the configurations that could be pro-
duced by driving a configuration c are checked for being safe. If one or more
of the new configurations turn out to be unsafe, driving is not performed for
c.

– SC5. The difference from SC4 is that the graphs that are too large are
discarded, without completing them. Namely, the current graph is discarded
if there is a complete graph that has been constructed earlier, and whose size
is smaller than that of the current graph. (Note that, due to the optimizations
introduced in SC2, SC3 and SC4, all configurations in completed graphs are
guaranteed to be safe.)

The optimization introduced in SC5 is typical for algorithms in the field of
artificial intelligence, where it is known as “pruning” [31].

The table in Fig. 14 shows the resources consumed by the 5 versions of the
supercompiler while verifying 13 communication protocols. For each protocol,
the row completed shows the number of completed graphs that have been pro-
duced (with possible repetitions), the row pruned shows the number of discarded
incomplete graphs, and the row commands shows the number of graph building
steps that have been performed during supercompilation.

In the case of the protocols Futurebus and Java, the data are only given for
the version SC5, as the resource consumption by the other versions of the super-
compiler turned out to be too high, for which reason data were not obtained.

The data demonstrate that the amount of resources consumed by multi-result
supercompilation can be drastically reduced by taking into account the specifics
of the problem domain.

7 Conclusions

Multi-result supercompilation is not a theoretical curiosity, but rather a workhorse
that, when exploited in a reasonable way, is able to produce results of practical
value.

– The use of multi-result supercompilation in the field of the analysis and ver-
ification of transition systems improves the understandability of the results,
by considering various versions of the analysis and selecting the best ones.

– The use of multi-result supercompilation allows the whistle and the algo-
rithm of generalization to be completely decoupled, thereby simplifying the
structure of the supercompiler. This, in turn, makes it easier to ensure the
correctness of the supercompiler.

The usefulness of domain-specific supercompilation is due to the following.

– The tasks for a domain-specific supercompiler can be written in a domain-
specific language that is better at taking into account the specifics of the
problem domain, than a general-purpose language. (For example, this DSL
may be non-deterministic, or provide domain-specific data types and opera-
tions.)



Automatic Verification of Counter Systems 133

– In the case of a domain-specific supercompiler, the machinery of supercom-
pilation can be simplified, since, in a particular domain, some complexities
of general-purpose supercompilation may be of little usefulness.

– The efficiency of multi-result supercompilation can be improved by early
discarding of unsatisfactory variants of supercompilation.

– The MRSC toolkit allows domain-specific multi-result supercompilers to be
manufactured at low cost, making them a budget solution, rather than a
luxury.

Thus, the combination of domain-specific and multi-result supercompilation
produces a synergistic effect: generating multiple results gives the opportunity to
select the best solutions to a problem, while taking into account the specifics of
the problem domain reduces the amount of resources consumed by multi-result
supercompilation.

Acknowledgements

The authors express their gratitude to the participants of the Refal seminar at
Keldysh Institute for useful comments and fruitful discussions.

References

1. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-
tocols. Form. Methods Syst. Des., 23:257–301, November 2003.

2. Y. Futamura. Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

3. N. D. Jones. The essence of program transformation by partial evaluation and
driving. In Proceedings of the Third International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics, PSI ’99, pages 62–79, London, UK,
UK, 2000. Springer-Verlag.

4. N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional pro-
grams. Theor. Comput. Sci., 375(1-3):120–136, 2007.

5. J. Jørgensen and M. Leuschel. Efficiently generating efficient generating extensions
in Prolog. In O. Danvy, R. Glück, and P. Thiemann, editors, Dagstuhl Seminar
on Partial Evaluation, volume 1110 of Lecture Notes in Computer Science, pages
238–262. Springer, 1996.

6. A. Klimov. An approach to supercompilation for object-oriented languages: the
Java supercompiler case study. In First International Workshop on Metacomputa-
tion in Russia, 2008.

7. A. V. Klimov. A Java supercompiler and its application to verification of cache-
coherence protocols. In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors, Ershov
Memorial Conference, volume 5947 of Lecture Notes in Computer Science, pages
185–192. Springer, 2009.

8. A. V. Klimov. Multi-result supercompilation in action: Solving coverability prob-
lem for monotonic counter systems by gradual specialization. In International
Workshop on Program Understanding, PU 2011, Novososedovo, Russia, July 2–5,
2011, pages 25–32. Ershov Institute of Informatics Systems, Novosibirsk, 2011.



134 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

9. A. V. Klimov. Yet another algorithm for solving coverability problem for mono-
tonic counter systems. In V. Nepomnyaschy and V. Sokolov, editors, Second
Workshop “Program Semantics, Specification and Verification: Theory and Ap-
plications”, PSSV 2011, St. Petersburg, Russia, June 12–13, 2011, pages 59–67.
Yaroslavl State University, 2011.

10. A. V. Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In E. Clarke, I. Virbitskaite, and A. Voronkov, editors, Per-
spectives of Systems Informatics, 8th Andrei Ershov Informatics Conference, PSI
2011, Akademgorodok, Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162
of Lecture Notes in Computer Science, pages 193–209. Springer, 2012.

11. A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Implementing a domain-
specific multi-result supercompiler by means of the MRSC toolkit. Preprint 24,
Keldysh Institute of Applied Mathematics, 2012.

12. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

13. I. Klyuchnikov and S. Romanenko. Multi-result supercompilation as branching
growth of the penultimate level in metasystem transitions. In Ershov Informatics
Conference, volume 7162 of LNCS, pages 210–226, 2012.

14. I. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-result
supercompilers. Preprint 77, Keldysh Institute of Applied Mathematics, 2011.

15. D. Krustev. A simple supercompiler formally verified in Coq. In Second Interna-
tional Workshop on Metacomputation in Russia, 2010.

16. H. Lehmann and M. Leuschel. Inductive theorem proving by program specialisa-
tion: Generating proofs for Isabelle using Ecce. In M. Bruynooghe, editor, LOP-
STR, volume 3018 of Lecture Notes in Computer Science, pages 1–19. Springer,
2003.

17. M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using the hand-
written compiler generator LOGEN. Electr. Notes Theor. Comput. Sci., 30(2):157–
162, 1999.

18. M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other well-
structured transition systems by partial deduction. In Proceedings of the First
International Conference on Computational Logic, CL ’00, pages 101–115, London,
UK, 2000. Springer-Verlag.

19. M. Leuschel and H. Lehmann. Solving coverability problems of Petri nets by partial
deduction. In Proceedings of the 2nd ACM SIGPLAN international conference on
Principles and practice of declarative programming, PPDP ’00, pages 268–279, New
York, NY, USA, 2000. ACM.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Trans. Program.
Lang. Syst., 20:208–258, January 1998.

21. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In Selected papers from the 9th International
Workshop on Logic Programming Synthesis and Transformation, pages 62–81, Lon-
don, UK, 2000. Springer-Verlag.

22. M. Leuschel and D. D. Schreye. Logic program specialisation: How to be more
specific. In H. Kuchen and S. D. Swierstra, editors, PLILP, volume 1140 of Lecture
Notes in Computer Science, pages 137–151. Springer, 1996.

23. A. Lisitsa. Verification of MESI cache coherence protocol. http://www.csc.liv.
ac.uk/˜alexei/VeriSuper/node5.html.



Automatic Verification of Counter Systems 135

24. A. Lisitsa and A. P. Nemytykh. Towards verification via supercompilation. Com-
puter Software and Applications Conference, Annual International, 2:9–10, 2005.

25. A. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing (exper-
iments with the SCP4 supercompiler). Programming and Computer Software,
33(1):14–23, 2007.

26. A. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via supercom-
pilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

27. A. Nemytykh. SCP4 : Verification of protocols. http://refal.botik.ru/

protocols/.

28. A. P. Nemytykh. The supercompiler SCP4: General structure. In M. Broy and
A. V. Zamulin, editors, Ershov Memorial Conference, volume 2890 of Lecture Notes
in Computer Science, pages 162–170. Springer, 2003.

29. A. P. Nemytykh and V. A. Pinchuk. Program transformation with metasystem
transitions: Experiments with a supercompiler. LECTURE NOTES IN COM-
PUTER SCIENCE, pages 249–260, 1996.

30. T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

31. D. Poole and A. K. Mackworth. Artificial Intelligence - Foundations of Computa-
tional Agents. Cambridge University Press, 2010.

32. M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of positive
information propagation. Master’s thesis, Dept. of Computer Science, University
of Copenhagen, 1994.

33. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

34. Z. Su and G. Wassermann. The essence of command injection attacks in web appli-
cations. In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’06, pages 372–382, New York, NY,
USA, 2006. ACM.

35. V. F. Turchin. A supercompiler system based on the language refal. SIGPLAN
Not., 14(2):46–54, 1979.

36. V. F. Turchin. The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 1980.

37. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

38. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.

39. V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a super-
compiler. In LFP ’82: Proceedings of the 1982 ACM symposium on LISP and
functional programming, pages 47–55, New York, NY, USA, 1982. ACM.



136 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

A An implementation

Here we show the source code of the multi-result supercompiler for counter
systems implemented by means of the MRSC toolkit. More detailed explanations
about the code may be found in [11].

A.1 Operations over configurations

First of all, the supercompiler has to perform the following operations over con-
figurations: testing whether a configuration c1 is an instance of a configuration
c2, and enumerating all possible generalizations of a configuration c. An imple-
mentation of these operations is shown in Fig. 15.

package mrsc.counters

object Conf {
def instanceOf(c1: Conf, c2: Conf): Boolean =
(c1, c2).zipped.forall((e1, e2) => e1 == e2 || e2 == Omega)

def gens(c: Conf) =
product(c map genExpr) - c

def oneStepGens(c: Conf): List[Conf] =
for (i <- List.range(0, c.size) if c(i) != Omega)
yield c.updated(i, Omega)

def product[T](zs: List[List[T]]): List[List[T]] = zs match {
case Nil => List(List())
case x :: xs => for (y <- x; ys <- product(xs)) yield y :: ys

}

private def genExpr(c: Expr): List[Expr] = c match {
case Omega => List(Omega)
case Num(i) if i >= 0 => List(Omega, Num(i))
case v => List(v)

}

}

Fig. 15: Operations over configurations: testing for instances and building gen-
eralizations

The function instanceOf tests whether a configuration c1 is an instance of
a configuration c2.

The function genExpr generates all possible generalization of an expression
(which is a component of a configuration). Note that the original expression is



Automatic Verification of Counter Systems 137

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Fig. 16: MRSC “middleware” for supercompiler construction

included into the set of generalization. The set of generalization of the symbol
ω contains only the symbol ω, while the set of generalizations of a number N
consists of two elements: N and ω.

The function gens generates the set of all possible generalizations of a con-
figuration c. Note that c is not included into this set.

The function oneStepGens generates the set of all generalizations of a con-
figurations c that can be produced by generalizing a single component of c. This
function will be used in the optimized version of the supercompiler shown in
Fig. 20.

A.2 Graph builder

(Fold)
∃α : foldable(g, β, α)

g → fold(g, β, α)

(Drive)
6 ∃α : foldable(g, β, α) ¬dangerous(g, β) cs = driveStep(c)

g → addChildren(g, β, cs)

(Rebuild)
6 ∃α : foldable(g, β, α) c′ ∈ rebuildings(c)

g → rebuild(g, β, c′)

Notation:
g – a current graph of configurations
β – a current node in a graph of configurations
c – a configuration in a current node β

Fig. 17: Multi-result supercompilation specified by rewrite rules

Technically, a supercompiler written using MRSC is based upon two compo-
nents shown in Fig. 16: GraphRewriteRules and GraphGenerator [14].



138 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

The trait GraphRewriteRules declares the method steps, which is used in
the main loop of supercompilation for obtaining all graphs that can be derived
from a given incomplete graph g by applying the rewrite rules Fold, Drive and
Rebuild [14] shown in Fig. 17. Namely, steps(g) returns a list of “graph rewrite
steps” [14]. Then the graph generator applies each of these “steps” to the graph
g to produce the collection of the descendants of g.

A concrete supercompiler is required to provide an implementation for the
method steps. The class GraphGenerator, by contrast, is a ready-to-use com-
ponent: it is a constituent part of any supercompiler built on top of MRSC.

package mrsc.counters

class MRCountersRules(protocol: Protocol, l: Int)
extends GraphRewriteRules[Conf, Unit] {

override def steps(g: G): List[S] =
fold(g) match {
case None => rebuild(g) ++ drive(g)
case Some(s) => List(s)

}

def fold(g: G): Option[S] = {
val c = g.current.conf
for (n <- g.completeNodes.find(n => instanceOf(c, n.conf)))
yield FoldStep(n.sPath)

}

def drive(g: G): List[S] =
if (dangerous(g)) List()
else List(AddChildNodesStep(next(g.current.conf)))

def rebuild(g: G): List[S] =
for (c <- gens(g.current.conf))
yield RebuildStep(c): S

def dangerous(g: G): Boolean =
g.current.conf exists

{ case Num(i) => i >= l; case Omega => false }

def next(c: Conf): List[(Conf, Unit)] =
for (Some(c) <- protocol.rules.map(_.lift(c)))
yield (c, ())

}

Fig. 18: Graph rewrite rules: an implementation for counter systems



Automatic Verification of Counter Systems 139

In the case of supercompilation for counter systems the method steps can
be straightforwardly implemented as shown in Fig. 18.

The methods fold, drive and rebuild correspond to the rewrite rules Fold,
Drive and Rebuild [14]. Since the rewrite rules are independent from each other,
the body of the method (steps) could have been defined in the following trivial
way:

fold(g) ++ rebuild(g) ++ drive(g)

However, we have preferred to slightly optimize the implementation by taking
into account that the rule Fold is mutually exclusive with the rules Drive and Re-
build. Another subtle point is that, in general, the rule Fold is non-deterministic,
because the current configuration may be foldable to several configurations in
the graph. Thus, the rule Fold may be applicable in zero, one or more ways.
However, in the case of counter systems, all variants of folding are equally good.
For this reason, in the implementation in Fig. 18, the method fold returns no
more than one variant of folding, the type of the results being Option[S], rather
than List[S]. And the rules Drive and Rebuild are only applied if fold returns
zero results.

The implementations of the methods fold and rebuild are straightforward.
The method dangerous implements the whistle suggested by Klimov [10,9]:

a configuration is considered as “dangerous” if it contains a number N , such
that N ≥ l, where l is a constant given to the supercompiler as one of its input
parameters.

The implementation of the method drive uses an auxiliary method next,
which tries to apply all transition rules to a configuration c. If a rule is applicable,
it returns a configuration c′, in which case the pair (c′, ()) is included in the list
returned by next. In general, this pair has the form c′, d, where c′ is the new
configuration and d the label for the edge entering the node containing the
configuration c′. But, in the case of counter systems, edges need not be labeled,
for which reason we put the placeholder () in the second component of the pair.

A.3 Optimizations

Fig. 19 shows the supercompiler for counter systems that has been produced
from the supercompiler in Fig. 18 by implementing the aforementioned opti-
mizations. Technically, the improved supercompiler is implemented as the class
FastMRCountersRules, which is a subclass of MRCountersRules.

The main loop of the optimized supercompiler is shown in Fig. 20. Complete
graphs are produced by the iterator graphs by demand. Since the goal is to find
a graph of minimum size, the variable minGraph contains the smallest of the
graphs that have been encountered.

Now let us consider the internals of the class FastMRCountersRules.
The variable maxSize holds the maximum size of graphs that are worth

considering: if the supercompiler encounters a graph whose size exceeds maxSize,
this graph is discarded (see the definition of the method steps).



140 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

package mrsc.counters

class FastMRCountersRules(protocol: Protocol, l: Int)
extends MRCountersRules(protocol, l) {

var maxSize: Int = Int.MaxValue

override def drive(g: G): List[S] =
for (AddChildNodesStep(ns) <- super.drive(g)

if ns.forall(c =>!protocol.unsafe(c._1)))
yield AddChildNodesStep(ns)

override def rebuild(g: G): List[S] =
for (c <- oneStepGens(g.current.conf) if !protocol.unsafe(c))
yield RebuildStep(c): S

override def steps(g: G): List[S] =
if (protocol.unsafe(g.current.conf) || size(g) > maxSize)
List()

else
super.steps(g)

private def size(g: G) =
g.completeNodes.size + g.incompleteLeaves.size

}

Fig. 19: Graph rewrite rules: an optimized implementation for counter systems

val rules = new FastMRCountersRules(protocol, l)
val graphs = GraphGenerator(rules, protocol.start)

var minGraph: SGraph[Conf, Unit] = null
for (graph <- graphs) {
val size = graphSize(graph)
if (size < rules.maxSize) {
minGraph = graph
rules.maxSize = size

}

}

Fig. 20: Optimized implementation of the main loop of multi-result supercompi-
lation



Automatic Verification of Counter Systems 141

The method rebuild is redefined: now, instead of considering all possible
generalization (produced by the method gens), it only considers one-step gen-
eralizations (produced by the method oneStepGens).

All other modifications are related to detecting unsafe configurations: the
goal is to detect unsafe configurations as soon as possible. This is achieved by
applying the predicate unsafe to configurations at several places.



Formalizing and Implementing
Multi-Result Supercompilation⋆

Ilya G. Klyuchnikov and Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. The paper explains the principles of multi-result supercom-
pilation. We introduce a formalism for representing supercompilation al-
gorithms as rewriting rules for graphs of configurations. Some low-level
technical details related to the implementation of multi-result supercom-
pilation in MRSC are discussed. In particular, we consider the advantages
of using spaghetti stacks for representing graphs of configurations.

1 Introduction

1.1 Growing variety in the field of supercompilation

Supercompilation is a program manipulation technique that was originally intro-
duced by V. Turchin in terms of the programming language Refal (a first-order
applicative functional language) [36], for which reason the first supercompilers
were designed and developed for the language Refal [34,38,25].

It might create the impression that supercompilation is a specific technique
only applicable to Refal (and Refal-like languages).

Further development of supercompilation lead to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the
original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [28,32,6]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [9].

As a result, the distinction between “supercompilation” and a “supercom-
piler” was realized. Supercompilation is a general method, while a supercompiler
is a program transformer (based on the principles of supercompilation). Thus the
transition from the idea of supercompilation to a specific supercompiler involves
making a number of decisions. Namely, we have to:

– Select an input language: programs in this language will be dealt with by
the supercompiler. (Note that the supercompiler may produce programs in
another language, in which case we have as well to select an output language.)

⋆ Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



Formalizing and Implementing Multi-Result Supercompilation 143

– Choose, for the selected input language, some kind of its operational se-
mantics. This step is necessary because driving is a “generalized” form of
program execution using partially known input data, which degenerates into
ordinary program execution in the case of the completely known input data,
and whose correctness is defined with respect to the underlying operational
semantics.

– Develop (or select) a language of configurations (for representing sets of
execution states). Implement operations over configurations (such as testing
two configurations for equivalence or subclass relation).

– Develop a driving algorithm (based on the previously selected kind of oper-
ational semantics).

– Develop (or choose) an algorithm of recognizing “dangerous” (potentially
infinite) branches in the trees of configurations produced by driving. In the
field of supercompilation such algorithms are traditionally referred to as
whistles.

– Develop (or choose) an algorithm of generalization that replaces a configu-
ration with a more general one (which represents a larger set of states).

– Develop an algorithm for generating an output (residual) program from a
finite graph of configurations.

Recently, in addition to “traditional” supercompilation, there have emerged
new kinds of supercompilation, such as distillation [4,5], two-level supercompila-
tion [20,16] and multi-result supercompilation [21,10]. Thus, while initially the
topic of research was believed to be the supercompiler, it became apparent later
that the true interest is in investigating the ways of constructing supercompilers.

Hence, there is an obvious increase in diversity among the various forms of
supercompilation (both in terms of object languages and different supercom-
pilation algorithms). It can be seen as a manifestation of the general law of
“branching growth of the penultimate level” [33].

Also, despite the fact that from the very beginning supercompilation was
regarded as a tool for both program optimization and program analysis [35],
the research in supercompilation, for a long time, was primarily focused only on
program optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs
[22,19,11].

So there are some reasons to believe that we are witnessing the emergence
of such research directions as language-specific supercompilation (LSSC) and
domain-specific supercompilation (DSSC), technical details of the implementa-
tion of the general idea of supercompilation being dependent on both the object
language and the intended usage of a supercompiler.

As a consequence, the paradigm of research in supercompilation changes.
Until recently, the goal of the research was to find “the best” combination of
various components in order to produce “the best” supercompiler. However, it
has become apparent that “the best” supercompiler just does not exist, because
what is good for a particular programming language and/or a domain may not
be appropriate for other languages and/or domains.



144 I.G. Klyuchnikov, S.A. Romanenko

Thus there arises a new field of research: the systematic study of various
forms and techniques of supercompilation, as well as of their applicability (in
various combinations) in different areas.

For example, there is a paper comparing 64 (!) variations of a supercompiler
in order to investigate how changes in different parts of the supercompiler affect
its ability to prove the equivalence of higher-order expressions [14].

1.2 The goal of MRSC

Obviously, to carry out such experiments one needs some tools for producing a
large number of supercompilers or, at least, a large number of variations of a
supercompiler. However, it often takes several years for a supercompiler to be
constructed by traditional techniques as they are based on “manual labor”. This
is hardly adequate for research purposes!

Thus the goal of the MRSC project is to provide a set of “prefabricated
components” or, in other words, a toolkit that could facilitate rapid
design and prototyping of supercompilers.

1.3 The approach of MRSC

The term “multi-result supercompilation” (section 3) implies that, given an input
program, a supercompiler may produce a (non-empty) set of residual programs,
rather than just a single residual program.

During the development of MRSC it was found that, although it was possi-
ble to provide separate implementations for both multi-result and single-result
supercompilation, a simpler solution is to regard single-result supercompilation
as a special case of the multi-result one (by throwing away all residual programs,
except for the first one). This approach is acceptable in terms of efficiency, pro-
vided that the set of residual program is generated incrementally, in a lazy way.

In the context of MRSC, the arguments for considering multi-result super-
compilation to be “the main case” are the following.

– Traditional supercompilation can be regarded as a special case of multi-result
supercompilation. This allows us to treat various kinds of supercompilation
in a uniform way. In particular, by describing them by sets of rewriting rules
(see sections 2 and 3).

– As will be shown later, multi-result supercompilation enables the compo-
nents of a supercompiler to be, to a large extent, decoupled from each other.
In the first place, this is true of the whistle and the generalization algorithm.
So, in the case of multi-result supercompilation, it is easy to perform com-
parative study of the relative “power” of whistles by considering all possible
generalization. This is not possible in the case of traditional supercompila-
tion, because modifications in the whistle bring about modifications in the
generalization algorithm, so that the effects produced by changes in different
parts of the supercompiler cannot be separated from each other. Thus multi-
result supercompilation provides new opportunities for comparative studies
in the field of supercompilation.



Formalizing and Implementing Multi-Result Supercompilation 145

– Finally, during the development, it became clear that building MRSC on the
basis of multi-result supercompilation leads to a more modular, flexible and
declarative design of the whole toolkit.

That is why the paper focuses on multi-result supercompilation. Accordingly,
MRSC stands for Multi-Result SuperCompilation toolkit.

1.4 The structure of MRSC

Most existing supercompilers have common parts, which do not depend on the
object language of a supercompiler, or on the domain of a supercompiler. For
example, the overall structure of the graph of configurations and the implemen-
tation of operations to work with this graph do not depend on the representation
of configurations. Or, for example, different types of whistles and algorithms of
generalization can be formulated in abstract form, without the use of information
about the details of the language of configurations.

One of the goals of MRSC is to provide some generic data structures and op-
erations that can be used as ready-to-use building blocks for rapid development
and prototyping of supercompilers: that is, to provide some basic set of com-
ponents. On the other hand, a client should have some possibilities of creating
additional components and modifying the logic of prefabricated components.

To meet these requirements, we chose Scala [26] as an implementation lan-
guage of MRSC (although it would be interesting to try to implement a similar
toolkit using other programming languages).

Technically, the building blocks provided by MRSC are structured as traits.
So a class implementing the main logic of a supercompiler – the construction of
graphs of configurations – is assembled from a number of traits.

This paper describes MRSC 1.0. The source code is available at https:
//github.com/ilya-klyuchnikov/mrsc.

1.5 What is in this paper

Due to size limitations we are not able to include all the stuff we would like
to present: this paper is only a start of a series of publications on MRSC and
multi-result supercompilation.

It should be noted that the work on a toolkit implementing the principles of
multi-result supercompilation resulted in a revision of some traditional design
decisions related to the most low-level part of a supercompiler – the representa-
tion of graphs of configurations and the implementation of some operations over
them. It has affected the low-level components of MRSC.

This paper considers in detail only the core components of MRSC and the
“theoretical foundations” of MRSC. In particular:

– Formal definitions of several kinds of supercompilation in terms of rewriting
rules for graphs of configurations. Namely, traditional (single-result, deter-
ministic) supercompilation, non-deterministic supercompilation (as a trans-
formation relation) and multi-result supercompilation.



146 I.G. Klyuchnikov, S.A. Romanenko

– Sufficient conditions ensuring the finiteness of any set of completed graphs.
– Internal representation of graphs of configurations based on spaghetti-stacks.
– A method of generating (possibly huge, yet finite) sets of completed graphs

of configurations.

Other components of MRSC will be discussed in detail in upcoming papers.

1.6 The structure of the paper

The paper is structured as follows:

– Section 2 introduces a formalism for presenting supercompilation in terms of
rewriting rules for graphs of configurations. There are then given two sets of
rewriting rules that provide generic specifications for a traditional supercom-
pilation algorithm (corresponding to deterministic supercompilation) and for
a transformation relation (corresponding to non-deterministic supercompi-
lation). By comparing these sets of rules one may get some insights about
the key differences between the two kinds of supercompilation. In the case of
traditional supercompilation, the rewriting rules ensure the generation of a
single completed graph of configurations, while the rewriting rules specifying
a transformation relation allow the generation of a (possibly infinite) set of
completed graphs of configurations.

– Section 3 gives a set of rewriting rules that provide a generic specification for
multi-result supercompilation. These rules ensure the generation of a finite
set of completed graphs of configurations. By inspecting the sets of rules, one
can see that multi-result supercompilation can be regarded as a crossbreed
between deterministic (traditional) supercompilation and non-deterministic
supercompilation (specified by a transformation relation).

– Section 4 describes the core of MRSC. The base level of MRSC imple-
ments a few low-level operations over graphs of configurations. MRSC pro-
vides two data-structures meant for representing graphs of configurations:
TGraph (based on trees) and SGraph (based on spaghetti-stacks). An ex-
planation is given as to why SGraph is more appropriate in the case of
multi-result supercompilation. MRSC provides a very simple set of 5 ba-
sic “rewriting steps” for transforming graphs of configurations and an ab-
straction GraphRewriteRules for encoding the logic of supercompilation in
terms of rewriting rules. The component GraphGenerator, when given a set
of rewrite rules, incrementally produces all possible graphs of configurations.

– Section 5 gives an overview of related works and concludes the paper.

We assume that the reader is familiar with the basics of supercompilation –
driving, whistle, generalization and residuation (the paper [32] provides a good
introduction into supercompilation).

2 Schemes of traditional supercompilation

In the supercompilation community, there are two well-established approaches
to describing and implementing supercompilers.



Formalizing and Implementing Multi-Result Supercompilation 147

The first approach formulates supercompilation in terms of the construction
of a graph of configurations that is then transformed (residuated) into an output
(residual) program [34,28,32,18,13,5]. The origin of this approach goes back to
V. Turchin [36].

The second approach [24,23,2,7] considers a supercompiler as an expression
transformer that produces output programs “directly”, avoiding the construction
of intermediate data structures (graphs of configurations)1. This “direct-style”
approach works especially well if a supercompiler is written in a lazy language
(like Haskell) and is required to meet strong performance requirements. A draw-
back of this approach, however, is that the components of the supercompiler
tend to become more strongly coupled: an effect that is hardly desirable in the
case of MRSC.

For this reason, our presentation of supercompilation, as well as the design
of MRSC, follow the first tradition (based on the explicit construction of graphs
of configurations2).

The following sections give (generic) specifications of 3 kinds of supercom-
pilation. Namely: traditional (deterministic, single-result) supercompilation, su-
percompilation transformation relation (or, in other words, non-deterministic
supercompilation) and multi-result supercompilation.

These generic specifications describe the construction of graphs of configu-
rations in a language-agnostic way, being parameterized with respect to a set of
abstract basic operations: driving, folding, rebuilding and whistle (close to that
used by Sørensen [30,31,29]).

2.1 Rewrite rules for graphs of configurations

In the following, it will be assumed that the main result produced by a supercom-
piler is a completed graph of configurations, which is constructed with respect
to a program 𝑝 and an initial configuration 𝑐. The process starts by constructing
a graph whose single node contains the initial configuration 𝑐.

Then the construction of the graph proceeds, step-by-step, by applying graph
rewrite rules written in the following form:

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑔 → 𝑔′

Let 𝑔 denote a current graph and 𝑔′ a graph produced by a single step of
rewriting. The rewriting step 𝑔 → 𝑔′ is written under the horizontal bar. Above
the horizontal bar there is a 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 that should be satisfied in order for
this step to be applicable. We assume that there is a predicate 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) for
checking whether a graph 𝑔 is completed.

1 At least in an explicit way.
2 Creating a toolkit similar to MRSC on the basis of the “direct-style” approach is an
interesting, yet open problem for further research.



148 I.G. Klyuchnikov, S.A. Romanenko

Transforming operations
𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼) : 𝐺𝑟𝑎𝑝ℎ Folding: looping back from the current node 𝛽

to a node 𝛼 in a graph of configurations.
𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠) : 𝐺𝑟𝑎𝑝ℎ Adding new nodes: a node is created for each

configuration from the list 𝑐𝑠, created nodes be-
come children of the current node 𝛽.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Rebuilding of a graph: a configuration in an ac-
tive node 𝛽 is replaced with a configuration 𝑐′.

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘(𝑔, 𝛼, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Another type of rebuilding of a graph: a con-
figuration in a node 𝛼 (which is not a current
node) is replaced with a configuration 𝑐′, the
whole subgraph for which 𝛼 is a root node is
deleted.

Inspecting operations
𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) : 𝐵𝑜𝑜𝑙 Predicate, recognizing the possibility for folding

of a node 𝛽 to a node 𝛼.
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) : 𝐵𝑜𝑜𝑙 (Whistle) Predicate, recognizing a potentially

dangerous situation (potentially infinite branch
in a graph of configurations).

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) : 𝐵𝑜𝑜𝑙 Predicate, determining whether a graph of con-
figurations 𝑔 is completed or not.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) : 𝐶 Rebuilding of a configuration 𝑐 (that is in the
current node 𝛽) with respect to the whole graph
𝑔.

𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] Driving step. Next configurations for a given
configuration 𝑐.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] The set of rebuildings of a configuration 𝑐.

Fig. 1: Operations on graphs of configurations

Some rules in a set may be overlapping. It means that, given a graph, there
may be zero, one or more rules that are applicable. For this reason, the ini-
tial graph of configurations may, in principle, be rewritten into any number of
completed graphs: from zero to infinity.

It turns out that traditional, non-deterministic and multi-result supercom-
pilation can be specified by means of a set consisting of 3 (generic) rules: 𝐹𝑜𝑙𝑑,
𝐷𝑟𝑖𝑣𝑒 and 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. Note that the rules corresponding to different kinds of su-
percompilation are similar, but differ in some important details, which facilitates
the comparison of the 3 kinds of supercompilation.

2.2 Basic operations

Figure 1 presents a set of basic operations that allow supercompilers to be speci-
fied in a generic way. The concrete definitions of the operations may vary for dif-
ferent supercompilers. (As an example, see the description of the internals of the
supercompiler HOSC [13].) These operations can be naturally divided into two
groups: operations that transform a graph of configurations (𝑓𝑜𝑙𝑑, 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛,



Formalizing and Implementing Multi-Result Supercompilation 149

𝑟𝑒𝑏𝑢𝑖𝑙𝑑) and operations that only inspect a graph of configurations (𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒,
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠).

In fact, generic formulations of supercompilation do not depend on the exact
meaning of “inspecting” operations: it is enough to know the types of their results
and how the results are used. Also note that the names of some operations we
use in the paper differ from those used by Sørensen: 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 corresponds
to 𝑑𝑟𝑖𝑣𝑒 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑 corresponds to 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 [30,31,29].

The operations 𝑟𝑒𝑏𝑢𝑖𝑙𝑑, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 deserve a special com-
ment. Unfortunately, in supercompilation the term generalization is “overloaded”,
which can be illustrated by the following two quotations.

From [31]:

Note that we now use the term generalization in two distinct senses: to
denote certain operations on trees performed by supercompilation, and
to denote the above operation on expressions. The two senses are related:
generalization in the former sense will make use of generalization in the
latter sense.

From [37]:

A reduction from node 𝑁1 to 𝑁2 is an assignment of such values to
𝑣𝑎𝑟(𝑁2) in terms of 𝑣𝑎𝑟(𝑁1) that after their substitution the configura-
tion in 𝑁2 becomes identical to that in 𝑁1. The node 𝑁2 may be either
(1) a generalization of 𝑁1 [. . . ]. Transition by a reduction edge includes
no computational steps of the machine: the exact state of the computing
machine remains the same; only its representation gets changed.

On the one hand, a configuration 𝑐′ is said to be a generalization of a config-
uration 𝑐 if 𝑐 @ 𝑐′ (which means that the set represented by 𝑐′ contains the set
represented by 𝑐). On the other hand, let us consider three configurations in the
language SLL [18]:

𝑓(𝑁𝑖𝑙, 𝑔(𝑦)) (𝑐1)
𝑓(𝑥, 𝑔(𝑦)) (𝑐2)
𝑙𝑒𝑡 𝑥 = 𝑁𝑖𝑙 𝑖𝑛 𝑓(𝑥, 𝑔(𝑦)) (𝑐3)
Here 𝑐1 @ 𝑐2, i.e. 𝑐2 is a generalization of 𝑐1. Note that 𝑐2 does not contain

enough information for the initial configuration 𝑐1 to be restored. Now suppose
that 𝑐1 and 𝑐2 appear in a graph of configurations, and 𝑐1 is the current node.
Then we cannot perform generalization just by replacing 𝑐1 with 𝑐2! Actually,
during supercompilation, 𝑐1 is replaced with 𝑐3 (which contains 𝑐2 as a subex-
pression). For this reason it is 𝑐3, rather than 𝑐2 that is sometimes referred to
as a generalization of 𝑐1.

This ambiguity in terminology is no good, as it may be a source of confusion.
For this reason, we will use a more technical term rebuilding (quite popular in
supercompilation folklore), giving it a precise meaning.

A rebuilding of a configuration is an alternative representation of the con-
figuration (in accordance with the above quotation from Turchin). The original



150 I.G. Klyuchnikov, S.A. Romanenko

configuration can be uniquely restored from a rebuilding. For example, 𝑐3 is a
rebuilding of 𝑐1. For a given language of configurations, the set of all possible
rebuildings of a given configuration is usually finite.

A lower rebuilding of a graph of configurations is the replacement of a con-
figuration 𝑐 in the current node with a configuration 𝑐′.

The upper rebuilding of a graph of configurations (a rollback to 𝛼) is the dele-
tion of all successors of the node 𝛼, followed by the replacement of a configuration
𝑐 in 𝛼 with a configuration 𝑐′.

It will be assumed that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

2.3 Scheme of supercompilation algorithm

The generic scheme of traditional supercompilation is specified by the SC-rules
shown in Figure 2a. The determinacy follows from the fact that, given a graph
that is not completed, there is exactly one rule that can be applied (in an un-
ambiguous way).

These rules can be interpreted as a step-by-step algorithm:

– While a graph of configurations is not completed:
∙ If there is a node for looping back, then make the corresponding folding

(𝐹𝑜𝑙𝑑),
∙ else if the current state of the graph is considered to be dangerous (“the

whistle blows”), then deterministically find a rebuilding of the current
configuration with respect to the current graph and then perform the
lower rebuilding of the graph (𝑅𝑒𝑏𝑢𝑖𝑙𝑑),
∙ otherwise, make a step of driving (𝐷𝑟𝑖𝑣𝑒).

2.4 Scheme of transformation relation

A supercompilation transformation relation does not use whistle and allows any
possible rebuilding to be performed, provided that the 𝐹𝑜𝑙𝑑 rule is not applicable.

The generic scheme of non-deterministic supercompilation is specified as a
transformation relation by the NDSC-rules shown in Figure 2b. Technically, there
are two differences from the case of traditional (deterministic) supercompilation:

1. If there is no possibility for folding, then both a driving step and a rebuilding
are allowed.

2. A rebuilding of the current configuration can be done non-deterministically,
by using any configuration from 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

Since we assume that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), it can be easily seen
that, given a set of operations over graphs of configurations, the transformation
supercompilation relation is an extension with respect to traditional supercom-
pilation. In other words, if the deterministic supercompiler produces a residual
program for a given input program, then the non-deterministic supercompiler is
also able to produce this residual program.



Formalizing and Implementing Multi-Result Supercompilation 151

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐′ = 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(a) SC: Deterministic (traditional) supercompilation

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(b) NDSC: Non-deterministic supercompilation (transformation relation)

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(c) MRSC: Multi-result supercompilation

Notation:
𝑔 – a current graph of configurations
𝛽 – a current node in a graph of configurations
𝑐 – a configuration in a current node 𝛽

Fig. 2: Schemes of different types of supercompilation

In general, for a given input program, a transformation relation defines a
(possibly) infinite set of completed graphs of configurations and a (possibly)
infinite set of incomplete graphs of configurations.

Transformation relations are useful for proving the correctness of supercom-
pilation algorithm and for formulating some abstract properties of supercompi-
lation [12,15,27].



152 I.G. Klyuchnikov, S.A. Romanenko

3 Multi-result supercompilation

Essentially, multi-result supercompilation can be regarded as a crossbreed be-
tween deterministic (traditional) supercompilation and non-deterministic super-
compilation (specified by a transformation relation)

3.1 Scheme of multi-result supercompilation

The scheme of multi-result supercompilation is specified by the MRSC-rules
shown in Fig. 2c.

It can be seen that the MRSC-rules can be regarded as a combination of the
SC-rules and the NDSC-rules. The rule 𝐹𝑜𝑙𝑑 is the same for all sets of rules. The
rule 𝐷𝑟𝑖𝑣𝑒 is taken from the SC-rules and the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 from the NDSC-rules.

Note that in the case of the SC-rules, the whistle and rebuilding are strongly
coupled: if the whistle blows, there has to be done a rebuilding, but if the whistle
does not blow, rebuilding is prohibited and a driving step has to be done.

However, this is not true of the MRSC-rules, because a rebuilding may be
performed even if the whistle does not blow. But the subtle point is that there
may arise a situation when the rule 𝐹𝑜𝑙𝑑 is not applicable, the whistle blows,
thereby making the 𝐷𝑟𝑖𝑣𝑒 inapplicable, and the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is empty, for
which reason no rebuilding is possible. It means that the process of supercompi-
lation has come to an impasse, and the graph of configurations is “unworkable”
and has to be discarded.

Let us recall that applying the SC-rules results in producing a single com-
pleted graph, the NDSC-rules a (possibly) infinite set of completed graphs, and
the MRSC-rules a finite set of completed graphs.

Theorem 1 (Finiteness of sets of completed graphs). If

1. any infinite branch in a graph of configurations is detected by the predicate
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠,

2. for any configuration 𝑐 the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite,
3. the number of successive rebuildings cannot be infinite (i.e. the chain 𝑐1, 𝑐2, 𝑐3, . . .,

where 𝑐𝑘+1 ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐𝑘) is always finite),

then the application of the MRSC-rules produces a finite set of completed graphs
of configurations.

Proof. Collapse all successive rebuildings into one rebuilding. Everything else
follows from König lemma [8] (using arguments similar to those in the Sørensen’s
proof [29]).

In the same way one can show that the MRSC-rules always produce a finite
set of dead-end graphs (to which no rule is applicable).

The third condition in the assertion of the theorem may seem to be super-
fluous. However, this is not true. Let us consider a supercompiler, such that (1)



Formalizing and Implementing Multi-Result Supercompilation 153

numbers are allowed as variable values in its input language, and (2) configura-
tions may impose restrictions on variable values having the form 𝑥 < 𝑁 , where
𝑥 is a variable and 𝑁 is a natural number.

Suppose that the finiteness of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is ensured by the following
requirement: if all number constants in 𝑐 do not exceed 𝑁 , then all number
constants appearing in any 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) do not exceed 𝑁 + 1. Then the
number of rebuildings for any configuration will be finite, but the number of
successive rebuildings can be infinite. For example:

𝑓(𝑥)|{𝑥<5} → 𝑙𝑒𝑡 𝑦 = 𝑥|{𝑥<5} 𝑖𝑛 𝑓(𝑦)|{𝑦<6} → 𝑙𝑒𝑡 𝑧 = 𝑦|{𝑦<6} 𝑖𝑛 𝑓(𝑧)|{𝑧<7} → . . .

If 𝑓(𝑥)|{𝑥<5} is the initial configuration, then an infinite number of completed
graphs of configurations can be generated.3

3.2 Tree of graphs

-

. . .

. . .

-

F

R

D

(a)

-

. . .

. . .

. . .

D

D

. . .

-

F

R

D

. . .

. . .

. . .

D

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(b)

-

. . .

!
D

. . .

-

F

R

D

. . .

!
D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(c)

Fig. 3: Trees of graphs. (a) Deterministic algorithm, (b) Transformation relation,
(c) Multi-result supercompilation.

Suppose, we are given an initial configuration. Then the rules shown in Fig. 2
specify the process of supercompilation as a sequence of rewriting steps. A se-
quence of rewritings will be called “successful” if it leads to a completed graph
of configuration, and “unsuccessful” if it leads to a dead end (i.e. to a graph such
that no rule is applicable).

Note that (1) the SC-rules define a single successful finite sequence of rewrit-
ings, (2) the NDSC-rules define an infinite tree of rewriting steps containing finite

3 It may happen that this infinite number of graphs is residuated into a finite set of
really different output programs.



154 I.G. Klyuchnikov, S.A. Romanenko

successful branches, finite unsuccessful branches and infinite branches, and (3)
MRSC-rules define a finite tree of rewriting steps with finite successful branches
and finite unsuccessful branches (see Fig. 3).

Thus, Theorem 1 can be reformulated as follows: multi-result supercompila-
tion defines a finite tree of graph rewriting.

3.3 Decoupling whistle and generalization

Let us take a closer look at the differences between deterministic (traditional)
supercompilation and multi-result supercompilation.

Comparing the SC-rules and the MRSC-rules in Fig. 2 reveals that these
two kinds of supercompilation only differ in the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. In the case of the
SC-rules, driving and generalization (rebuilding) are mutually exclusive, and the
decision whether to drive or generalize is taken by the whistle, while in the case
of the MRSC-rules a configuration can be rebuilt even if the whistle is silent.
The consequence is that the MRSC-rules completely decouple the whistle from
the generalization algorithm: the whistle does not have to bother about whether
a configuration declared to be “dangerous” can be rebuilt, or not?

Hence, as regards the whistle and generalization, multi-result supercompi-
lation provides a better separation of concerns, than traditional supercompila-
tion, and this is especially important when doing research work in the field of
supercompilation. Since a whistle does not have to take into account generaliza-
tion/rebuilding, it becomes easier to give a try to a variety of unusual whistles.
On the other hand, an algorithm of generalization is no longer required to guess
“the best” generalization: it is sufficient for it to produce 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), a finite
set of rebuildings.

Certainly, even if 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite for any configuration 𝑐, it may be
still too large, so that a huge number of residual programs may be produced.
However, this is acceptable if we need to understand, first of all, whether a whistle
is in principle able to produce good results, or not. After that we may proceed
to the next task: how to reduce the size of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) by only selecting
“reasonable” rebuildings.

3.4 Multi-result supercompilation as branching growth of the
penultimate level

The idea of multi-result supercompilation is quite simple. The fact that, until
recently, it has not been explicitly formulated can be due to two reasons.

First, for a long time, supercompilation has been primarily considered as a
program optimization technique, for which reason it was believed to be “natural”
for a supercompiler to produce a single result (the “best possible” one). However,
in the case of program analysis, it is not clear, what is the “best” residual
program? Thus we come to the idea of a supercompiler producing a set of residual
programs.



Formalizing and Implementing Multi-Result Supercompilation 155

Second, multi-result supercompilation reveals its true potential only in com-
bination with higher-level supercompilation (in particular, two-level supercom-
pilation). While, in the case of traditional supercompilation, the transition from
single-result supercompilation to multi-result supercompilation gives only quan-
titative change. Combining two-level supercompilation with multi-result super-
compilation produces fundamentally new results [21].

4 The core of MRSC

Now let us consider which technical issues arise when developing a multi-result
supercompiler and how these issues are addressed in MRSC.

The most sophisticated technical task of a supercompiler is the construction
of a graph of configurations. A supercompiler constructs this graph in a top-
down manner, starting from an initial configuration. In the case of traditional,
single-result supercompilation, when a single graph of configurations is to be
constructed, the internal representation of this graph is not of importance. One
may choose to use a mutable data structure for graph representation and modify
it step-by-step as it was done in [37] (imperative style). Another option is to use
an immutable data structure: if the implementation language of a supercompiler
is a call-by-value one, a new structure will be generated at each step [18]. Or we
can use a lazy implementation language, in which case graphs of configurations
can be constructed in a lazy manner [17].

In any case, as can be seen from the literature, most supercompilers based on
the explicit construction of graphs of configurations, have represented graphs by
top-down trees. This representation is convenient for the generation of residual
programs, since, traditionally, a residual program is constructed by traversing a
graph in a top-down manner4.

But, as will be shown in the next subsection, the tree-based representation
of graphs of configurations is inconvenient for multi-result supercompilation.
Therefore, MRSC uses another representation for graphs, based on spaghetti-
stacks [1].

4.1 Two data structures for a graph of configurations

MRSC uses two representations for graphs of configurations: T-representation
(tree-based) and S-representation (based on spaghetti-stacks [1]). The Scala en-
coding of these representation is shown in Fig. 4.

T-representation is used when transforming a graph into a residual program.
S-representation is used during the step-by-step construction of a graph of con-
figurations. When a graph is completed, it can be either used as it is (in S-
representation), or it may be transformed from S-representation into T-represen-
tation (to be then residuated).

4 It is interesting to find an elegant way to construct a residual program using bottom-
up traversal.



156 I.G. Klyuchnikov, S.A. Romanenko

type TPath = List[Int]
type SPath = List[Int]

case class TNode[C, D](
conf: C, outs: List[TEdge[C, D]],

base: Option[TPath], tPath: TPath)

case class TEdge[C, D](
node: TNode[C, D], driveInfo: D)

case class TGraph[C, D](
root: TNode[C, D], leaves: List[TNode[C, D]])

case class SNode[C, D](
conf: C, in: SEdge[C, D],

base: Option[SPath], sPath: SPath)

case class SEdge[C, D](
node: SNode[C, D], driveInfo: D)

case class SGraph[C, D](
incompleteLeaves: List[SNode[C, D]],

completeLeaves: List[SNode[C, D]],

completeNodes: List[SNode[C, D]]) {

val isComplete = incompleteLeaves.isEmpty
val current = if (isComplete) null else incompleteLeaves.head

}

Fig. 4: Graphs

Graphs in T-representations are objects of the class TGraph[C, D] holding
information of the following kinds:

1. C (configuration) – configurations labeling nodes of a graph.
2. D (driving info) – information labeling graph edges. This information de-

scribes the “evolution” of configurations (a transient step of driving, a branch-
ing, a decomposition, etc). This information is useful for producing residual
programs.

Every node in a T-graph is represented by an object of class TNode[C, D]
which holds information about its configuration and its output edges. We also
store a path from the root node to this node: it facilitates some manipulations
with the graph and can be used as a unique identifier of the node inside its
graph. The information about folding is stored as an (optional) path to the base
node. So, in a sense, TGraph is a tree with additional information about cycles
(foldings) in some leaves of this tree.



Formalizing and Implementing Multi-Result Supercompilation 157

leaves

root

(a) TGraph

leaves

root

(b) SGraph

Fig. 5: MRSC data structures

The edges of a graph are coded as TEdge[C, D], which are unidirectional,
an edge only storing the information about its destination.

The “entry point” of TGraph[C, D] is its root node. Also there is additional
information about leaves, which may be useful for residuation.

As was mentioned above, T-representation is convenient for top-down traver-
sal of graphs. However, if we need to make additions to a T-graph in two different
ways, we have to do some copying. But, in the case of multi-result supercompi-
lation, we have to do divergent additions to the current graph nearly at every
step. So, T-graphs seem to be impractical for multi-result supercompilation.
It is easier to turn T-graphs upside down, to obtain S-graphs represented by
SGraph[C, D].

Thus TGraph[C, D] is totally dual to SGraph[C, D]. The two data structures
are schematically shown in Fig. 5.

𝑥 𝑦

leaves

root

(a)

𝑥 𝑦

leaves

root

(b)

Fig. 6: Reuse of nodes in S-graphs

Both data structures are immutable. Let us go into details of how S-graphs
allow different additions to graphs to be made in a functional way.

Suppose there are two rewriting steps applicable for the graph shown in
Fig. 5: adding a child node with a configuration 𝑥 to the leftmost leaf or adding



158 I.G. Klyuchnikov, S.A. Romanenko

a child node with a configuration 𝑦 to the leftmost leaf. In the case of S-graphs,
it is sufficient to create two nodes and to reuse some parts of the previous graph
to make two new graphs! This sharing of nodes is shown schematically in Fig. 6.

It should be noted that S-representation is more convenient for the imple-
mentation of whistles, than T-representation: the majority of whistles traverses
a branch of a graph in the bottom-up way starting from the current node.

Despite these differences, many supercompilers (for historical reasons?) use
T-representation when building graphs of configurations.

So a graph of configurations being constructed is represented by the class
SGraph[C, D]: the field current represent the current node, incompleteLeaves
represent leaves that are not yet processed, completeLeaves represent completed
leaves. Also there is an additional list completeNodes representing a completed
part of a graph.

4.2 Basis of operations on S-graphs

One of the main goals of MRSC is to allow a programmer to concentrate on
writing the logic of a (multi-result) supercompiler saving him the trouble of
coding routine operations. In a sense, the lowest level of a supercompiler’s logic
is the definition of rewriting rules for graphs of configurations. MRSC allows
these rules to be encoded in a semi-declarative way.

MRSC provides a basis consisting of five “build steps”, denoting rewriting
operations over graphs of configurations in S-representation. This basis is shown
schematically in Fig. 7.

Each step is represented as a Scala value of type GraphStep[C, D] and is
assumed to be executed over the current graph of configurations (Fig. 8):

1. CompleteCurrentNodeStep – marks the current leaf as a completed one.
Used in driving.

2. FoldStep – performs a folding.
3. AddChildNodesStep – adds child nodes to the current node. Used in driving.
4. RebuildStep – performs a lower rebuilding of the graph (by replacing the

configuration in the current node).
5. RollbackStep – performs an upper rebuilding of the graph (deleting the

corresponding sub-graph).

The process of constructing any graph of configurations that is producible by
supercompilation can be represented by a sequence of the above build steps. The
build steps are executed by an interpreter that is provided by MRSC as part of
the graph generator (see below). The supercompilers implemented by means of
MRSC never transform graphs of configurations directly: they instead generate
build steps that are interpreted by the graph generator. This, to some extents,
ensures the correctness of transformations over graphs of configurations.

Note that the use of S-graphs allows rollback operation to be performed in
an elegant functional way (see the MRSC source code)5.

5 In [3] rollbacks are implemented by means of the mechanism of exceptions.



Formalizing and Implementing Multi-Result Supercompilation 159

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒−−−−−−→

𝐹𝑜𝑙𝑑−−−→

𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒𝑠−−−−−−−−−−→

𝑐1

𝑅𝑒𝑏𝑢𝑖𝑙𝑑−−−−−→

𝑐2

𝑐1 𝑅𝑜𝑙𝑙𝑏𝑎𝑐𝑘−−−−−→ 𝑐2

Fig. 7: Basis of operations on graphs schematically

Another useful feature of encoding build steps as first-order values is that they
can be easily serialized and stored for future use. Then they can be submitted
to another software tool, such as a validator of sequences of build steps. Given
a start graph (with a single node) and a sequence of graph rewriting steps, the
validator will be asked to check whether this sequence of steps may be generated
by a certain supercompiler (or even by a transformation relation), or not.



160 I.G. Klyuchnikov, S.A. Romanenko

sealed trait GraphRewriteStep[C, D]

case class CompleteCurrentNodeStep[C, D]
extends GraphRewriteStep[C, D]

case class AddChildNodesStep[C, D](ns: List[(C, D)])
extends GraphRewriteStep[C, D]

case class FoldStep[C, D](to: SPath)
extends GraphRewriteStep[C, D]

case class RebuildStep[C, D](c: C)
extends GraphRewriteStep[C, D]

case class RollbackStep[C, D](to: SPath, c: C)
extends GraphRewriteStep[C, D]

Fig. 8: Rewrite steps for S-graphs

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Fig. 9: MRSC “middleware” for supercompiler construction

4.3 Generating graphs of configurations

Technically, a supercompiler written using MRSC is based upon two components
shown in Fig. 9: GraphRewriteRules and GraphGenerator.

The trait GraphRewriteRules describes the logic of a multi-result supercom-
piler in a form similar to that in Fig. 2c. This trait only declares the method
steps. A concrete supercompiler is required to provide an implementation for
this method. So the trait GraphRewriteRules only provides an interface for
using the rules.

The class GraphGenerator, by contrast, is a ready-to-use component: it is a
constituent part of any supercompiler built on top of MRSC.

GraphGenerator for a given initial configuration conf and rewriting rules
rules, generates all completed graphs of configurations defined by these rules.



Formalizing and Implementing Multi-Result Supercompilation 161

If rules represent the logic of a traditional single-result supercompiler, then (of
course) the generator will produce a single graph.

In general, the number of graphs may be huge. Thus, to keep memory con-
sumption within reasonable limits, the graph generator is implemented as an
iterator and produces graphs on demand.

The internals of the graph generator are extremely simple (see the source
code). It maintains a set of incomplete S-graphs and a queue of completed graphs.
If a client requests the next graph and the queue is not empty, then the first graph
from this queue is returned. Otherwise, a graph g from the set of incomplete
graphs is chosen, and steps(g) is called, to produce a set of graph build steps
(which may be empty). Then each of the steps is applied to g, to obtain a set
of new graphs. Some of the new graphs are completed and some are incomplete.
The completed graphs are added to the queue of completed graphs, while the
incomplete ones are added to the current set of incomplete graphs.

(There may be implemented other strategies, producing the completed graphs
in other orders. The current implementation is straightforward, and makes the
depth-first traversal of the “tree of graphs”.)

What should a client do with the graphs generated by GraphGenerator? In
the case of a traditional supercompiler, a client may transform them into T-
graphs and then residuate these T-graphs into output programs. However, other
variants are possible. For example, a client may filter out completed graphs in
order to find graphs with specific properties. In some cases the fact of existence
or absence of graphs with specific properties may be of a special interest (when
supercompilation is used for program analysis).

Note, that the interface to the definition of graph rewriting rules shown in
Fig. 9 is quite abstract and does not depend on the input languages of supercom-
pilers. This enables the graph generator to be completely language-agnostic.

5 Conclusion

This paper describes only the internal structure and technical design of the
MRSC core. Further papers will present concrete examples of rapid prototyping
of supercompilers by means of MRSC and the use of MRSC for implementing
domain-specific supercompilers.

The first work addressing the problem of developing a general “abstract”
framework for specifying and implementing supercompilers was [37], which in-
troduced a domain-specific language SCPL for describing graph transformations.
Unfortunately, later there has been no active development in this field.

To some extent, the core of MRSC follows the spirit of SCPL, but there are
some significant differences.

First, MRSC is focused on multi-result supercompilation, which is a superset
of traditional supercompilation. The main idea of multi-result supercompilation
is the multiplicity of possible results. This idea is extended naturally into the
thesis about the variety and multiplicity of (multi-result) supercompilers that
can be used for a variety of purposes.



162 I.G. Klyuchnikov, S.A. Romanenko

The second difference is that MRSC is designed and implemented in func-
tional style: the core data-structures (S-graph) of MRSC are immutable, which
makes it possible to generate thousands of graphs, while still keeping memory
consumption within reasonable limits. In addition, it allows, in principle, to de-
velop a parallelized version of MRSC, so that the divergent versions of a graph
of configuration can be processed simultaneously.

Of course, the first version of the MRSC toolkit is far from ideal. But we hope
that further improvements in MRSC will be driven by experience gained by using
it for implementing language- and domain-specific multi-result supercompilers.

Acknoledgements

The authors express their gratitude to all participants of Refal seminar at Keldysh
Institute for useful comments and fruitful discussions of this work and to Natasha
and Lena for their love and patience.

References

1. D. G. Bobrow and B. Wegbreit. A model and stack implementation of multiple
environments. Commun. ACM, 16:591–603, October 1973.

2. M. Bolingbroke and S. L. Peyton Jones. Supercompilation by evaluation. In Haskell
2010 Symposium, 2010.

3. M. Bolingbroke and S. L. Peyton Jones. Improving supercompilation: tag-bags,
rollback, speculation, normalisation, and generalisation, 2011. Rejected by ICFP
2011.

4. G. W. Hamilton. Distillation: extracting the essence of programs. In Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 61–70. ACM Press New York, NY, USA, 2007.

5. G. W. Hamilton. A graph-based definition of distillation. In Second International
Workshop on Metacomputation in Russia, 2010.

6. N. D. Jones. The essence of program transformation by partial evaluation and
driving. In Proceedings of the Third International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics, PSI ’99, pages 62–79, London, UK,
UK, 2000. Springer-Verlag.

7. P. Jonsson and J. Nordlander. Taming code explosion in supercompilation. In
PEPM’11, 2011.

8. S. Kleene. Mathematical logic. Dover books on mathematics. Dover Publications,
2002.

9. A. Klimov. An approach to supercompilation for object-oriented languages: the
Java supercompiler case study. In First International Workshop on Metacomputa-
tion in Russia, 2008.

10. A. Klimov. Multi-result supercompilation in action: Solving coverability problem
for monotonic counter systems by gradual specialization. In International Work-
shop on Program Understanding (PU 2011), 2011.

11. A. Klimov. Solving coverability problem for monotonic counter systems by su-
percompilation. In E. Clarke, I. Virbitskaite, and A. Voronkov, editors, Perspec-
tives of Systems Informatics, 8th Andrei Ershov Informatics Conference, PSI 2011,



Formalizing and Implementing Multi-Result Supercompilation 163

Akademgorodok, Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162 of Lec-
ture Notes in Computer Science, pages 193–209. Springer, 2012.

12. A. V. Klimov. A program specialization relation based on supercompilation and
its properties. In First International Workshop on Metacomputation in Russia,
pages 54–77, 2008.

13. I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63, Keldysh
Institute of Applied Mathematics, Moscow, 2009.

14. I. Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic embedding and gen-
eralization in a higher-order setting. Preprint 62, Keldysh Institute of Applied
Mathematics, 2010.

15. I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31, Keldysh
Institute of Applied Mathematics, Moscow, 2010.

16. I. Klyuchnikov. Towards effective two-level supercompilation. Preprint 81, Keldysh
Institute of Applied Mathematics, 2010.

17. I. Klyuchnikov. The ideas and methods of supercompilation. Practice of Functional
Programming, 7, 2011. In Russian.

18. I. Klyuchnikov and S. Romanenko. SPSC: a simple supercompiler in Scala. In
PU’09 (International Workshop on Program Understanding), 2009.

19. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

20. I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation. In
Second International Workshop on Metacomputation in Russia, 2010.

21. I. Klyuchnikov and S. Romanenko. Multi-result supercompilation as branching
growth of the penultimate level in metasystem transitions. In PSI 2011, 2011.

22. A. Lisitsa and A. Nemytykh. Verification as a parameterized testing (experiments
with the SCP4 supercompiler). Programming and Computer Software, 33(1):14–23,
2007.

23. N. Mitchell. Rethinking supercompilation. In ICFP 2010, 2010.
24. N. Mitchell and C. Runciman. A supercompiler for core haskell. In Implemen-

tation and Application of Functional Languages, volume 5083 of Lecture Notes In
Computer Science, pages 147–164, Berlin, Heidelberg, 2008. Springer-Verlag.

25. A. P. Nemytykh and V. A. Pinchuk. Program transformation with metasystem
transitions: Experiments with a supercompiler. In Perspectives of System Infor-
matics, volume 1181 of LNCS, pages 249–260. Springer, 1996.

26. M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima, 2nd edition,
2010.

27. D. Sands. Proving the correctness of recursion-based automatic program transfor-
mations. Theoretical Computer Science, 167(1-2):193–233, 1996.

28. M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of positive
information propagation. Master’s thesis, Dept. of Computer Science, University
of Copenhagen, 1994.

29. M. H. Sørensen. Convergence of program transformers in the metric space of trees.
In Mathematics of Program Construction, volume 1422 of LNCS, pages 315–337,
1998.

30. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-
compilation. In J. W. Lloyd, editor, Logic Programming: The 1995 International
Symposium, pages 465–479, 1995.

31. M. H. Sørensen and R. Glück. Introduction to supercompilation. In Partial Eval-
uation. Practice and Theory, volume 1706 of LNCS, pages 246–270, 1998.



164 I.G. Klyuchnikov, S.A. Romanenko

32. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

33. V. F. Turchin. The phenomenon of science. A cybernetic approach to human evo-
lution. Columbia University Press, New York, 1977.

34. V. F. Turchin. A supercompiler system based on the language refal. SIGPLAN
Not., 14(2):46–54, 1979.

35. V. F. Turchin. The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 1980.

36. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

37. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.

38. V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a super-
compiler. In LFP ’82: Proceedings of the 1982 ACM symposium on LISP and
functional programming, pages 47–55, New York, NY, USA, 1982. ACM.



A Metacomputation Toolkit for a Subset of F]
and Its Application to Software Testing

Towards Metacomputation for the Masses

Dimitur Krustev

IGE+XAO Balkan, Bulgaria
dkrustev@ige-xao.com

Abstract. We present an on-going experiment to develop a practical
metacomputation toolkit for F#. There are – apart from the better
known supercompilation – other mature and potentially useful meth-
ods stemming from metacomputation theory: program inversion and
tabulation, neighborhood analysis. Although implementations of these
methods have existed since many years, they are typically experimen-
tal tools, treating specifically designed small languages. We investigate
if such methods can be made more readily available for practical use,
by re-developing them for a reasonably large subset of a mainstream
programming language. Practical technical challenges – together with
possible solutions – are discussed. We also hint at a potential practical
application – automatic generation of software test sets based on user
specifications of “interesting” input partitioning.

1 Introduction

The metacomputation theory, developed originally by Turchin, gives rise to sev-
eral interesting techniques. The best known is supercompilation [26], but there
are others as well – such as neighborhood analysis, neighborhood testing, pro-
gram tabulation and inversion [4]. While many supercompiler implementations
already exist, some of them for large subsets of popular programming languages,
the situation is different for other metacomputation techniques like neighbor-
hood analysis or program tabulation/inversion. Apart from the pioneering work
done in the context of Refal, there are few (publicly available) experimental im-
plementations [4,1,2,15], treating specially designed small languages (S-Graph,
TSG, XSG, SLL). While these implementations work well, and can perform
impressive tasks, they are hardly usable by someone without extensive knowl-
edge in metacomputation theory. For one thing, they require learning a new
language, specific to the tool, typically first-order functional, often even flat
(without nested function calls). While parsers and pretty-printers often exist,
other tools like IDEs or even debuggers are not available. The main motivation
for the current work is to try to transfer existing metacomputation techniques
in the context of a larger and more popular programming language. We chose to
work with a subset of F#, as F# has a clean and relatively simple functional core



166 D. Krustev

(stemming from its ((O)Ca)ML heritage), together with some facilities greatly
simplifying the creation of meta-programs, while at the same time it runs on a
very popular platform, and is well supported by several powerful IDEs (Visual
Studio, SharpDevelop, MonoDevelop 1).

In line with the overall pragmatic orientation of this experiment, we also
wanted an interesting and useful practical application to serve as a use case
for the metacomputation machinery. While a very sophisticated testing method
based on metacomputation already exists – neighborhood testing [4] – we guessed
that it would pose more technical challenges to implement fully, and settled at
first on a simpler (and less powerful) method for test generation. In particular,
we are interested in ways to apply the equivalence partitioning method for black-
box testing [5]. Given a partitioning specification, encoded in the subset of F#
that our tool supports, we can apply program tabulation (a key first step in
the URA-technique for program inversion) to generate test skeletons for each
equivalence class of the chosen data partition. Afterward it would be easy to fill
the skeleton holes with arbitrary values of the appropriate type.

To take a really simple example, consider a program (or a set of programs)
dealing with binary trees. Important quantitative characteristics of trees are their
size and height, so we may consider a partitioning based on the pair (size, height).
We can easily create (Fig. 1), in F#, a description of the data domain, and the
partitioning specification 2. If we then make a program tabulation request for
the expression shown in Fig. 2, we obtain the table shown in Fig. 3. We group
input trees 3 by the result they produce, and we have filtered out those with
result None.

type BinTree<’T> =
| EmptyTree
| Node of ’T ∗ BinTree<’T> ∗ BinTree<’T>

[<Re f l e c t edDe f i n i t i on >]
l e t rec t r e e S i z e t =

match t with
| EmptyTree −> NZero
| Node( , l , r ) −> NSucc (natAdd ( t r e e S i z e l ) ( t r e e S i z e r ) )

[<Re f l e c t edDe f i n i t i on >]
l e t rec t r eeHe ight t =

match t with
| EmptyTree −> NZero
| Node( , l , r ) −> NSucc (natMax ( t reeHe ight l ) ( t r eeHe ight r ) )

Fig. 1. Binary tree with size, height

1 All product names mentioned in the article are trademarks of their respective owners.
2 We assume some familiarity with the syntax of F#, or other languages in the ML

family.
3 Actually expressions representing sets of input trees.



A Metacomputation Toolkit for a Subset of F] 167

<@ fun t −>
l e t s i z e = t r e e S i z e t
l e t he ight = treeHe ight t
l e t b1 = natLE s i z e (NSucc (NSucc (NSucc (NZero ) ) ) )
l e t b2 = natLE he ight (NSucc (NSucc (NZero ) ) )
i f boolAnd b1 b2 then Some ( s i z e , he ight ) else None @>

Fig. 2. Binary tree tabulation request by (size, height)

[ ( Some ( Tuple2 (NSucc (NSucc (NSucc (NZero ) ) ) ,
NSucc (NSucc (NZero ) ) ) ) ,
[map [ ( t 0 , Node ( 3 , Node ( 6 , EmptyTree , EmptyTree ) ,

Node ( 9 , EmptyTree , EmptyTree ) ) ) ] ] ) ;
(Some ( Tuple2 (NSucc (NSucc (NZero ) ) , NSucc (NSucc (NZero ) ) ) ) ,
[map [ ( t 0 , Node ( 3 ,

Node ( 6 , EmptyTree , EmptyTree ) , EmptyTree ) ) ] ;
map [ ( t 0 , Node ( 3 , EmptyTree ,

Node ( 6 , EmptyTree , EmptyTree ) ) ) ] ] ) ;
(Some ( Tuple2 (NSucc (NZero ) , NSucc (NZero ) ) ) ,
[map [ ( t 0 , Node ( 3 , EmptyTree , EmptyTree ) ) ] ] ) ;

(Some ( Tuple2 (NZero , NZero ) ) , [map [ ( t 0 , EmptyTree ) ] ] ) ]

Fig. 3. Binary tree tabulation result

A couple of things to note: we have restricted both the size and the height
of the trees we consider, in order to reduce the search space and to get a small
number of tests. Each entry in the resulting table represents an equivalence class
– a set of input values giving a particular output. The set is represented as a list
of maps, each map specifying possible values for all parameters of the tabulated
function. Further, the input expressions in the table contain free variables (__3,
__6, . . . ), for places in the input trees, that bear no influence on the expression
value. We could, however, instantiate those variables with suitable constants
(based on the type) and get concrete tests as a final result. For example, the
table entry (Some (Tuple2 (NZero, NZero)), [map [(t_0, EmptyTree)]])

shows, that only the empty tree has both size and height 0.

We shall see a couple of more realistic examples of partitioning-based testing
in Sect. 5. Before that, we discuss how F# features like code quotations facili-
tate the creation of “embedded” meta-programs operating on other parts of the
F# program (Sect. 2). We also motivate the choice of the particular F# sub-
set covered. Next we outline the implementation of the basic metacomputation
algorithms – driving and process-tree creation (Sect. 3). We mostly follow an ap-
proach similar to existing implementations, but also discuss practical challenges
and implementation tricks. The treatment of program tabulation and inversion
(Sect. 4) is based on the classical approach used in URA [4,1,2], but the fact that
we deal with a non-flat, higher-order functional language poses some unexpected
obstacles. In fact, the current implementation is – as far as we know – the first
that lifts URA-like methods to a higher-order language.



168 D. Krustev

2 “Decompiling” F# quotations

While typical meta-program implementations require re-implementing some phases
of a standard compiler front-end (like lexing, parsing, de-sugaring, type-checking),
with F# we can take a shortcut by using its built-it facilities for meta-programming
– called “code quotations”. In brief, F# quotations permit to instruct the com-
piler to store a high-level, abstract-syntax-tree (AST) representations of parts
of the program, alongside (or instead of) the compiled low-level byte-code [24].
There are basically 2 ways to achieve this:

– by placing [<ReflectedDefinition>] in front of a top-level function (or
method) definition (producing both a normal compiled definition and an
AST representation);

– by enclosing any (syntactically complete) expression in <@ ... @> (which
returns only the AST representation of the expression).

The use of both methods was already demonstrated in the introductory exam-
ple. There are special facilities (the MethodWithReflectedDefinition active
pattern, for example) for retrieving the AST corresponding to a reflected top-
level function. The design of F# quotations resembles similar designs in MetaML
and Template Haskell. There is no need to explicitly require reflecting type def-
initions – it is done by default in languages sitting on top the .NET run-time.

While in principle it would be possible to base driving and further metacom-
putation algorithms directly on the internal AST representation of quotations,
we take a two-step approach: we first translate quotation ASTs (if possible) to
another representation (Fig. 4) on which driving is then performed. The advan-
tages of this approach are:

– we can precisely specify the subset of F# we treat;
– we can use a language representation more suitable for driving.

type BindPattern = PVar of VName | PWildcard
type Pattern = PCon of CName ∗ BindPattern l i s t
type Exp =

| EVar of VName
| EApp of Exp ∗ Exp
| ELam of BindPattern ∗ Exp
| ELet of VName ∗ Exp ∗ Exp
| ELetRec of (VName ∗ Exp) l i s t ∗ Exp
| ECon of CName ∗ Exp l i s t
| ECase of Exp ∗ ( Pattern ∗ Exp) l i s t

Fig. 4. F# subset definition

One can see immediately that we retain most typical features of modern
functional languages (higher-order functions, let- and letrec-expressions, alge-
braic data types with pattern matching). Readers well familiar with F# can
already deduce what is left out:



A Metacomputation Toolkit for a Subset of F] 169

– all features related to object-oriented programming, and ensuring interoper-
ability with other .NET languages (classes, structs, methods, etc.);

– all features related to mutable data structures, and side-effects in general

The inclusion of wild-card patterns adds some complexity to the metacomputa-
tion algorithms, but it greatly simplifies the conversion from the reflected AST
representation.

Typing deserves a special note. Our intermediate language is untyped. On
the other hand we rely on the fact, that F# quotations are type-checked by the
compiler 4. This fact gives 2 advantages:

– during driving (and other metacomputation algorithms) we can take fewer
precautions if we can rely on an initially type-checked input;

– driving and other transformations preserve typing implicitly, so at the end
we can recover a typed expression relatively easily, if needed.

As already hinted by the first example, the F# subset we accept features a
rich type system, including tuples, records (with immutable fields) 5, unions,
parametric polymorphism.

One more important restriction of our subset is the lack of access to the F#
standard libraries. There are two main reasons for this decision:

– standard-library code is already compiled without reflection, and there is no
easy way to make it reflected without modifying the library sources (where
available) and recompiling a customized version of the standard libraries;

– metacomputation algorithms like driving are traditionally designed for al-
gebraic data types. Adding support for some primitive data types (like int

or float) would probably require the use of external constraint solver, and
would in general complicate the implementation by at least an order of mag-
nitude. Besides, many standard-library data types, such as arrays, are es-
sentially mutable. Support for mutability is also deemed too complicated to
contemplate at this point.

Still, we support some of the basic built-it types – like bool, option, list –
because they can be treated as algebraic. The lack of standard-library support is
compensated by a “reflected prelude” containing definitions of some useful data
types and functions. (natAdd and natMax in the introductory example come from
this prelude.)

The conversion from code quotation representation to our Exp type is mostly
straightforward, as the F# compiler has already done its parsing, type infer-
ence, pattern-matching compilation and other de-sugaring, before emitting the
quotation AST. Actually the amount of de-sugaring is more than we need here:
F# match-expressions are converted to a combination of more primitive oper-
ations (if-expressions, predicates for testing for a particular head constructor,
tuple projections). Our conversion maps those primitive operations back to spe-
cial kinds of match-expressions, but without any non-local optimizations. The

4 Unless built by direct calls to AST constructors, but we ignore that possibility here.
5 Records are de-sugared into tuples, and do not appear explicitly in Fig. 4



170 D. Krustev

net result can be seen in Fig. 5, which shows the conversion of the treeSize

function (pretty-printed as F# code). The program in this form clearly contains
redundancies, but driving is able to remove exactly this kind of redundancies
well, so we do not need to perform any special optimizations at the level of our
Exp representation.

l e t rec t r e e S i z e = ( fun t −>
match (match t with

| EmptyTree −> False
| Node ( , , ) −> True ) with

| True −>
( l e t r = match t with

| Node ( , , x ) −> x in
( l e t l = match t with

| Node ( , x , ) −> x in
NSucc ( ( Re f l e c t edPre lude . natAdd ( t r e e S i z e l ) ) ( t r e e S i z e r ) ) ) )

| False −> NZero )

Fig. 5. F# quotation of the treeSize function

3 Process-tree Construction

We assume readers are familiar with the basic notions of driving, and do not re-
iterate them here 6, but instead focus on some of the implementation technical
details. We follow the standard approach [4,23] and base our metacomputation
toolkit on the notion of a process tree. While some implementations of super-
compilation omit the explicit construction of process trees (e.g. [18,12,6,20] ),
we feel it is a useful concept, unifying different metacomputation techniques and
making their implementation more modular.

3.1 Driving and Process Trees

Our representation of process trees is quite standard, very similar to [23,13,15].
We separate the implementation of individual driving steps in a stand-alone
function, and then the main driving function simply unfolds the results of driv-
ing steps into a tree (Fig. 6). Each driving step takes a “configuration”, encoding
the current state of the driving process, and produces one of 4 kinds of results,
corresponding to the 4 kinds of process tree nodes described below. As the pro-
cess tree is often infinite and F# is a strict language, we need to explicitly make
the process-tree data type lazy enough. (We use the Lazy<’X> data type from
the F# standard libraries for this purpose.)

We distinguish 4 kinds of process-tree nodes:

– leaves – used when driving cannot proceed further at all (because we reach
an atomic value or a free variable);

6 Good introductions can be found, for example in [23,4].



A Metacomputation Toolkit for a Subset of F] 171

type DriveStep <’Conf , ’ ContrHead , ’ Contr> =
| DSDone
| DSTransient of ’ Conf
| DSDecompose of ’ Conf l i s t ∗ ( ’ Conf l i s t −> ’ Conf )
| DSBranch of ’ ContrHead ∗ ( ’ Contr ∗ ’ Conf ) l i s t

l e t dr iveStep ( conf : DriveConf )
: DriveStep<DriveConf , VName, Pattern> = . . .

type PrTree<’Conf , ’ ContrHead , ’ Contr> =
| PTDone of ’ Conf
| PTTransient of ’ Conf ∗ Lazy<PrTree<’Conf , ’ ContrHead , ’ Contr>>
| PTDecompose of ( ’ Conf ∗ Lazy<PrTree<’Conf , ’ ContrHead , ’ Contr>>)

l i s t ∗ ( ’ Conf l i s t −> ’ Conf )
| PTBranch of ’ ContrHead ∗ ( ’ Contr ∗ ’ Conf

∗ Lazy<PrTree<’Conf , ’ ContrHead , ’ Contr>>) l i s t
l e t rec dr ive ( conf : DriveConf )

: PrTree<DriveConf , VName, Pattern> = . . .

Fig. 6. Driving and process trees

– branches – used when driving gets blocked by a match-expression scrutinizing
a free variable. The edges to the sub-trees of such a node are labeled with
“contractions”, which encode the conditions for selecting one of the sub-
trees. It turns useful to factor out the common part of all contractions in the
branch node itself – represented as ’ContrHead in Fig. 6;

– transient nodes – when the driving step amounts to (deterministic) weak
reduction;

– decomposition nodes – used in different cases:

• when driving reaches a constructor of non-0 arity, we can continue driving
the constructor arguments in parallel;
• when we need to perform generalization during supercompilation, in or-

der to obtain a finite (but imperfect) process tree;
• when driving get stuck at an expression with sub-expressions, and none

of the above cases applies.

In the current setting, the last subcase amounts to reaching an expression of the
form match fx1x2...xn with ..., where f is a free variable of a function type,
and n > 0. In the ideal case, we should create a branch node, but that would
mean using a more complicated representation of contractions, and some form of
higher-order unification. As in other supercompilers for higher-order languages,
we take a simpler route by decomposing such expressions and continuing to drive
their sub-expressions in parallel.

3.2 Driving Configurations

A technical subtlety arises with the choice of configuration representation: our
F# subset preserves the possibility of the full language to have arbitrary nested
let(rec) expressions. Direct treatment of let-, and especially letrec-, expressions
can complicate substantially the definition of driving, so it is common to assume,
that at least recursive definitions are lambda-lifted to the top level [18,20,17].



172 D. Krustev

But first, we make an important decision – to stick to call-by-name (CBN) driv-
ing, even if our object language is call-by-value (CBV). This approach is classic
– taken already by the original work on driving for Refal. In the absence of side
effects, the semantic difference between CBN and CBV is mostly of theoretical
interest. More important pragmatically is the potential loss of sharing, compared
with call-by-need driving methods [18,17,6]. We argue, however, that this loss
of sharing is critical mostly in the context of supercompilers used as a part of
optimizing compilers. As we are interested in other applications of metacompu-
tation techniques, the simplicity and the potential for more reductions offered
by call-by-name driving is deemed more important.

Sticking to call-by-name enables us to introduce yet another intermediate
representation of expressions, based on closures (Fig. 7), inspired by [7,8]. It is,
obviously, easy to convert between the Exp and ClosedExp representations. The
new encoding brings the following advantages:

– no need to deal explicitly with let-expressions or substitutions during driving;
– an especially unobtrusive treatment of recursion;
– no worries about variable capture, at least in the context of weak reductions.

type CaseAlts = ( Pattern ∗ Exp) l i s t
type EnvEntry<’V> =

| EEVarBind of VName ∗ ’V
| EERecDefs of (VName ∗ Exp) l i s t

type Env<’V> = EnvEntry<’V> l i s t
type ClosedExp =

| CEVar of VName ∗ Env<ClosedExp>
| CEClosure of BindPattern ∗ Exp ∗ Env<ClosedExp>
| CEApp of ClosedExp ∗ ClosedExp
| CECon of CName ∗ ClosedExp l i s t
| CECase of Exp ∗ CaseAlts ∗ Env<ClosedExp>

Fig. 7. Closure-based expression representation

To keep track of the context of the current redex we use a stack of evaluation
contexts, similar to [6]. We also need a counter for generating fresh variables
when reduction descends under a binder. The final representation of driving
configurations is shown on Fig. 8.

type DriveContextEntry =
| DCEApp of ClosedExp
| DCECase of CaseAlts ∗ Env<ExpOrClosed>

type DriveContext = DriveContextEntry l i s t
type DriveConf = in t ∗ ClosedExp ∗ DriveContext

Fig. 8. Driving configurations



A Metacomputation Toolkit for a Subset of F] 173

3.3 Optimizations of the Driving Implementation

While the closure-based representation of expressions has many advantages, it
comes at a cost: we have to constantly switch between the 2 representations (Exp
and ClosedExp) during driving and further metacomputation algorithms (when
we look up a variable binding inside an environment; when driving reaches a
(weak) redex, whose head expression has a binder; when we need to perform
driving under a binder; when we propagate a contraction inside the sub-trees
of a branch node). The repeated re-traversals and re-creations of parts of the
driven expression incur a high cost both in terms of processor time and memory
consumption. We found 2 measures, that helped reduce significantly this cost.

Firstly, the closure-based representation can be modified slightly, as shown
on Fig. 9. At certain key places (simple environment bindings, and the scruti-
nee of a match-expression) we permit both representations. The advantage of
this flexibility is that we can delay in many situations the conversion from Exp

to ClosedExp or vice-versa. Further, when the same sub-expression undergoes a
sequence of conversions from one form to the other, adjacent pairs of such conver-
sions can now cancel each other. We have to force the conversion typically only
when driving reaches a variable reference, whose binding in the corresponding
environment is not in the form needed.

The second measure involves performing a limited form of environment prun-
ing (currently – only when converting an EVar into a CEVar). The limited form
we have chosen is inexpensive both in terms of time and memory allocations,
while permitting in many cases to seriously reduce the size of environments
stored in closures. As these environments may need to be converted back to
let(rec)-expressions at a certain point, the saving can be substantial.

type ClosedExp =
| CEVar of VName ∗ Env<ExpOrClosed>
| CEClosure of BindPattern ∗ Exp ∗ Env<ExpOrClosed>
| CEApp of ClosedExp ∗ ClosedExp
| CECon of CName ∗ ClosedExp l i s t
| CECase of ExpOrClosed ∗ CaseAlts ∗ Env<ExpOrClosed>

and ExpOrClosed =
| EOCExp of Exp
| EOCClosed of ClosedExp

Fig. 9. Optimized closure-based representation

4 Process-tree Based Program Tabulation and Inversion

Let’s briefly recall the idea of program tabulation, which was historically de-
veloped as a key initial step in the URA method for program inversion [4,1].
Assuming a programming language L, a data domain D, and evaluation func-
tion J K : L → D → D, the tabulation of a program p ∈ L can be defined in



174 D. Krustev

general as producing – from a program and a subset of the data domain – a
sequence of pairs:

Tab(p,Din) = (D
(1)
in , f1), (D

(2)
in , f2), ...

where:

Din , D
(i)
in ⊆ D; D

(i)
in ∩D

(j)
in = ∅ for i 6= j;

⋃∞
i=1D

(i)
in = Din ;

fi : D
(i)
in → D, i = 1, 2, ...

∀i∀d ∈ D(i)
in (fi(d) = JpK d)

and with the further requirement that, given any i, for each d ∈ D(i)
in the com-

putation of JpK d takes the same path in the branches of the process tree.
We follow the established approach for performing tabulation ([4,1,2]): first

build the process tree, then traverse it in breath-first order (to ensure complete-
ness), collecting contractions from branch nodes along the way. Each time we
reach a leaf in the tree, we can produce a new input-output pair in the table: each

D
(i)
in is the composition of contractions along the path from the root applied to

Din (all D
(i)
in take thus the form of first-order substitutions); and fi = e, where

e is the expression extracted from the leaf configuration. Note that both D
(i)
in

and e can contain free variables; binding them to different values gives different

elements in the set D
(i)
in , and substituting these values in e gives the ground

result associated with the corresponding input.
The algorithm outlined above considers only process trees containing leaves

and branch nodes. Indeed, the original implementations of URA [4,1] dealt with
first-order flat functional languages (S-Graph, TSG), Extensions were later de-
veloped for non-flat, but still first-order languages [2,15]. Still, it appears that
those extensions either do not produce transient/decomposition nodes, or ignore
the possibility of such nodes during tabulation. Transient nodes are easy – we
can simply skip them during tabulation. As for decomposition nodes, recall that
in the current setting they can be of 3 kinds:

1. corresponding to a constructor of non-0 arity;
2. corresponding to a λ-expression, which will appear in the program result;
3. corresponding to an expression of the form match fx1x2...xn with ..., with
n > 0 and f a free variable of a function type

We decided to ignore the latter 2 kinds during tabulation, with one exception:
nodes of the second kind immediately below the root of the process tree. Such
nodes correspond to the program arguments, and we simply traverse them col-
lecting the set of free variables, to build Din . As for other non-constructor de-
composition nodes appearing inside the tree, they seem not so important for the
practical applications we currently have in mind, as their presence would imply
at least one of the following:

– first-class functions embedded inside the result of the tabulated function;



A Metacomputation Toolkit for a Subset of F] 175

– first-class functions appearing as (sub-values of) arguments of the tabulated
function.

Our current strategy is to skip processing the corresponding sub-tree, which
renders the method incomplete, but at least allows us to find other existing
solutions, even if the tabulation request violates the above assumptions. Note
also that this restriction in no way prevents many typical uses of higher-order
functions – for example in conjunction with list functions such as map or filter.
(See the examples in the next section.) We should only avoid higher-order func-
tions used as data – nested inside input or output values. Thus our restriction
is very similar to existing restrictions in most higher-order functional languages
on performing input/output with values embedding higher-order functions.

This still leaves us with the problem of how to handle constructor decompo-
sition nodes during tabulation. In fact, we have not yet found a suitable solution
for the tabulation algorithm based on breadth-first search. BFS in itself proved
to be a practical problem, as it can be very memory-consuming (because of
the need to keep a queue with all nodes of the level of the tree currently be-
ing scanned). There is a well-known alternative to BFS, which trades a small
constant-factor increase in time complexity for big asymptotic improvement in
memory consumption – iterative deepening [21]. While we have not implemented
yet a version of tabulation that performs full iterative-deepening search, we have
one based on depth-limited search, which is the key component of iterative deep-
ening. To further optimize memory consumption, we do not build the process
tree explicitly before tabulation, but use directly driveStep (Fig. 6), producing
a “virtual” version of the process tree for traversal.

This version of depth-limited tabulation also enables an easy (even if some-
what brute-force) solution to the problem of inner constructor nodes. The basic
idea is as follows:

– build all input-output tables – tabi (i = 1..n) – corresponding to the n
subtrees of the constructor node; as we are using depth-limited search, each
tabi is guaranteed to be finite;

– construct the Cartesian product of all tabi:

cp = {((s1, e1), ..., (sn, en))| ∀i(si, ei) ∈ tabi}
– for each ((s1, e1), ..., (sn, en)) ∈ cp, if mergeManySubsts [ s1; ...; sn ] = Some

s, we can yield a new table entry for the constructor node: (s, C(e1, ..., en)),
where C is the corresponding constructor.

The function mergeManySubsts simply combines several first-order substa-
tions, ensuring that if the same variable is bound in several substitutions, the
corresponding most general unifier exists, and the variable is bound to the uni-
fication result.

5 Black-box Tests Based on Partitioning Specifications

We return to the discussion of one potential application of our F# metacompu-
tation toolkit – generation of partition-based black-box tests. Black-box testing



176 D. Krustev

requires creation of “interesting” test sets for programs p ∈ L, whose internal
structure is unknown. One well-proven heuristics for building such tests is the
method of “equivalence partitioning” [5]. The idea is to devise a partition (typ-
ically – finite) of the data domain: D =

⋃
iDi (i 6= j → Di ∩ Dj = ∅); each

such partition defines an equivalence relation over D. The intuition behind the
method is that if we define a suitable partition, the data points in each of the
corresponding equivalence classes will be treated in a similar manner by the
program under test, and so it will be sufficient to take only one or a few tests
from each equivalence class. One way to specify such a partition is by a function
f : D → X, where X = {x1, x2, ..., xn} ⊆ D is some finite data type. Then
take Di := {d ∈ D | f(d) = xi}. If we also assume that the specification is
complete, in the sense that ∀i∃d ∈ D : f(d) = xi, we can use the program
tabulation method described in the previous section to generate representatives
of the equivalence classes. It suffices to tabulate f , and to group entries in the
resulting table by output value (xi). Then, for each xi, we can select one or

several input tests from the corresponding D
(i)
in .

Let’s look at a few more examples illustrating this idea. First, consider a
program dealing with a very simple imperative language, containing assignments,
sequences and while-loops (Fig. 10). We leave unspecified the data types for
variables and expressions. Two simple quantitative measures on programs are
introduced – statement count, and loop-nesting depth, and we use them to define
partitioning of the space of programs – the expression used in the tabulation
request is shown on Fig. 11. (Note that we limit the search to programs of
nesting ≤ 2 and statement count ≤ 3.) The result of tabulation appears in Fig.
12; we can see 6 equivalence classes, and by instantiating the free variables with
some suitable values we can obtain test inputs for each class.

type Stmt<’V, ’E> =
| Assign of ’V ∗ ’E
| Seq of Stmt<’V, ’E> ∗ Stmt<’V, ’E>
| While of ’E ∗ Stmt<’V, ’E>

[<Re f l e c t edDe f i n i t i on >]
l e t rec stmtCount ( s : Stmt<’V, ’E>) : Nat = . . .

[<Re f l e c t edDe f i n i t i on >]
l e t rec l oopNest ing ( s : Stmt<’V, ’E>) : Nat = . . .

Fig. 10. Simple imperative language

The next example is from a different domain (a scaled-down version of a real-
world use case): programs dealing with electrical diagrams often have wire-lists
as inputs. Wire connections usually form an acyclic graph, with each connected
component representing an equipotential. We can thus represent wire-lists as
forests, with each tree being a set of electrically connected wires and pins (Fig.
13). A possible tabulation request – defining a partition by (equipotential-count,



A Metacomputation Toolkit for a Subset of F] 177

<@ fun s −>
l e t sCnt = WhileL . stmtCount s
l e t nestCnt = WhileL . loopNest ing s
i f boolAnd (natLE nestCnt (NSucc (NSucc (NZero ) ) ) )

( natLE sCnt (NSucc (NSucc (NSucc (NZero ) ) ) ) )
then Some ( nestCnt , sCnt ) else None
@>

Fig. 11. Tabulation request for imperative language programs

[ ( Some ( Tuple2 (NSucc (NSucc (NZero ) ) , NSucc (NSucc (NSucc (NZero ) ) ) ) ) ,
[map [ ( s 0 , While ( 2 , While ( 4 , Assign ( 6 , 5 ) ) ) ) ] ] ) ;

(Some ( Tuple2 (NSucc (NZero ) , NSucc (NSucc (NSucc (NZero ) ) ) ) ) ,
[map [ ( s 0 , While ( 2 , Seq ( Assign ( 6 , 5 ) , Assign ( 8 , 7 ) ) ) ) ] ;
map [ ( s 0 , Seq (While ( 4 , Assign ( 8 , 7 ) ) , Assign ( 6 , 5 ) ) ) ] ;
map [ ( s 0 , Seq ( Assign ( 4 , 3 ) ,While ( 6 , Assign ( 8 , 7 ) ) ) ) ] ] ) ;

(Some ( Tuple2 (NSucc (NZero ) , NSucc (NSucc (NZero ) ) ) ) ,
[map [ ( s 0 , While ( 2 , Assign ( 4 , 3 ) ) ) ] ] ) ;

(Some ( Tuple2 (NZero , NSucc (NSucc (NSucc (NZero ) ) ) ) ) ,
[map

[ ( s 0 , Seq ( Seq ( Assign ( 6 , 5 ) , Assign ( 8 , 7 ) ) , Assign ( 10 , 9 ) ) ) ] ;
map

[ ( s 0 , Seq ( Assign ( 4 , 3 ) , Seq ( Assign ( 8 , 7 ) , Assign ( 10 , 9 ) ) ) ) ] ] ) ;
(Some ( Tuple2 (NZero , NSucc (NSucc (NZero ) ) ) ) ,
[map [ ( s 0 , Seq ( Assign ( 4 , 3 ) , Assign ( 6 , 5 ) ) ) ] ] ) ;

(Some ( Tuple2 (NZero , NSucc (NZero ) ) ) , [map [ ( s 0 , Assign ( 2 , 1 ) ) ] ] ) ]

Fig. 12. Imperative language tabulation result

wire-count) – is shown in Fig. 14. The list of results is too long to include, but
the number of different entries in each equivalence class (after taking only the
first 30 non-None results, with a depth limit of 25) is summarized in Table 1.

Table 1. Wire-list tabulation results

Equipotential count Wire count Number of entries

2 3 12
2 2 5
2 1 2
2 0 1
1 3 5
1 2 2
1 1 1
1 0 1
0 0 1

What is remarkable in this example is, that the partition specification re-
quires some slightly more involved processing than the previous ones. We can see,
though, that the familiar use of higher-order library functions (like listFoldl,
listNubBy) keeps the code succinct. We could no doubt code the same functions



178 D. Krustev

type RoseTree<’N, ’E> = RTNode of ’N ∗ ( ’E ∗ RoseTree<’N, ’E>) l i s t
type PinData<’EQ> = {pinTag : Nat ; eqTag : ’EQ}
type WireData<’WC> = {wireColor : ’WC}
type Equipotent ia l <’EQ, ’WC> = RoseTree<PinData<’EQ>, WireData<’WC>>

[<Re f l e c t edDe f i n i t i on >]
l e t rec equ ipotSta t s ( ep : Equ ipotent ia l <’EQ, ’WC>) : Nat ∗ ’EQ l i s t =

match ep with
| RTNode(pd , wds ts ) −>

l e t t s = l istMap ( fun ( , x ) −>x ) wds ts
l e t wcount1 = l i s tL eng th wds ts
l e t (wcount2 , eqs ) = l i s t F o l d l ( fun (wc , eqs ) t −>

l e t (wc1 , eqs1 ) = equ ipotSta t s t
( natAdd wc1 wc , l i s tAppend eqs1 eqs ) ) (NZero , [ ] ) t s

( natAdd wcount1 wcount2 , pd . eqTag : : eqs )

[<Re f l e c t edDe f i n i t i on >]
l e t equ ipo t sS ta t s ( eqTagEq : ’EQ −> ’EQ −> bool )

( eps : Equ ipotent ia l <’EQ, ’WC> l i s t ) : Nat ∗ Nat ∗ ’EQ l i s t =
l e t (wc , eqs ) = l i s t F o l d l ( fun (wc1 , eqs1 ) ep −>

l e t (wc2 , eqs2 ) = equ ipotSta t s ep
(natAdd wc2 wc1 , l i s tAppend eqs2 eqs1 ) ) (NZero , [ ] ) eps

( l i s tL eng th eps , wc , l istNubBy eqTagEq eqs )

Fig. 13. Wire-list as a forest, with simple statistics functions

<@ fun eps −>
l e t ( epCnt , wireCnt , eqs ) = WList . equ ipo t sS ta t s boolEq eps
i f boolAnd (natLE epCnt (NSucc (NSucc (NZero ) ) ) )

( natLE wireCnt (NSucc (NSucc (NSucc (NZero ) ) ) ) )
then Some ( epCnt , wireCnt ) else None
@>

Fig. 14. A tabulation request for wire-list test generation



A Metacomputation Toolkit for a Subset of F] 179

in a first-order language, but some code-size increase and loss of modularity
seems inevitable, even in such small cases. We can also note the use of another
trick for controlling the size of the search space: the type for equipment tags
is abstracted as a parameter in the wire-list definition; we instantiate it with
bool in the tabulation request, to limit the number of different equipment tags
appearing in test cases.

We have performed further experiments, which we do not describe in detail
here. Still it is worth noting that we stumbled upon certain restrictions of this
test-generation technique. One of the examples defines a Church-style version
of the simply-typed lambda calculus, together with a type-checker. If we try
to generate directly only well-typed lambda terms for testing, with a reasonably
small depth limit, the method tends to generate mostly trivially well-typed terms
of the form λx1x2...xn.xi. On the other hand, the tabulation technique is also
very flexible – in the same lambda-calculus sample, it is possible to “nudge”
the tabulator towards more interesting well-typed terms, by partially specifying
the shape of types in the typing environment of the type-checker, ensuring that
there are more suitable types for forming applications.

6 Related Work

As already mentioned on several occasions, the pioneering work on metacompu-
tation – both supercompilation and related techniques – was done by Turchin
and his students, using Refal [26]. Later many key methods were re-developed
using simpler languages like S-Graph [9,4,1,3]. In recent years, there is renewed
interest and activity in different supercompiler implementation, for example
[18,14,12,11,6,20], to cite a few. In comparison, other metacomputation methods
seem neglected, maybe with the exception of [15].

There is extensive literature on software testing, and in particular, on black-
box and equivalence partitioning testing [5]. Another interesting testing method
is based on metacomputation techniques as well – neighborhood testing [4,3].
While a detailed comparison with the technique outlined here is out of scope, we
can note important high-level differences. Neighborhood testing is a white-box
testing method, requiring access to the source of the unit under test (and, if
available, also its executable specification). It can be used – in principle – for
any language, as long as we have an interpreter for that language, written in
the language, for which a neighborhood analyzer exists. We consider neighbor-
hood testing being a “second-order” meta-technique – requiring 2 meta-system
transitions – to be the main difficulty for practical application. These two lev-
els of interpretative overhead will probably make it harder to achieve sufficient
performance in practical implementations. On the other hand, neighborhood
testing is a much more powerful method (in certain formal sense subsuming all
existing test coverage criteria), so its successful practical application remains an
interesting area of study.

Other test-generation methods apply techniques similar to driving – usually
under the umbrella term of “symbolic execution”. A recent variation – dynamic



180 D. Krustev

symbolic execution – is employed in successful test-generation tools like Microsoft
Pex [10]. Again, we omit a detailed comparison between dynamic symbolic ex-
ecution and driving, noting instead some pragmatic differences with Pex. Pex
is heavily geared towards supporting well idiomatic code written in OO .NET
languages like C#. It handles surprisingly well complicated program logic using
a combination of different built-in types. When faced with data types exhibit-
ing deep recursive structure, however, it usually requires help from the user to
generate good tests 7. The approach we propose here deals well with recursive
algebraic data types, so it can be seen as complementary to tools like Pex.

There are many methods for generating test data with specific structure (for
example grammar-based, or XML-Schema-based [5]). Specialized tools exist for
generating correct test programs in particular programming languages [16,19].
A generic technique for test generation, like the one presented here, can hardly
compete in efficiency with such specialized techniques. At the same time, driving-
based exploration is very flexible (as seen in most of our examples) and can
probably be combined with similar techniques to reduce the search space for
test generation (as we hinted for the lambda-calculus example).

We have already noted, that F# code quotations [24] – which helped a lot
in making our toolkit feasible with relatively small effort – are very similar in
design to languages like MetaML, and language extensions like Template Haskell
[25,22]. Similar facilities are starting to appear for other popular languages. We
can thus imagine a version of our toolkit for such languages, leveraging on the
corresponding meta-programming support.

7 Conclusions and Future Work

We describe an on-going experiment to make more accessible some of the less
well-known metacomputation methods (like program tabulation/inversion or
neighborhood analysis) – by re-implementing them for a large subset of a pop-
ular standard language (F#), which is supported by an efficient run-time and
a rich IDE and other developer tools. The F# support for meta-programming
(code quotations) greatly facilitated this effort.

To the best of our knowledge, this is the first implementation of URA-like
program tabulation for a higher-order functional language. Aside from the spe-
cial challenges posed by higher-order functions, we rely on already established
metacomputation techniques. We described parts of the implementation in more
detail, in the hope that some of the insights, gained in attempting to make driv-
ing and tabulation reasonably efficient, can be useful in similar contexts. An
interesting practical application of program tabulation is also described in some
detail – generating black-box tests from partitioning specifications.

Our system, in its current state, can handle successfully moderately-sized pro-
grams, and generate small-sized partition-based tests (similar in size or slightly

7 It is perfectly possible that many of the current limitations of Pex will be lifted in
future versions.



A Metacomputation Toolkit for a Subset of F] 181

larger than the examples in Sect. 5). Our experiments indicate, that more op-
timization effort is needed to make the test-generation approach practical in a
wider variety of scenarios. It is not clear at this point if modest low-level fine-
tuning will be enough, or we need to more drastically re-think some of the key
algorithms, such as the treatment of decomposition nodes during tabulation.
Another interesting optimization option to try would be to re-use the underly-
ing F# run-time for performing weak reductions, and revert to interpretative
driving for treating reduction under binders, and for information propagation
inside match-expression branches.

There are a lot of possibilities to make the toolkit more “user-friendly”. As
suggested by one of the reviewers, we could automatically convert some primitive
data types (such as int) into suitable replacements from the reflected prelude.
A non-trivial issue is how to select the best replacement in each case. (We could
supply an implementation of arbitrary signed integers in the prelude, but it
would be less efficient during tabulation in cases, where the user actually needs
only natural numbers.) Another improvement, which is in progress, is to fill holes
in generated tests by arbitrary values of the appropriate type and convert back
each test into a normal F# value.

Apart from the potentially interesting future tasks hinted in the previous
section, we can list a few more interesting ideas for future experiments:

– extend driving to a full supercompiler for the F# subset; check if program
tabulation/inversion can be made more efficient by using the process graphs
generated during supercompilation, instead of the potentially infinite process
trees;

– modify driving to use call-by-need instead of call-by-name, and see what
performance benefits it can bring to metacomputation methods (other than
supercompilation);

– implement neighborhood analysis, and experiment with potential practical
applications (like neighborhood testing).

8 Acknowledgments

The author would like to thank Ilya Klyuchnikov and Neil Mitchell for the helpful
comments and suggestions for improving the presentation in this article.

References

1. Abramov, S., Glück, R.: The universal resolving algorithm and its correctness:
inverse computation in a functional language. Science of Computer Programming
43(2-3), 193–229 (2002)

2. Abramov, S., Glück, R., Klimov, Y.: An universal resolving algorithm for inverse
computation of lazy languages. Perspectives of Systems Informatics pp. 27–40
(2007)



182 D. Krustev

3. Abramov, S.M.: Metacomputation and program testing. In: Proceedings of the 1st
International Workshop on Automated and Algorithmic Debugging. pp. 121–135.
Linköping University, Linköping, Sweden (1993)

4. Abramov, S.M.: Metavychisleniya i ih primenenie (Metacomputation and its ap-
plications). Nauka, Moscow (1995)

5. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2008)

6. Bolingbroke, M., Peyton Jones, S.: Supercompilation by evaluation. In: Proceedings
of the third ACM Haskell symposium on Haskell. pp. 135–146. ACM (2010)

7. Clément, D., Despeyroux, T., Kahn, G., Despeyroux, J.: A simple applicative lan-
guage: Mini-ML. In: Proceedings of the 1986 ACM conference on LISP and func-
tional programming. pp. 13–27. ACM (1986)

8. Coquand, T., Kinoshita, Y., Nordström, B., Takeyama, M.: A simple type-theoretic
language: Mini-TT. From Semantics to Computer Science: Essays in Honour of
Gilles Kahn (2009)

9. Glück, R., Klimov, A.V.: Occam’s razor in metacomputation: the notion of a per-
fect process tree. In: Cousot, P., Falaschi, M., Filé, G., Rauzy, A. (eds.) Static
Analysis. Proceedings. Lecture Notes in Computer Science, vol. 724, pp. 112–123.
Springer-Verlag (1993)

10. Godefroid, P., de Halleux, P., Nori, A., Rajamani, S., Schulte, W., Tillmann, N.,
Levin, M.: Automating software testing using program analysis. Software, IEEE
25(5), 30–37 (2008)

11. Hamilton, G.: Distillation: extracting the essence of programs. In: Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation. pp. 61–70. ACM (2007)

12. Jonsson, P.A., Nordlander, J.: Positive supercompilation for a higher order call-
by-value language. SIGPLAN Not. 44(1), 277–288 (Jan 2009)

13. Klyuchnikov, I.: The ideas and methods of supercompilation. Practice of Functional
Programming (7) (2011), in Russian

14. Klyuchnikov, I., Romanenko, S.: Proving the equivalence of higher-order terms by
means of supercompilation. In: Perspectives of Systems Informatics’09. pp. 193–
205. Springer (2010)

15. Klyuchnikov, I.: GitHub project: ”Metacomputation and its Applications” -
now for SLL (2011), https://github.com/ilya-klyuchnikov/sll-meta-haskell,
[Online; accessed 13-March-2012]

16. Koopman, P., Plasmeijer, R.: Systematic synthesis of functions. In: H. Nilsson
(ed.), Selected papers from the Seventh Symposium on Trends in Functional Pro-
gramming (TFP06), Nottingham, United Kingdom, 19-21 April 2006. pp. 35–54.
Bristol: Intellect Books (2006)

17. Mitchell, N.: Rethinking supercompilation. In: ACM SIGPLAN Notices. vol. 45,
pp. 309–320. ACM (2010)

18. Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: et al., O.C. (ed.)
IFL 2007. LNCS, vol. 5083, pp. 147–164. Springer-Verlag (May 2008)

19. Reich, J.S., Naylor, M., Runciman, C.: Lazy generation of canonical programs.
In: 23rd Symposium on Implementation and Application of Functional Languages
(2011)

20. Reich, J., Naylor, M., Runciman, C.: Supercompilation and the Reduceron. In:
Proceedings of the Second International Workshop on Metacomputation in Russia
(2010)

21. Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall
series in artificial intelligence, Prentice Hall (2003)



A Metacomputation Toolkit for a Subset of F] 183

22. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN workshop on Haskell. pp. 1–16. ACM (2002)

23. Sørensen, M.H., Glück, R.: Introduction to supercompilation. In: Hatcliff, J., Mo-
gensen, T., Thiemann, P. (eds.) Partial Evaluation: Practice and Theory. Lecture
Notes in Computer Science, vol. 1706, pp. 246–270. Springer-Verlag (1999)

24. Syme, D.: Leveraging .NET meta-programming components from F#: integrated
queries and interoperable heterogeneous execution. In: Proceedings of the 2006
workshop on ML. pp. 43–54. ACM (2006)

25. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theoretical computer science 248(1-2), 211–242 (2000)

26. Turchin, V.: The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 292–325 (July 1986)



Development of the Productive Forces

Gavin E. Mendel-Gleason1 and Geoff W. Hamilton2

1 School of Computing, Dublin City University ggleason@computing.dcu.ie
2 School of Computing, Dublin City University hamiltion@computing.dcu.ie

Abstract. Proofs involving infinite structures can use corecursive func-
tions as inhabitants of a corecursive type. Admissibility of such functions
in theorem provers such as Coq or Agda, requires that these functions are
productive. Typically this is proved by showing satisfaction of a guarded-
ness condition. The guardedness condition however is extremely restric-
tive and many programs which are in fact productive and therefore will
not compromise soundness are nonetheless rejected. Supercompilation
is a family of program transformations which retain program equiva-
lence. Using supercompilation we can take programs whose productivity
is suspected and transform them into programs for which guardedness is
syntactically apparent.

1 Introduction

The Curry-Howard correspondence lets us take advantage of a close correspon-
dence between programs and proofs. The idea is that inhabitation of a type
is given by demonstration of a type correct program having that type. In the
traditional Curry-Howard regime type inhabitation is given with terminating
programs. This requirement avoids the difficulty that non-terminating programs
might allow unsound propositions to be proved.

This was extended by Coquand [6] to include potentially infinite structures.
The notions of co-induction and co-recursion allow infinite structures and infinite
proofs to be introduced without loss of soundness.

In the Agda and Coq theorem provers, the guardedness condition is the con-
dition checked to ensure admissibility of coinductive programs. This condition
ensures that the function is productive in the sense that it will always produce
a new constructor finitely. The guardedness condition has the advantage of only
requiring a syntactic check on the form of the program and is a sufficient condi-
tion for productivity. However, it suffers from being highly restrictive and rejects
many programs which are in fact productive. Requiring guards is a rather rigid
approach to ensuring productivity.

The purpose of this paper is to suggest that theorem provers can use a notion
of pre-proofs[4], proofs for which the side conditions which ensure soundness
have not been demonstrated, which can be transformed into a genuine proof
using equational reasoning. The main idea is that, if a program is type-correct
after program transformation using equational reasoning, it was correct prior to



Development of the Productive Forces 185

transformation. This was the main idea behind the paper by Danielsson et al.
[7].

The approach has a number of advantages over the traditional syntactic
check or ad-hoc methods of extending the guardedness condition to some larger
class. The number of programs which might be accepted automatically can be
increased simply by using automated program transformers. All but one of the
examples given in this paper were found by way of the supercompilation program
transformation algorithm. The approach also allows one to keep the chain of
equational reasoning present, allowing an audit trail of correctness.

This paper is structured as follows. First we will present a number of moti-
vating examples. We will give a bird’s-eye view of supercompilation followed by a
description of cyclic proof and transformations in this framework. We will give a
demonstration of how one of the motivating examples can be transformed in this
framework. Finally we will end with some possibilities for future development.

2 Examples

In order to motivate program transformation as a means for showing type in-
habitation, we present a number of examples in the language Agda. First, we
would like to work with the natural numbers which include the point at infinity.
This we write as the codata declaration with the familiar constructors of the
Peano numbers. We also define the analogous codata for lists, allowing infinite
streams.

module Productive where

codata N∞ : Set where
czero : N∞
csucc : N∞ → N∞

codata CoList (A : Set) : Set where
[ ] : CoList A

:: :A→ CoList A→ CoList A

infixr 40 +
+ :N∞ → N∞ → N∞

czero+ y = y
(csucc x ) + y = csucc (x + y)

sumlen : CoList N∞ → N∞
sumlen [ ] = czero
sumlen (x ::xs) = csucc (x + (sumlen xs))

When attempting to enter this program into a theorem prover, such as Coq
or Agda, the type checker will point out that this program does not meet the
guardedness condition. This is due to the fact that there is an intermediate ap-
plication (of +) which might consume any constructors which sumlen produces.
However, the program is in fact productive and no such problem occurs in prac-
tice. This becomes evident after supercompiling the above term, where we arrive
at the following transformed term:



186 G. E. Mendel-Gleason, G. W. Hamilton

mutual
sumlen sc : CoList N∞ → N∞
sumlen sc [ ] = czero
sumlen sc (x ::xs) = csucc (aux x xs)

aux : N∞ → CoList N∞ → N∞
aux czero xs = sumlen sc xs
aux (csucc x ) xs = csucc (aux x xs)

This term will now be accepted by Agda’s type checker. We see that we have
basically unrolled the intermediate implication eliminations. We will look more
closely at this later in Section 4.

In the above example we managed to remove some intermediate applications
for two functions which were both productive. We can also find similar results
however by unrolling intermediate inductive steps. The following example, given
by Komendaskaya and Bertot [3], relies on this always eventually type behaviour.
That is, behaviour that will always be productive, eventually after some finite
process. Here the finite process is guaranteed by the inductive character of the
natural numbers.

data Bool : Set where
true :Bool
false :Bool

data N : Set where
zero : N
succ : N→ N

infix 5 if then else
if then else : {A : Set} → Bool→

A→ A→ A
if true then x else y = x
if false then x else y = y
infixr 40 ::
codata Stream (A : Set) : Set where

:: :A→ Stream A→ Stream A
le : N→ N→ Bool
le zero = true
le zero = false
le (succ x ) (succ y) = le x y

pred : N→ N
pred zero = zero
pred (succ x ) = x

f : Stream N→ Stream N
f (x ::y ::xs) = if (le x y)

then (x ::(f (y ::xs)))
else (f ((pred x )::y ::xs))



Development of the Productive Forces 187

Again we have the problem that the type checker is unable to accept f as
being productive as the else clause makes an unguarded call to f though the
function is productive as we structurally descend on the argument x which is
inductively defined. However, after supercompilation we arrive at the following
program.

mutual
f sc : Stream N→ Stream N
f sc (zero::y ::xs) = zero::(f sc (y ::xs))
f sc (succ x ::zero::xs) = g x xs
f sc (succ x ::succ y ::xs) with le x y
... | true = (succ x )::(f sc ((succ y)::xs))
... | false = h x y xs

g : N→ Stream N→ Stream N
g zero xs = zero::(f sc (zero::xs))
g (succ x ) xs = g x xs

h : N→ N→ Stream N→ Stream N
h zero y xs = zero::(f sc ((succ y)::xs))
h (succ x ) y xs with le x y
... | true = (succ x )::(f sc ((succ y)::xs))
... | false = h x y xs

Now we have a program which passes Agda’s type checker. The intermediate
computations have been turned into inductive loops and the coinductive function
now exhibits a guarded call.

With these motivating examples in hand, we would like to look a bit at the
method of program transformation which is used to produce these final programs
which are now acceptable by our type checker.

3 Language

The language we present is a functional programming language, which we will
call ΛF with a type system based on System F with recursive types. The use of
System F typing allows us to ensure that transitions can be found for any term.
Our term language will follow closely on the one used by Abel [2].

In Figure 3 we describe the syntax of the language. The set TyCtx describes
type variable contexts which holds the free type variables in a context. The set
Ctx describes variable contexts which holds information about free term vari-
ables, and what type they have. The empty context is denoted ·, and we extend
contexts with variables of a type, or a type variable using ∪. The contexts are
assumed to be sets.

The unit type is denoted 1 and is established as the type of the unit term
(). Functions types, which are the result of a term λx :A. t where t has type
B are given using A → B. The type of a type abstraction ΛX. t is given with
the syntax ∀X. A in which the type variable X may be present in the type A



188 G. E. Mendel-Gleason, G. W. Hamilton

Variables

Var 3 x, y, z Variables
TyVar 3 X,Y, Z Type Variables
Fun 3 f, g, h Function Symbols

Contexts

Ctx 3 Γ ::= · | Γ ∪ {x :A}
TyCtx 3 ∆ ::= · | ∆ ∪ {X}

Types

Ty 3 A,B,C ::= 1 | X | A→ B | ∀X.A | A+B | A×B | νX̂. A | µX̂. A

Terms

Tr 3 r, s, t ::= x | f | () | λx :A. t | ΛX. t | r s | r[A] | (t, s)
| left(t, A+B) | right(t, A+B)
| inν(t, A) | outν(t, A) | inµ(t, A) | outµ(t, A)
| case r of {x1 ⇒ s | x2 ⇒ t} | split r as (x1, x2) in s

Universal Type Variables

UV (∆ ∪ {X̂}) := UV (∆)
UV (∆ ∪ {X}) := {X} ∪UV (∆)

Type Formation

UV (∆) ` A type ∆ ` B type

∆ ` A→ B type

∆ ∪ {X̂} ` A type α ∈ {ν, µ}
∆ ` αX̂. A type

∆ ` A type ∆ ` B type ◦ ∈ {+, ×}
∆ ` A ◦B type ∆ ` 1 type

∆ ∪ {X̂} TyCtx

∆ ∪ {X̂} ` X̂ type

∆ ∪ {X} TyCtx

∆ ∪ {X} ` X type

∆ ∪ {X} ` A type

∆ ` ∀X. A type

Context Formation

· TyCtx
∆ TyCtx X 6∈ ∆
∆ ∪ {X} TyCtx

∆ ` · Ctx
∆ ` Γ Ctx x 6∈ dom(Γ ) ∆ ` T type

∆ ` Γ ∪ {x :T} Ctx

Fig. 1. Language



Development of the Productive Forces 189

and the term t. Sum types allow a term of one of two types, A and B, to be
injected into a third type A+B. We can inject into this sum for terms of type A
using the left injection: left(t, A+B) or for terms of type B on the right using
right(s,A+B). The pair type A × B is introduced with a pairing term (s, t)
where s has type A and t has type B. We introduce inductive types µX̂. A
with the term inµ(t, µX̂. A). Similarly for coinductive types νX̂. A we introduce

the term inν(t, νX̂. A). Similarly each type (save for unit) is equiped with an
elimination term, whose meaning will be clear from the dynamic semantics.

Types are introduced by way of type formation rules such that a type A is
well formed if we can derive ∆ ` A type. These rules ensure that only types
which are strictly positive in µ and ν type variables are allowed, while universally
quanitifed variables are unrestricted. This is achieved by segregating the type
variables introduced using ν and µ using a hat above the type variable, X̂.

Term Substitution

x[x := t] ≡ t
x[y := t] ≡ x if x 6= y
f[x := t] ≡ f

(r s)[x := t] ≡ (r[x := t]) (s[x := t])
(λy :A. r)[x := t] ≡ λy :A. r[x := t]

Provided that λy :A. r is α-converted to use
a fresh variable if y ∈ {x} ∪ FV (t).

(ΛX. r)[x := t] ≡ ΛX. r[x := t]
inα(s,A)[x := t] ≡ inα(s[x := t], A)
outα(s,A)[x := t] ≡ outα(s[x := t], A)
()[x := t] ≡ ()
right(s,A)[x := t] ≡ right(s[x := t], A)
left(s,A)[x := t] ≡ left(s[x := t], A)
(s, u)[x := t] ≡ (s[x := t], u[x := t])
case r of {y ⇒ s | z ⇒ u}[x := t] ≡ case r[x := t] of {y ⇒ s[x := t] | z ⇒ u[x := t]}

Provided that λy :A. s or λz :A. u
are α-converted to use a fresh variable
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

split r as (y, z) in u[x := t] ≡ split r[x := t] as (y, z) in u[x := t]
Provided that λy :A. λz :A. u is
α-converted to use a fresh variable for y or z
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

Fig. 2. Term Substitution

We describe substitutions which use a function FV (t) to obtain the free type
and term variables from a term. We also choose free variables to be fresh, meaning
they are chosen from some denumerable set such that they are not present in a
given set of variables. A variable chosen in this way we will write as x = fresh(S)



190 G. E. Mendel-Gleason, G. W. Hamilton

Type Substitution on Terms

x[X := A] ≡ x
f[X := A] ≡ f

()[X := A] ≡ ()
(r s)[X := A] ≡ (r[X := A]) (s[X := A])
(r[A])[X := A] ≡ (r[X := A]) (A[X := A])
(λx :A. r[X := A] ≡ λx :A[X := A]. r[X := A]
inα(s,B)[X := A] ≡ inα(s[X := A], B[X := A])
outα(s,B)[X := A] ≡ outα(s[X := A], B[X := A])
right(s,B)[X := A] ≡ right(s[X := A], B[X := A])
left(s,B)[X := A] ≡ left(s[X := A], B[X := A])
(s, u)[X := A] ≡ (s[X := A], u[X := A])
(case r of {y ⇒ s | z ⇒ u})[X := A] ≡ case r[X := A] of

{ y ⇒ s[X := A]
| z ⇒ u[X := A]

(split r as (y, z) in u)[X := A] ≡ split r[X := A] as (y, z) in u[X := A]

Type Substitution on Types

X[X := A] ≡ A
X[Y := A] ≡ X if X 6= Y
1[X := A] ≡ 1

B + C[X := A] ≡ B[X := A] + C[X := A]
B × C[X := A] ≡ B[X := A]× C[X := A]
(B → C)[X := A] ≡ B[X := A]→ C[X := A]
(∀Y. B)[X := A] ≡ ∀Y. B[X := A]

Provided that (∀Y. B) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(ΛY. r)[X := A] ≡ ΛY. r[X := A]
Provided that (ΛY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(αY. r)[X := A] ≡ αY. r[X := A], α ∈ {ν, µ}
Provided that (αY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

Fig. 3. Type Substitution



Development of the Productive Forces 191

if it is fresh with respect to the set S. Substitutions of a single variable will be
written [X := A] or [x := t] for type and term variables respectively. The full
operational meaning of substitutions is given in Figure 2 and Figure 3.

Reduction Rules

(λx : A.r) s 1 r[x := s] (ΛX.r) A 1 r[X := A]

outα(inα(r, U), U) 1 r f δ Ω(f)

case left(r, A+B) of {x⇒ s | y ⇒ t} 1 s[x := r]

case right(r, A+B) of {x⇒ s | y ⇒ t} 1 t[y := r]

split (r, s) as (x, y) in t 1 t[x := r][y := s]

Structural Rules

r R r′

r Rs r′
r Rs r′

r s Rs r′ s
r Rs r′

r A Rs r′ A
r Rs r′

outα(r, U) Rs outα(r′, U)

r Rs r′
case r of {x⇒ s | y ⇒ t} Rs case r′ of {x⇒ s | y ⇒ t}

r Rs r′
split r as (x, y) in t Rs split r′ as (x, y) in t

Evaluation Relations

r  n s ::= r  s
1 s

r  s ::= r  s
δ s ∨ r  n s

r R+ s ::= r R s ∨ (∃r′.r R r′ ∧ r′ R+ s)
r R∗ s ::= r = s ∨ r R+ s

Fig. 4. Evaluation

We define the evaluation relation  in Figure 4. This relation is the usual
normal order evaluation relation. It is deterministic and so there is always a
unique redex. We take the transitive closure of the relation to be  ∗.

We introduce recursive terms by way of function constants. Although it is
possible to encoded these directly in System F, it simplifies the presentation
to provide them explicitly. Function constants are drawn from a set Fun. We
couple our terms with a function Ω which associates a function constant f with
a term t, Ω(f) = t, where t may itself contain any function constants in the
domain of Ω. We make use of this function in the  relation which allows us to
unfold recursively defined functions.

For a term t with type A in a context ∆;Γ we write ∆ ;Γ ` t : A. A type
derivation must be given using the rules given in Figure 5.



192 G. E. Mendel-Gleason, G. W. Hamilton

∆ ` Γ ∪ {x :A} Ctx
IVar

∆ ;Γ ∪ {x :A} ` x : A
I1

∆ ;Γ ` () : 1

∆ ∪ {X} ;Γ ` t : A
I∀

∆ ;Γ ` (ΛX. t) : ∀X. A
∆ ;Γ ` t : ∀X. A ∆ ` B type

E∀
∆ ;Γ ` t[B] : A[X := B]

∆ ;Γ ∪ {x :A} ` t : B
I→

∆ ;Γ ` (λx :A. t) : A→ B

∆ ;Γ ` r : A→ B ∆ ;Γ ` s : A
E→

∆ ;Γ ` (r s) : B

Γ ` Ω(f) : A
Iδ∆ ;Γ ` f : A

∆ ;Γ ` r : A ∆ ;Γ ` s : B
I×

∆ ;Γ ` (r, s) : (A×B)

∆ ;Γ ` t : A ∆ ` B type
I+L∆ ;Γ ` left(t, A+B) : (A+B)

∆ ;Γ ` t : B ∆ ` A type
I+R∆ ;Γ ` right(t, A+B) : (A+B)

∆ ;Γ ` t : αX̂. A α ∈ {µ, ν}
Eα

∆ ;Γ ` outα(t, αX̂. A) : A[X̂ := αX̂. A]

∆ ;Γ ` t : A[X̂ := αX̂. A] α ∈ {µ, ν}
Iα

∆ ;Γ ` inα(t, αX̂. A) : αX̂. A

∆ ;Γ ` r : A+B ∆ ;Γ ∪ {x :A} ` t : C ∆ ;Γ ∪ {y :B} ` s : C
E+

∆ ;Γ ` (case r of {x⇒ t | y ⇒ s}) : C

∆ ;Γ ` s : A×B ∆ ;Γ ∪ {x :A} ∪ {y :B} ` t : C
E×

∆ ;Γ ` (split s as (x, y) in t) : C

Fig. 5. System F Proof Rules



Development of the Productive Forces 193

Without further restrictions, this type system is unsound. First, the Delta
rule for function constants clearly allows non-termination given Ω(f) = f :
T . We will deal with this potentiality later when we describe cyclic proof in
Section 4.

In addition, we will need a concept of a one-hole context. This allows us to
describe terms which are embedded in a surrounding term. We write this as C[t]
when we wish to say that the term t has a surrounding context.

4 Cyclic Proof

Typically, in functional programming languages, type checking for defined func-
tions is done by use of a typing rule that assumes the type of the function and
proceeds to check the body. This is the familiar rule from programming lan-
guages such as Haskell [10] [15] [13]. An example of such a typing rule is as
follows:

∆ ;Γ ∪ {f :A→ B} ` Ω(f) : A→ B
FunRec

∆ ;Γ ` f : A→ B

Coupled with guardedness or structural recursion and positivity restrictions
on the form of recursive types to ensure (co)termination, this rule will be sound.
However, it is also opaque. Any transformation of this proof tree will be rigidly
expressed in terms of the original function declarations.

In order to allow more fluidity in the structure of our proof trees we introduce
a notion of a cyclic proof. Cyclicity can be introduced simply by allowing the
type rules to be a coinductive type (in the meta-logic) rather than an inductive
one. However, for us to produce the cycles we are interested in, we need to
add an additional term and typing rule which allows explicit substitutions, and
one derived rule which makes use of the fact that we identify all proofs under
the reduction relation  as being equivalent. The explicit substitutions will
also require an additional evaluation rule which transforms them into computed
substitutions. Explicit substitutions can also be introduced at the level of type
substitutions, but these are not necessary for our examples.

The Conv, EΩ and the Iθ follow from theorems about the calculus which
can be established in the meta-logic and in fact we have a formal proof of these
theorems for the given calculus in Coq.

We will not prove general soundness conditions, but rely on prior work show-
ing that structural induction and the guardedness are sufficient conditions [9].
Once these conditions have been satisfied, we can assume the correctness of the
proof.

Definition 1 (Structural Ordering). A term t is said to be less in the struc-
tural ordering than a term s, or t <s s using the relation <s given by the
inductive definition in Figure 6.

Definition 2 (Structural Recursion). A derivation is said to be structurally
recursive if for every sequent used in a Iθ rule, there exists a privileged variable



194 G. E. Mendel-Gleason, G. W. Hamilton

Explicit Substitutions

t 〈x := s〉

Typing Rules

∆ ;Γ ∪ Γ ′ ` u : B ∆ ;Γ ∪ {x :B} ` t : A
Iθ

∆ ;Γ ∪ Γ ′ ` t 〈x := u〉 : A

∆ ;Γ ` t : A t ∗ s
Conv

∆ ;Γ ` s : A

∆ ;Γ ` C[Ω(f)] : A
EΩ

∆ ;Γ ` C[f ] : A

Extended Evaluation

t 〈x := u〉 t[x := u]
t t′

t 〈x := u〉 t′ 〈x := u〉
Structural Ordering

case r of {x⇒ s | y ⇒ t}
x S r

case r of {x⇒ s | y ⇒ t}
y S r

split r as (x, y) in t

x S r
split r as (x, y) in t

y S r

outα(t, αX̂. A)

outα(t, αX̂. A) S t
<s:= S∗ Transitive closure of S

Fig. 6. Explicit Substitution and Structural Ordering



Development of the Productive Forces 195

x such that for all Iθ rules, with substitution σi, using that sequent we have that
x ∈ dom(σi) and σ(x) <s x.

It should be mentioned that there is nothing in particular needed for this
definition aside from some guarantee that we are well founded. As such this
represents a particular implementation strategy and we could very well have
used a more liberal approach. One such approach is size-change termination as
described by Neil Jones et al. in [11].

Similarly, we must produce a rule for coinductive types which ensures that all
terms of coinductive type are productive. We here develop a guardedness condi-
tion specific to our type theory of cyclic proofs. Essentially this condition ensures
we encounter an introduction of a constructor which can not be eliminated on
all coinductive cyclic paths. The only intermediate terms must reduce finitely
through eliminations of finite or inductively defined terms, ensuring that we will
not compute indefinitely prior to producing a constructor.

While structural recursion is focused on determining whether the arguments
of a recursive term are subterms of some previously destructured term, the dual
problem is of determining if a recursive term’s context ensures that the term
grows. This means we need ways of describing the surrounding context of a
term. However, the contexts we have developed thus far are structured in terms
of experiments. With coinductive terms we need exactly the opposite variety of
contexts, those surrounding terms which are not experiments.

The key important features of the contexts we are interested in turns out to
be whether or not they introduce constructors, and whether they are guaranteed
not to remove them. These properties are necessary in the construction of our
proof that guardedness leads to productivity.

We can describe the relevant features of the context by describing a path. This
path is a series of constructors that allows us to demonstrate which directions to
take down a proof tree to arive at a recurrence.

Definition 3 (Path). A path is a finite sequence of pairs of a proof rule from
Figure 5 and an index denoting which antecedent it decends from. This pair is
described as a rule-index-pair.

An example of such a path would be the following:

OrIntroL1,AndIntro2,ImpIntro1

This denotes the context:

left((λx : B.−, s), A)

With some unknown (and for the purpose of proving productivity, inconse-
quential) variable x, term s and types A and B.

With this in hand we can establish conditions for guardedness with recursive
definitions based on constraints on paths.



196 G. E. Mendel-Gleason, G. W. Hamilton

Definition 4 (Admissible). A path is called admissible if the first element c of
the path p = c, p′ is one of the rule-index-pairs OrIntroL1, OrIntroR1, AndIntro1,
AndIntro2, AllIntro1, αIntro1, ImpIntro1, OrElim2, OrElim3, AndElim2, AllElim1,
Delta1 and p′ is an admissible path.

Definition 5 (Guardedness). A path is called guarded if it terminates at a
Pointer rule, with the sequent having a coinductive type and the path can be par-
titioned such that p = p′, [c], p′′ where c is one of the rule-index-pairs OrIntroL1,
OrIntroR1, AndIntro1, AndIntro2, νIntro1, ImpIntro1 which we will call guards
and p′ and p′′ are admissible paths.

The idea behind the guardedness condition is that we have to be assured that
as we take a cyclic path we produce an Intro rule which will never be removed by
the reduction relation. The left hand-side of an elimination rule will never cause
the elimination of such an introduction and so is safe. However, the right hand
side of an elimination rule may in fact cause the removal of the introduction rule
when we use the evaluation relation.

5 Program Transformation

Supercompilation is a family of program transformation techniques. It essentially
consists of driving, information propagation, generalisation and folding.

Driving is simply the unfolding and elimination of cuts. Cut-elimination in-
volves the removal of all intermediate datastructures. This includes anything
that would be normalised by evaluation in a language like Coq or Agda, includ-
ing beta-elimination, case elimination or pair selection. Driving, as it removes
cuts from infinite proof objects, generates potentially infinite computations.

Information propagation is the use of meta-logical information about elimina-
tions such as case branches. For example, when a meta-variable is destructed in
a case branch, the particular de-structuring may be propagated into sub-terms.
This is achieved by an inversion on the typing derivation.

Folding is the search for recurrences in the driven program. A recurrence will
be an expression which is a variable renaming of a former expression. Essentially,
if a recurrence is found we can create a new recursive function having the same
body as the driven expression with a recursive call at the recurrence.

Generalisation may be used in order to find opportunities for folding. We
can abstract away arguments which would cause further driving and would not
allow us to fold.

Our notion of equivalence of proofs must be quite strict if it is to preserve
the operational behaviour of the program. The notion of equivalence we use here
is contextual equivalence.

Definition 6 (Contextual Equivalence). For all terms s, t and types A and
type derivations · ` s : A and · ` t : A, and given any experiment e such that
x : A ` e : B then we have that e[x := s] ⇓ and e[x := t] ⇓ then s v t. If s v t
and t v s then s is contextually equivalent to t or s ∼= t.



Development of the Productive Forces 197

In the examples, the relation between the original and transformed proofs
is simply either a compatible relation with the formation rules, or the term is
related up to beta-equivalence. In the case of unfolding, it’s clear that no real
change has taken place since the unfolded pre-proof just extends the prefix of
the potentially infinite pre-proof, and is identical by definition. The finite prefix
is merely a short hand for the infinite unfolding of the pre-proof.

Dealing with reduction under the evaluation relation is more subtle. In order
to establish equivalence here we need to show that if the term reduces, it reduces
to an outer-most term which will itself reduce when an experiment is applied.
This is essentially a head normal form, that is, a term whose outermost step will
not reduce in any context. This idea is essential to defining productivity, since
it is precisely the fact that we have done something irrevocable which gives us
productivity.

Folding is also somewhat complex as, in our case, we will require the use
of generalisation, which is essentially running the evaluation relation backwards
in order to find terms which will be equivalent under reduction, and cycles in
the proof which can lead to potential unsoundess. The key insight of this paper
is that in fact, unsoundess can not be introduced if the cycles themselves are
productive or inductive for coinduction and induction respectively.

Generally the program transformation technique itself is controlled by using
some additional termination method such as a depth bound or more popularly
the homeomorphic embedding. This however does not influence the correctness
of the outcome. If an algorithm in the supercompilation family terminates, the
final program is a faithful bisimulation of the original.

Since all of the examples given in this paper clearly follow the fold/unfold
generalise paradigm, and all examples are inductive/productive, the correctness
can be assumed. In a future work we hope to present the algorithm that was
used to find these examples in more detail, and to show that it will in general
produce contextually equivalent programs. We will see how these elements are
applied in practice by using these techniques to work with cyclic proofs.

5.1 Reduction

Previously we gave a bird’s-eye view of supercompilation as being a family of
program transformations composed of driving, generalisation and folding. Cyclic
proofs give us the tools necessary to justify folding in the context of types and
driving is simply the unfolding of a cyclic pre-proof.

In order to perform folding however, we need to be able to arrive at nodes
which are α-renamings of former nodes. In order to do this in general we need
to be able to generalise terms. We can, using generalisation, regenerate proofs
which simply make reference to recursive functions, by generalising to reproduce
α-renamings of the function bodies and folding. This ensures that we can produce
at least the proofs possible already using the original term.

For higher order functional languages, there are a potentially infinite num-
ber of generalisations of two terms, and the least general generalisation may
itself consist of many incomparable terms [14]. For this reason, some heuristic



198 G. E. Mendel-Gleason, G. W. Hamilton

approach needs to be applied in order to find appropriate generalisations. We
will not be concerned about the particular heuristic approach used to determine
generalisations as this is quite a complex subject, but only that it meet the con-
dition that the generalisation can be represented as an elimination rule in the
proof tree and that will regenerate the original proof tree under evaluation.

6 Example Revisited

With the notion of cyclic proof, we now have at our disposal the tools necessary
to transform pre-proofs into proofs. We will revisit the sumlen example given
as motivation for the present work and see how we can represent the transfor-
mations.

We take again an example using the co-natural numbers N∞ ≡ νX.1 + X
and potentially infinite lists [A] ≡ ΛA.νX.1 + (A × X). Here we take Ω to be
defined as:

Ω(zero) := in(left( (),N))
Ω(plus) := λ x y : N .

case (out(x,N)) of

| z ⇒ ys
| n ⇒
fold(right(plus n y),N)

Ω(sumlen) := λ xs : [N] .

case (out(xs,[N])) of

| nil ⇒ zero

| p ⇒
split p as (n,xs′)
in in(right(plus n (sumlen xs′)),N)

We can now produce the type derivation by performing the successive steps
given explicitly in Figure . Here in the final step we have driven the proof tree
to the point that we can now reference two previous nodes. One of those is
labelled with a †, the other with a ∗. This final pre-proof is now a proof because
it satisfies the guardedness condition. We have taken the liberty of introducing

a an additional derived rule ConsJNK. It is merely a shorthand for the use of I+R
and Iν , together with a proof that these types admissible under the formation
rules.

We can then produce a residual program from the cyclic proof. This is simply
a mutually recursive (or letrec) function definition which makes any cycle into a
recursive call. The residual term will be essentially the one given in agda above.

7 Related Work

The present work uses a program transformation in the supercompilation family.
This was first described by Turchin [17] and later popularised by Sørensen, Glück



Development of the Productive Forces 199

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N · ; {x :N, xs : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N
· ; {x :N, xs : JNK} ` x+ (sumlen xs′) : N

ConsJNK
· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N

E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N

· ; {x :N, xs′ : JNK} ` case x of {czero⇒ sumlen xs′ | csucc x⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {x :N, xs′ : JNK} ` x+ (sumlen xs′) : N
ConsJNK

· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

D :=
· ; {xs′ : JNK} ` xs′ : JNK

†
· ; {xs : JNK} ` sumlen xs : N

Iθ· ; {xs′ : JNK} ` sumlen xs 〈xs := xs′〉 : N
sumlen xs 〈xs := xs′〉 ∗

sumlen xs′
Conv· ; {xs′ : JNK} ` sumlen xs′ : N

E :=
· ; {xs′ : JNK} ` xs′ : N

∗
· ; {x :N, xs : JNK} ` csucc (x+ (sumlen xs))) : N

Iθ· ; {x :N, xs′ : JNK} ` (csucc (x+ (sumlen xs))) 〈xs := xs′〉 : N
(csucc (x+ (sumlen xs))) 〈xs := xs′〉 ∗

csucc (x+ (sumlen xs′))
Conv· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N

· ;xs : JNK ` xs : JNK · ; ... ` czero : N

· ; {x :N} ` x : N D E
E+

· ; {x :N, xs′ : JNK} ` case x of
{ czero⇒ sumlen xs′

| csucc x⇒ csucc (x+ (sumlen xs′))

: N

IΩ

· ; {x :N, xs′ : JNK} ` x+ (sumlen xs′) : N
ConsJNK ∗· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of
{ []⇒ czero
| x :: xs′ ⇒ csucc (x+ (sumlen xs′))

: N

IΩ †
· ; {xs : JNK} ` sumlen xs : N

Fig. 7. Sumlen Cyclic Proof



200 G. E. Mendel-Gleason, G. W. Hamilton

and Jones [16]. We essentially use the same algorithms with the addition of the
use of type information to guide folding.

The use of cylic proofs was developed by Brotherston [4]. We extend this work
by dealing also with coinductive types and make use of it in a Curry-Howard
settings.

The correspondence between cyclic proof and functional programs has pre-
viously been described by Robin Cockett [5]. His work also makes a distinction
between inductive and coinductive types. Our work differs in using super com-
pilation as a means of proving type inhabitation.

Various approaches to proving type inhabitation for coinductive types have
appeared in the literature. Bertot and Komendanskaya give a method in [3]. A
method is also given using sized types is given by Abel in [1]. The approach
in this paper differs in that we use transformation of the program rather than
reasoning about the side conditions.

8 Conclusion and Future Work

The use of program transformation techniques for proofs of type inhabitation
is attractive for a number of reasons. It gives us the ability to mix programs
which may or may not be type correct to arrive at programs which are provably
terminating. We can keep an audit trail of the reasoning by which the programs
were transformed. And we can admit a larger number of programs by transfor-
mation to a form which is syntactically correct, obviating the need for complex
arguments about termination behaviour. For these reasons we feel that this work
could be of value to theorem provers in the future.

To the best of the authors knowledge, no examples of a supercompilation al-
gorithm have yet been given for a dependently typed language. The authors hope
to extend the theory to dependent types in the future such that the algorithm
might be of assistance to theorem provers.

Currently work is being done on a complete automated proof of correctness
of a supercompilation algorithm for the term language described in this paper
in the proof assistant Coq. The cyclic proofs are represented using a coinductive
data-type, rather than the usual inductive description.

The technique as presented works well for many examples, however there are
some examples in which direct supercompilation is insufficient. The following
program tries to capture the notion of a semi-decidable existential functional
which takes a semi-decidable predicate over the type A. The usual way to write
this in a functional language is to use the Sierpinski type [8], the type of one
constructor. Here truth is represented with termination, and non-termination
gives rise to falsehood.

data S : Set where
T : S

However since languages such as Coq and Agda will not allow us to directly
represent non-termination, we will embed the Sierpinski type in the delay monad.



Development of the Productive Forces 201

codata Delay (A : Set) : Set where
now : A→ Delay A
later :Delay A→ Delay A

The clever reader might notice that this is in fact isomorphic to the co-
natural numbers and that join is simply the minimum of two potentially infinite
numbers.

join :Delay S → Delay S → Delay S
join (now T ) x = now T
join x (now T ) = now T
join (later x ) (later y) = later (join x y)

ex : {A : Set} → (A→ Delay S)→
Stream A→ Delay S

ex p (x ::xs) = join (p x ) (ex p xs)

By unfolding join and ex we eventually arrive at a term:

-- join x’ (join (p x) (ex p xs))

This term is a repetition of the original body of ex, with p x abstracted, pro-
vided that join is associative. Unfortunately, using direct supercompilation, we
are unable to derive a type correct term automatically. However, using ideas pre-
sented by Klyutchnikov and Romanenko [12], the technique might be extended
in such a way to provide an automated solution for this example as well. Using
the fact that the recurrence is contextually equivalent, we can fold the proof to
obtain the following program, which is productive, and admissible into Agda.

mutual
ex trans : {A : Set} →

(A→ Delay S)→ Stream A→
Delay S

ex trans p (x ::xs) = later (j (p x ) p xs)

j : {A : Set} →
Delay S → (A→ Delay S)→
Stream A→ Delay S

j (now T ) p = now T
j (later n) p (x ::xs) = later (j (join n (p x )) p xs)

References

1. Andreas Abel. Termination checking with types. Technical report, Institut fr
Informatik, Ludwigs-Maximilians-Universitt Mnchen, 2002.

2. Andreas Abel. Typed Applicative Structures and Normalization by Evaluation for
System Fω. In Erich Grdel and Reinhard Kahle, editors, CSL, volume 5771 of
Lecture Notes in Computer Science, pages 40–54. Springer, 2009.



202 G. E. Mendel-Gleason, G. W. Hamilton

3. Yves Bertot and Ekaterina Komendantskaya. Inductive and Coinductive Com-
ponents of Corecursive Functions in Coq. Electron. Notes Theor. Comput. Sci.,
203(5):25–47, 2008.

4. James Brotherston. Cyclic Proofs for First-Order Logic with Inductive Definitions.
In B. Beckert, editor, Automated Reasoning with Analytic Tableaux and Related
Methods: Proceedings of TABLEAUX 2005, volume 3702 of LNAI, pages 78–92.
Springer-Verlag, 2005.

5. J. Robin B. Cockett. Deforestation, program transformation, and cut-elimination.
Electr. Notes Theor. Comput. Sci., 44(1), 2001.

6. Thierry Coquand. Infinite objects in type theory. In TYPES 93: Proceedings of the
international workshop on Types for proofs and programs, pages 62–78, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

7. Nils A. Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Fast and
loose reasoning is morally correct. In POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
volume 41, pages 206–217, New York, NY, USA, January 2006. ACM.

8. M. H. Escardo. Synthetic topology of data types and classical spaces. ENTCS,
Elsevier, 87:21–156, 2004.

9. Eduardo Gimnez. Structural Recursive Definitions in Type Theory. In ICALP
98: Proceedings of the 25th International Colloquium on Automata, Languages and
Programming, pages 397–408, London, UK, 1998. Springer-Verlag.

10. Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theor.
Comput. Sci., 228(1-2):5–47, 1999.

11. Neil D. Jones. Program termination analysis by size-change graphs (abstract). In
IJCAR, pages 1–4, 2001.

12. Ilya Klyuchnikov and Sergei Romanenko. Proving the Equivalence of Higher-Order
Terms by Means of Supercompilation. In Perspectives of Systems Informatics,
volume 5947, pages 193–205. Springer, 2009.

13. Simon L. Peyton Jones and David R. Lester. Implementing functional languages.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

14. Frank Pfenning. Unification and anti-unification in the calculus of constructions .
In Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science
(LICS 1991), pages 74–85. IEEE Computer Society Press, July 1991.

15. Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

16. Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A Positive Supercom-
piler. Journal of Functional Programming, 6(6):811–838, 1996.

17. Valentin F. Turchin. The concept of a supercompiler. ACM Trans. Program. Lang.
Syst., 8(3):292–325, 1986.



Reversivity, Reversibility and Retractability

Nikolai N. Nepejvoda

Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, Russia,
152020

nepejvodann@gmail.com,
WWW home page: http://site.u.pereslavl.ru/Personal/NikolaiNNepeivoda/

Abstract. Three essentially different but usually mixed notions of pro-
gram invertibility are considered. Reversivity when each action has a full
inverse. Reversibility when each action can be undone (right inverse). Re-
tractability when erroneous result can be retracted down to error in data.
Constructive logical, algebraic, programming and realization aspects are
considered for those types of programs.

Keywords: constructive logics, reversible computing, reversive logic,
program inversion

1 Origins of reversivity

R. Landauer [1961] pointed out that there is an important kind of computations
not investigated earlier and not intensively studied now (though not forgotten).
Consider, for example, a superconductor based computer. Its elements are to be
cooled by liquid hydrogen to provide superconductor properties of elements. Hot
pollution could be fatal for this kind of processor. Thus we need all actions of
our computer not to induce heat pollution. Landauer showed that it is physically
possible if all actions are invertible.

The following formula describes the state of arts here:

Generalized Landauer – von Neumann principle

Ediss > T × kB × lnP
(1)

Here T is the temperature in K◦, kB is the Boltzmann’s constant, P is the number
of states of atomic computing element (assuming that energy needed to transfer
between any two states is equal). A fresh work on this topic which contains an
attempt of experimental verification of Landauer’s principle is [2012L].

Bennett [1973] proposed in 1973 to make logically reversible computer (in
the sense of boolean logic). He at first time made a big error which was inherited
by further works.

In the common sense invertible action is that which can be wholly undone.
For example adding block of text to Word file we always can delete it. This is
semi-invertible action: we can undo it after it is done but cannot prevent it by
doing an inverse action before it. For example accepting and rejecting changes in



204 N. N. Nepejvoda

Word document is a semi-invertible action (inside one Word session). Accepting
and rejecting them in ‘track changes’ mode is a fully invertible one. This shows
a deep difference between reversive (invertible) and reversible (semi-invertible)
computing. The second one cannot diminish heat pollution and cannot be applied
if our basic computing units are mostly invertible (e.g. quantum or DNA).

Toffoli [1980)] and Fredkin [1982] showed that it is possible to perform the
full set of boolean computations on superconductor based computations almost
without hot generation by the cost of doubled memory. A superconductor ele-
ments based cell can change state without hot generation if numbers of zeros
and ones do not change. Thus Toffoli proposed to consider computations where
each cell contains the same number of zeros and ones forever but they danced
inside during computation process. Inevitable hot generators are only setting
the initial state of a computer and reading the final result from some parts of
superconductor cells.

Merkle [1992] proposed another variant of reversible binary logic devices. His
goal is to beat physical barrier for computer productivity. His description of a
problem is brilliant [1996]:
“If the exponential trends of recent decades continue, energy dissipation per
logic operation will reach kT (for T = 300 Kelvins) early in the next century.
Either energy dissipation per logic operation will be reduced significantly below
3 ·10−21 joules, or we will fail to achieve computers that simultaneously combine
high packing densities with gigahertz or higher speeds of operation. There are
only two ways that energy dissipation can be reduced below 3 · 10−21 joules: by
operating at temperatures below room temperature (thus reducing kT ), or by
using thermodynamically reversible logic. Low temperature operation doesn’t
actually reduce total energy dissipation, it just shifts it from computation to re-
frigeration. Thermodynamically reversible logic elements, in contrast, can reduce
total energy dissipation per logic operation to � kT .”

The main error here is that almost all authors forget that to get a new
memory location is also an energy-dissipating action. Moreover those who in
concrete considerations do not allow this action (e.g. Merkle, Toffoli) do not
mention this restriction in their comments.

There is a spread (rather little but slowly growing until this day) of works
considering “reversible logic” and reversible computing. Too narrow point of view
of all these works is to consider reversible computing only as boolean reversible
transformations. Thus brilliant but restricted ideas of Merkle, Toffoli and Fredkin
are accepted as “axiomatic” which cannot be discussed but only developed (as
a good example see [2003]). We emphasize that boolean elements are only a
tradition of current hardware but not its sine qua non property. Thus those
aspects of reversivity which will become crucial if reversive super processors
would be made technically: “How to program those exotic units?” and “What
we cannot put into them without destroying their potentially best sides?” are
not touched and even not seen.

And we are to emphasize the following:



Reversivity, Reversibility and Retractability 205

REVERSIVITY
To overcome the Landauer principle we need full invertibility, not
only possibility of undoing: each action f must have an action f−1

s.t. f ◦ f−1 = f−1 ◦ f = e where e is an empty action.

This was assumed in the original works and repeatedly pointed out by inde-
pendent researchers (see e.g. [2001Bub,2005Mar,2012L])

Thus we need more general mathematical and more logical consideration of
this extremely interesting and specific domain. Constructive logic of reversivity
is the first step into a new realm.

Now we consider three notions of (semi) invertibility in the order from an
almost traditional up to the most striking, leading to a fresh paradigm and
therefore totally inadequately treated.

2 Retractability

Main peculiarity of constructive logics is that they are not truth-value based.
Formulas are treated as problems and we are interested in solution of this prob-
lem which can be for different logics and theories whether a mathematical object
or a program or another entity. If a is a solution of a problem represented by a
logical formula A we say ‘a realizes A’ (ar A).

I don’t know a systematic survey of all branches of constructive mathematic
written in English. Constructivism now is a system where different main re-
sources and different resource restrictions lead to very exotic, mutually incon-
sistent and fine systems (see [2011NNN]). The logic of knowledge is the intu-
itionistic logic; the logic of money is the linear logic of Girard; the logic of time,
automata and real actions is the nilpotent logic; the logic of reversivity and soul
is partially described below. One of main philosophical consequences of construc-
tivism is that it is a mortal trick of a society to allow those people which are
thinking inside the logic of money to govern the real things or the knowledge
discovering process.

Some formulas in constructive logics can have a trivial underlying problem
and thus be treated as descriptive ones (usually as classical). For example for-
mulas ¬A in intuitionistic logic are descriptive and classical logic can be isomor-
phically embedded into intuitionistic (but not vice versa).

In this section we use almost forgotten and not developed further results of
constructive logic applications to programming. “Sturm und Drang” of this topic
was in last 70-ths — early 80-ths. There were many fine algorithms and strong
results (see e. g. [NNN1982,Mar1982,1991,1998]) but their practical applications
meet some obstacles.

Obstacle 1. Swamp. As usually, after big advance there arose a huge bor-
ing work to develop techniques and technologies of practical work with: new
possibilities opened (it is easier but often demands a full change of traditional
manner of actions); with new dangers and shortcomings which accompany each
innovation. Big benefits always go together with big disadvantages. To lead new



206 N. N. Nepejvoda

footpath through a swamp is hard and boring work. We cannot make here big
promises (if we didn’t lost remains of honor). We cannot show any spectacular
results here. We cannot easily explain significance of our work to outsiders (=
peer reviewers). Thus we cannot get grants and our work dies before reaching
the another bank of a swamp and a new living space. Constructive logics had
faced with the necessity to develop essentially another technique of formalization
because traditional one did not works good. This work had become their swamp.

Obstacle 2. Disorientation. The theoretical works are mostly disorienting
here because they usually treated so “practical and important” examples as
factorial or Ackermann’s function. These examples are both too primitive in their
structure and too connected with the specific data types and the traditional set
of atomic operations but easily understood by theoristsoutsiders. They were out
of mainstream of both theoretical and practical informatics which now works
with abstract and varying structures and constructs new programs not from the
computer primitives but from modules, objects and patterns.

Obstacle 3. Fake advertising. Japan ‘Fifth generation project’ used con-
structive logic as one of its banners. In reality they have adopted more traditional
but leading into deadlock tools (e.g. Prolog). A reputation of a fallen project was
transferred into its ‘used’ theory.

A program is retractable if it allows to retract from properties and/or errors
in the result to properties or errors in the data. The logic of retractable struc-
tured program is symmetric intuitionistic logic (SIL) investigated by I. Zaslavsky
[1979].

In this logic there are only constructive connectives ⇒ ∨& ∼ ∀∃. Their
semantic is defined through the two notions of realizability: positive and negative
one.

Definition 1. Realizabilities for SIL.

1. 〈a, b〉r+ A & B ≡ ar+ A ∧ br+ B;
〈i, c〉r− A & B ≡ (i = 1 ∧ cr− A) or (i = 2 ∧ cr− B);

2. 〈i, c〉r+ A ∨B ≡ (i = 1 ∧ cr+ A) or (i = 2 ∧ cr+ B);
〈a, b〉r− A ∨B ≡ ar− A ∧ br− B;

3. 〈f, g〉r+ A⇒ B ≡ for all a (ar+ A ⊃!(a f) ∧ (a f)r+B) ∧
for all b (br− B ⊃!(b g) ∧ (b g)r− A);
〈a, b〉r− A⇒ B ≡ar+ A∧ br− B;

4. ar+∼ A ≡ ar− A;
ar−∼ A ≡ar+ A;

5. f r+ ∀xA(x) ≡ for all a (a ∈ U ⊃!(a f) ∧ (a f)r+ A(a));
〈u, a〉r− ∀xA(x) ≡ exists u (u ∈ U∧ ar− A(u));

6. 〈u, a〉r+ ∃xA(x) ≡ exists u (u ∈ U∧ ar+ A(u));
f r− ∃xA(x) ≡ for all a (a ∈ U ⊃!(a f) ∧ (a f)r− A(a));

Here !t denotes �value of t exists�; U is the set of all primitive objects of
our model.

The usual rules for negation are valid for SIL. There is an extraction algo-
rithm which can extract two procedures from a proof of formula of the form:

∀x1 . . . xn (A1& . . .&Am ⇒ ∃y1 . . . yk (B1& . . . Bl))



Reversivity, Reversibility and Retractability 207

The first procedure finds y for all x satisfying A. The second one shows how to
find such j that ∼ Aj(x0) having ∼ Bi(x0, y0). Thus we have both a program
and a routine to analyze its errors.

Now we consider an example. Let in a subtheory (essentially constructive
formulas are specified by their realizations)

∀x ((A(x)⇒ N(x)), ϕr ∀y (N(y)⇒∼ ∃xM(x)),
g r ∀x(C(x)⇒ L(x) ∨ E(x) ∨M(x)),
∀x (L(x)⇒ D(x)), ∀x (H(x)⇒ T (x, (x f)))

which is a part of a constructive theory describing some packages of programs
we proved a formula

∀x (A(x) & (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))⇒ ∃y H(y))⇒ ∃z T (y, z))

by the following proof:

∗ A(z), ∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y), z is arbitrary∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N(z)
∼ ∃xM(x)
∗ C(u), u is arbitrary∣∣∣∣∣∣∣∣

L(u) ∨ E(u) ∨M(u)
∼M(u)
∗ L(u) ∗ E(u)
| D(u)
∀x (C(x)⇒ D(x) ∨ E(x))
H(c1)
T (z, (c1 f))

∗ ∼ T (y, z), y, z are arbitrary∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∼ A(x)∨ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))
∗ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∼ H(x), x is arbitrary
∃x (C(x) &∼ D(x) &∼ E(x))
L(c2) ∨ E(c2) ∨M(c2)
∼ L(c2) ∼ E(c2)
M(c2)
∼ N(y)
∼ A(y)

∗ ∼ A(y)

∼ A(y)

Here our direct program is

Φ : func (obj, func(func(obj)void⊕ void) obj) obj =

λx, Ψ. ((λx. case (x g) in 1 : 1, 2 : 2, 3 : error esac Ψ) f)

If its result is wrong, an error is in A. The reason of this trouble is probably a
wrong value of x which formally does not enter into a resulting program.



208 N. N. Nepejvoda

A procedure of backward analysis given originally for error diagnosis can be
used for other kinds of backward computations of program condition. We have
to stress that during this kind of backward computations we are interested not
in restoring of values but in information about initial values which had been lost
or not taken into account before program computation.

Retraction is first order process even for functional programs in the major-
ity of practical situations (roughly speaking if our positive suppositions do not
include a demand to grant an erroneous result of a procedure).

Moreover here we have an interesting duality. G. S. Tseytin pointed out
in 1970 that program values are not sufficient to analyze a program. Program
is surrounded by ghosts which are necessary to understand and to transform a
program but are at least useless during its computation. During retraction ghosts
become computable entities while values of direct program become ghosts.

3 Reversibility

Invertibility cannot be considered as a property of some exotic classes of hard-
ware computations. In business and legal practice it is sometimes necessary to
provide a possibility to restore easily the precise state of the whole system for
each given moment in the past. In many interactive program systems it is nec-
essary to provide unrestricted undoing.

Program allowing unrestricted undoing is called reversible.

Definition 2. Let X be an enumerated set. Let C(X,X) be a set of all total
computable functions f : X → X. A semigroup R ⊂ C(X,X) having a neutral
element e = λx.x and having a right inverse f−1 for each f (i.e. such f−1 that
f ◦ f−1 = e) is called reversible computability upon set of objects X.

We emphasize once more that reversibility has no relation to problem of
heat generation and programming physically reversive units. Nevertheless it is
practically essential and interesting.

Main results on �possibility to make any Turing computable function invert-
ible� consider only reversibility. In publications two notions �reversivity� and
�reversibility� are systematically muddled together.

A reversible processor can in principle work autonomously. But it is necessary
to remember lower bounds of extra resources needed for reversibility as stated
in [1973].

Time > 3k · 2
O


 T

2k




Store > S · (1 +O(k)) (2)

where k can be chosen between 1 and log2 T . Here we have somewhat shifted
notions. Bennett result and its further generalizations consider a problem how
to simulate an irreversible computation on reversible processor. In practice we
are interested in the same result but not in the same computation flow. Thus
this bound is theoretically correct but practically somewhat misleading.



Reversivity, Reversibility and Retractability 209

Moreover we don’t need to assure undoing down to atomic actions in re-
versible computing because reversibility is needed only for external reasons (say
many legal and business program must be able to reconstruct the state of the sys-
tem for any previous time moment). Hence a reversible program can use modules
written in irreversible manner if we grant undoing of their results.

From this point we can see strategic mistakes made in the design of reversible
language Janus [2007]. For example, there is a brilliant invention of Janus authors
that each unary function f is extended up to its reversible extension

(x y g) = 〈x ∗ (y f), y〉
where ∀x, y, z (x ∗ z = y ∗ z ⊃ x = y). They showed that each unary function
can be extended in such manner. But this excellent shot had a wrong goal and
is missed. Of course it is too much for reversibility but too less for reversivity (it
grants only undoing).

Now we will outline some reasons why there is no need of a reversible pro-
gramming languages. Reversibility can be reached by a discipline of programming
in a traditional structured language.

It is necessary to prohibit completely any invisible side effects of functions
and procedures.

Each procedure f can have only in and inout parameters and have a dual
procedure undo f which makes undoing of its effects.

Each function can have only in parameters and needs no undoing procedure.
Let us remember the remark of E. Dijkstra and D. Gries [2010Dij,1981Gr]

that natural assignment statements are to have a form x1, . . . , xn ← t1, . . . , tn.
Let now classify all variables in all program points as virgin, used and

monk ones. Now each assignment must have one of two forms. A multi form
x1, . . . , xn ← y1, . . . , yn where the right side contains no virgin variables and
each used variable from the left side must occur at least once in the right side.
A single form x← t where x is virgin. After this x becomes used.

Case statements and loops are unified in a spider statement form proposed
in [NNN1982] (this is an extension of Dijkstra’s loops and guarded commands
and had used e.g. by Bel’tyukov in his language ÊÛË):

for i,x1,. . . ,xn do N1: S1,. . . , Nk: Sk out L1: T1,. . . , Lm: Tm new U od.

Here i is an integer variable, Nj, Lj are integers, i, x1, . . . , xn are frozen inside
each loop step and can be changed only in new part. Inside loop they are called
monks.

A spider loop is executed as follows. If the value of i does not equal to any
of Nj, Lj there is an error. If it is equal to some Nj, the corresponding statement
Sj is executed, then U is executed and the loop continues. If it is equal to some
Lj, the loop is finished after execution of Tj and U.

Those conditions (easy to formulate as a discipline and technology of pro-
gramming and easy to check) are sufficient to grant reversibility.

Thus conditionals and loops do not hinder reversibility and only force us
sometimes to introduce some additional information.

Constructive logic of reversibility is a good problem for a new research.



210 N. N. Nepejvoda

4 Reversivity

Constructive reversive logic (CRL) was described and investigated in [2009]
For a mathematical semantic we consider an arbitrary group G. One more

important step was proposed and successfully developed by J.-Y. Girard in his
linear logic (using commutative monoid to represent money-spending actions).
For our case it sounds as follows:

States are the same group as actions.

Thus G is called both the group of actions and the group of states.
Each propositional letter corresponds to a subset of the group1, and each

element α of the group represents the function λx. x ◦ α.
Thus in the functional language based on groups application of f to a is to

be written (a f) in contrary to usual (f a). Composition of group elements a ◦ b
can be understood by any of three ways:

1. We perform the state-transfoming action a then the action b;
2. We apply the function b to a;
3. We construct a composition of functions a and b.

All those interpretations are compatible and fully interoperable. This is the main
peculiarity of group as a space of elements and actions.

CRL is a propositional logic. The primitives of reversive logic language are
propositional symbols A, B, C. . . , five connectives of classical logic (⊃, ≡, ∧,
∨, ¬) called here descriptive connectives, four constructive logical connectives
⇒,&,∼, E. E is null-ary, ¬ and ∼ are unary, all others are binary. We adopt the
following priority of binary connectives (form the weakest one up to strongest):
⇒ & ≡⊃ ∧∨ but we use parenthesis rather than priorities of ≡⊃ and ∧∨ for
the needs of easy reading. Let signature Σ be a nonempty set of propositional
symbols.

Classical connectives are read and understood in standard way.⇒ reads “can
be transformed”, A&B reads “sequential conjunction” or “A then B”2, ∼ A is
a preventive negation which can be read in different contexts as “undo A” or
“prevent A”.

Classical and constructive connectives are fully interoperable3 and can be
mixed arbitrarily. This is not the case in other constructive logics of restricted
constructions.

A formula A is descriptive if there are no constructive connectives. A formula
A is pure constructive if there are no classical connectives. Therefore proposi-
tional letters are both classical and pure constructive formulas.

1 Attention! This subset is not obliged to be a subgroup or stable in the sense of the
linear logic. This is a principal distinction from quantum logics and other algebraic
logics.

2 Of course we can read this “and” in the sense of famous Kleene’s examples: “Mary
married and born a child”, “Mary born a child and married”.

3 As it is called in modern programming.



Reversivity, Reversibility and Retractability 211

Our main semantic notion is “element a realizes a formula A in an interpre-
tation I” (I |= arA). If an interpretation is fixed we omit I.
, means �is equivalent by definition�

Definition 3. Interpretation of a signature Σ is a pair consisting of a group G
and of a function ζ : Σ → PG which maps propositional letters into power set of
G. A subset which is assigned to a propositional symbol A in I is denoted ζI(A).
If I is fixed we omit the index.

Definition 4. Realization of a formula in the interpretation I.

1. ar A , a ∈ ζ(A) where A is propositional letter and A ∈ Σ.
2. For all classical connectives their definitions are standard. E.g.

ar (A ∧B) , arA and ar B.
3. a r (A⇒ B) , ∀b ∈ G (b r A ⊃ b ◦ a r B). Thus a transforms solutions

of A into solutions of B.
4. a ◦ b r (A & B) , a r A ∧ b r B. A solution of B is applied to a solution

of A.
5. ar ∼ A , a−1 r A. a undoes a solution of A or prevents it.
6. ar E , a = e.

The set of realizations for A is denoted rA.

Whenever an interpretation I is mentioned it is assumed that I is an inter-
pretation for the signature of our formulas.

Definition 5. A is true in I if rA = G. A is valid if A is true in each I.
Validity of A is denoted |= A.
A is realizable in I if rA 6= ∅. A is totally realizable if A is realizable in each
interpretation I.

CRL diverges from other constructive logics. Say, both A&A⇒ A and A⇒
A&A are invalid. A is realizable iff ∼ A is but these formulas do not imply one
another. A ⇒ A is totally realizable but is true iff A or ¬A is true. Quantifiers
can be expressed here on propositional level. For example

∀A ≡ (A ∨ ¬A)⇒ A.

Here we have no constructive disjunction. If introduced it demands an �in-
terleaving product� of groups: a group of all products a1◦b1◦· · ·◦an◦bn where ai
are from realizations of A and bi are from one of B. This destroys finiteness and
means that conditionals demand increasing memory. Analyzing constructions of
Fredkin and Toffoli we see that it is.

So pure reversive programming language is to be without conditionals and
loops but from the very beginning functional one [2009A,2009Izh,2009VIZ,2010].
In practice we are to use irreversive operations (at least initializing and result
writing) and very restricted use of conditionals and loops. Of course there are
no recursions and reversive language is not Turing-complete. Atomic computing
elements for reversive computer are to be group-valued not binary.



212 N. N. Nepejvoda

A basic skeleton for reversive programming language can be the following.
Programs can be pure, conditional, cyclic and generic. Atomic actions are

pure. Compositions of pure programs are pure. Functions with pure body are
pure.

Pure programs are conditional. A construction

if P then t else r fi

is conditional if t and r are conditional. Compositions of conditional programs
and functions with conditional bodies are conditional.

Pure programs are cyclic. A construction

to N do t od

is cyclic if t is cyclic and N is a constant natural number. Compositions of cyclic
programs are cyclic. Functions with cyclic bodies are cyclic.

If pr is a program of each three above classes then -(pr) is a program of the
same class. Brackets around atoms and functions can be omitted.

Generic program is a composition of programs of types above. Reversive
module has a form
<definitions> <input> <generic program> <output>.
Forms of <definitions>, <input> and <output> parts we will not consider at
the moment.

Consider an example of program scheme with one type only and without
parameters of functions.

DEFINITIONS # All names used in a program are specified here

atom a1, a2, a3, a4, a5, a6, a7

predicate p1, p2

function f=(a1; if p1 then -a2; a3; a1 else a4; -a1 fi)

function g=(a1; to 51 do -a1 od)

function h=(a1; a3; -a1)

END DEFINITIONS

INPUT

# initial values of all atoms and predicates are given here;

# usually they are computed by external program

# and transferred into

p1=¬(a4,a6) # if the domain of a predicate

# or the value of an atom is fixed for all executions

# it can be defined inside

...

END INPUT

-{to 14 do

-g; h; a7;

od; a2}; # we take an inverse of the whole program block

if p2 then -f; h else f fi



Reversivity, Reversibility and Retractability 213

f; -g; -a4; h;

OUTPUT # a substructure transferred to external processor

# is defined here

...

END OUTPUT

Thus conditional parts cannot be used inside cyclic parts and vice versa.

The problem of data types for reversive programs is fine and interesting.
For example we cannot restrict ourselves by direct products of some standard
groups. Consider an example. Let in a conditional statement if P then t else r
fi functions t and r are computed dynamically. Then if G is a group of programs
and H is a group of data we are to represent the corresponding group as follows.
Its underlying set is Z2 ×G×G×H, and the group operation is

〈z, a1, b1, c1〉 ◦ 〈0, a2, b2, c2〉 = 〈z, a1 ◦ a2, b1 ◦ b2, c1 ◦ c2〉
〈z, a1, b1, c1〉 ◦ 〈1, a2, b2, c2〉 = 〈z ⊕ 1, a1 ◦ b2, b1 ◦ a2, c1 ◦ c2〉 (3)

Say, our program scheme with atoms from a group G needs much more com-
plex group to be executed. The technique of computation of this group during
translation of reversive program needs somewhat sophisticated algebraic tech-
nique and will be published in a separate paper. Here only note that

1. pure programs do not change a group;

2. each written loop adds an additive constant to the number of the group
elements;

3. each executed conditional (roughly speaking) doubles the number of elements
in a group.

During computation flow a group remains the same. Each change of a program
can change its group.

Therefore a practical reversive processor can be a mill which makes a large
amount of transformations with a low number of branches.

Each proof of A ⇒ B in a reversive constructive logic gives a pure pro-
gram to reach a state where B holds from any state with A. By the standard
technique of precondition computation described in Gries [1981Gr] we can ex-
tend specifications of pure segments up throughout our program by conditions
which hold in given points inside our programs. The whole process demands
a very sophisticated and original logical tools and was partially described in
[2009,2009Izh,2009VIZ].

So we see that realization of reversive programming demands a new theoret-
ical and practical paradigm. It is to compose non-standard logical and program-
ming tools together with algebraic ones into a single system. Underestimation of
complexity and misunderstanding of nature of this problem are two main sources
of 30-year stagnation in this domain, both in theory and in practice.

And last but not least. A reversive program must be reversive down to the
atomic constructions and here we cannot use modules written in other languages.



214 N. N. Nepejvoda

Moreover reversive modules also cannot be used by other reversive programs be-
cause input and output destroy reversivity. We can use only function definitions
given in a reversive language.

Applying our considerations of program retraction to the case of reversivity
we see that the reversive constructive logic provides an instrument of effective
retraction but this retraction is in its essence irreversive. Therefore error or
condition analysis for a reversive processor must be performed by traditional
one.

5 Conclusion

1. There are three substantially different but usually mixed notions of inverse
computability. They need different tools and use different logics.

2. A reversive computation demands full invertibility of actions. Only it can
grant minimization of heat pollution.

3. Reversive computability is not Turing-complete and a reversive processor
can work only as specialized unit of an usual (for example von Neumann)
computer.

4. Binary elements are maybe the worst choice for reversive computation. This
process demands group-based elements.

5. It is necessary to compute in a reversive program the algebraic structures of
data types and of the whole data space before program compilation because
each modification of programs changes all data structures in it. This algebraic
computation can be somewhat sophisticated.

6. A reversible computing (unrestricted undoing) can be implemented in tra-
ditional computers by traditional programming languages as a discipline of
programming.

7. A program retraction (computation of precondition which hold or fail for
the given result) can be made by means of almost traditional logic. During
retraction values and ghosts are interchanged.

References

1961. Landauer. R: Irreversibility and heat generation in the computing process. IBM
J. of R & D, 5, 183–191 (1961)

2001Bub. Bub, Jeffrey: Maxwell’s Demon and the Thermodynamics of Computation.
Stud. Hist. Phil. Mod. Phys., 32, No. 4, pp. 569—579 (2001)

2005Mar. Maroney, O J E: The (absence of a) relationship between thermodynamic
and logical reversibility. Studies In History and Philosophy of Science Part B: Studies
In History and Philosophy of Modern Physics. 36, Issue 2, 355-–374 (2005)

1973. Bennett, C. H.: Logical reversibility of computation. IBM J. of R & D, 17, no.
6, 525–532 (1973)

1980). Toffoli, T. Reversible Computing. MIT TR MIT/LCS/TM-151 (1980)
1982. Fredkin, E. and Toffoli, T.: Conservative logic. Int.l J.l of Theor.l Phys., 21, 219–

253 (1982)



Reversivity, Reversibility and Retractability 215

1992. Merkle, R.C.: Towards Practical Reversible Logic. Workshop on Phys. and
Comp., PhysComp ’92, October, Dallas Texas; IEEE press (1992)

1996. Merkle R. C.: Helical logic. Nanotechnology, 7, 325–339, (1996)
2003. Shende, V. V. Prasad, A.K. Markov, I. L., Hayes, J. P.: Synthesis of Reversible

Logic Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 22(6), 710–722 (2003)

2012L. Antoine Berut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul
Dillenschneider & Eric Lutz: Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature, March 2012.

2007. Yokoyama T., Glück R.: A reversible programming language and its invertible
self-interpreter. Partial Evaluation and Program manipulation. (2007)

2010Dij. Dijkstra, Edsger W.: A Discipline of Programming. Prentice Hall (2010)
1981Gr. Gries, D.: The Science of Programming. (1981)
2011NNN. Nepejvoda, N.N.: Óðîêè êîíñòðóêòèâèçìà.

Geidelberg: Lambert Academic Publishing, 98 pp. (2011)
2009. Nepejvoda, N.N.: Ðåâåðñèâíûå êîíñòðóêòèâíûå ëîãèêè. Ëîãè÷åñêèå èññëåäî-
âàíèÿ, 15, 150�168 (2009)

2009A. Íåïåéâîäà À. Í.: Î ñþðüåêòèâíîé èìïëèêàöèè â ðåâåðñèâíîé ëîãèêå. VI
Ñìèðíîâñêèå ÷òåíèÿ ïî ëîãèêå (2009)

2009Izh. Íåïåéâîäà À. Í. Ýëåìåíòû ðåâåðñèâíûõ âû÷èñëåíèé Óïðàâëåíèå áîëü-
øèìè ñèñòåìàìè òðóäû VI âñåðîññèéñêîé øêîëû-ñåìèíàðà ìîëîäûõ ó÷åíûõ,
Èæåâñê (2009) )

2009VIZ. Íåïåéâîäà À. Í.: Î ðåâåðñèâíîé àëüòåðíàòèâå òðàäèöèîííûì âû÷èñëå-
íèÿì. Òðåõìåðíàÿ âèçóàëèçàöèÿ íàó÷íîé, òåõíè÷åñêîé è ñîöèàëüíîé ðåàëüíîñòè.
Òåõíîëîãèè âûñîêîïîëèãîíàëüíîãî ìîäåëèðîâàíèÿ : òðóäû Âòîðîé ìåæäóíàð.
êîíô., Èæåâñê (2010).)

2010. Íåïåéâîäà À. Í.: Ôóíêöèîíàëüíîå ïðîãðàììèðîâàíèå íàä ãðóïïîé. Ñèñòåì-
íûé àíàëèç è ñåìèîòè÷åñêîå ìîäåëèðîâàíèå: òðóäû ïåðâîé âñåðîññèéñêîé êîí-
ôåðåíöèè, 2011, Êàçàíü (2011)

1979. Çàñëàâñêèé È.Ä.: Ñèììåòðè÷åñêàÿ êîíñòðóêòèâíàÿ ëîãèêà. Åðåâàí, (1979)
NNN1982. Nepejvoda N. N. Logical approach to Programming. Logic, methodology

and philosophy of science VI. 109–122 (1982)
Mar1982. Martin-Löf P. Constructive mathematics and computer programming. Logic,

methodology and philosophy of science VI. 153–179 (1982)
1991. Nepejvoda N. N. A bridge between constructive logic and computer program-

ming. Theoretical Computer Science, 90 253–270 (1991)
1998. Nepejvoda N. N. Some analogues of partial and mixed computations in the

logical programming approach. New Generation Computing, 17,309–327 (1999)



Inverting Dynamic Programming

Nikolay Shilov

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences
Lavren’ev av. 6, 630090 Novosibirsk, Russia

shilov@iis.nsk.su

http://persons.iis.nsk.su/en/person/shilov

Abstract. We suggest and discuss a formalization of Dynamic Pro-
gramming. A methodological novelty consists in an explicit treatment
(interpretation) of ascending Dynamic Programming as least fix-point
computation (according to Knaster-Tarski fix-point theorem). This inter-
pretation leads to a uniform approach to classical optimization problems
as well as to problems where optimality is not explicit (Cocke - Younger
- Kasami parsing algorithm for example) and to problem of algorithm
inversion (i.e. computing inverse function).

Keywords: Dynamic programming, Tarsky-Knaster fixpoint theorem,
algorithm inversion

1 Introduction

We would like to continue study of algorithm inversion started in [11]. The
cited paper [11] is about a fake coin puzzle to be solved in three programming
paradigms: logic, functional and imperative. It can be considered as a case study
of algorithm inversion, since we start with logic algorithm, that answers the ques-
tion “Is balancing M times sufficient for detecting the fake coin?”, and finishes
with imperative algorithm, that effectively computes the minimal number of bal-
ancing that is sufficient for detection the fake; functional paradigm is used for
developing an intermediate functional algorithm that also computes the minimal
number of balancing, but inefficiently. Basically, the functional and the impera-
tive solutions of the puzzle are two (recursive and iterative) versions of dynamic
programming algorithm that inverts a logical program. In the present paper we
generalize background ideas to inversion of recursive dynamic programming.

1.1 Dropping Bricks from a High Tower

Let us start with the following Dropping Bricks Puzzle1.

1 When draft of this paper was ready, Prof. Teodor Zarkua (St. Andrew University
of Georgian Patriarch) informed the author that the problem is known already and
has been used for programming contests (check, for example, the problem at URL
http://acm.timus.ru/problem.aspx?space=1&num=1223). Recently a variant of the
problem has been added to Wikipedia article Dynamic Programming (available at
http://en.wikipedia.org/wiki/Dynamic_programming#Egg_dropping_puzzle).



Inverting Dynamic Programming 217

Let us characterize mechanical stability (strength) of a brick by an inte-
ger h that is equal to the height (in meters) that is safe for the brick to
fall down, while height (h + 1) meters is unsafe (i.e. the brick breaks).
You have to define stability of bricks of a particular kind by dropping
them from different levels of a tower of H meters. (You may assume that
mechanical stability does not change after safe fall of a brick.) How many
times do you need to drop bricks for it, if you have 2 bricks in the stock?
What is the optimal number (of droppings) in this case?

Basically the question that we need to answer is how to compute the optimal
number of droppings GH , if the height of the tower is H, and you have 2 bricks in
the stock. In the next subsection we sketch descending Dynamic Programming
solution of the above problem as a gentle introduction to Dynamic Program-
ming approach to optimization, design its implementation in terms of functional
pseudo-code and conclude with historic remarks.

The rest of the paper is organized as follows. In the next section 2 we intro-
duce (what we call) a scheme of recursive Dynamic Programming and discuss
in brief how to improve efficiency of recursive Dynamic Programming by mem-
oization. In the section 3 we convert recursive Dynamic Programming into the
iterative form and interpret Dynamic Programming as a computation of the least
fix-point of an appropriate monotone functional. In turn we get an opportunity
to design, specify and verify a unified template for ascending Dynamic Program-
ming. Two examples of the template specialization are presented in section 4,
one of which is context-free parsing. In the section 5 we suggest an approach
how to invert algorithms that are based on Dynamic Programming. We discuss
some concluding remarks in the last section 6.

1.2 Recursive Method for Optimization Problems

Dropping Bricks Puzzle is a particular and explicit example of optimization
problems. Originally Dynamic Programming has been designed as a recursive
search (or construction) of an optimal program (or plan) that remains optimal
at every stage. For example let us consider below the puzzle.

Any optimal method (to define mechanical stability) should start with some
step (command) that prescribes to drop the first brick from some particular (but
optimal) level h. Hence the following equality should hold for this particular h:

GH = 1 + max{(h− 1), GH−h},
where (in the right-hand side)

1. ‘1+’ corresponds to the first dropping,
2. (h − 1) corresponds to the case when the first brick breaks after the first

dropping (and we have to drop the remaining second brick from levels 1, 2,
... (h− 1) in the sequence),

3. GH−h corresponds to the case when the first brick is safe after the first
dropping (and we have to define stability by dropping pair of bricks from
(H − h) levels in [(h+ 1)H]),



218 N. Shilov

4. ‘max’ corresponds to the worst in cases 2 and 3 above.

Since the particular value h is optimal, and optimality means minimality,
hence the above equality transforms to the next one:

GH = min
1≤h≤H

(1 + max{(h− 1), GH−h}) = 1 + min
1≤h≤H

max{(h− 1), GH−h}.

Besides we can add one obvious equality G0 = 0.
One can remark that sequence of integers G0, G1, ... GH , ..., that meet these

two equalities, is unique, since G0 is defined explicitly, G1 is defined by G0, G2

— by G0 and G1, GH — by G0, G1, ... GH−1. Hence it is possible to move
from the sequence G0, G1, ... GH , ..., to a function G : N→ N that maps every
natural H to GH and satisfies the following system of functional equations for
the objective function G:

{
G(0) = 0
G(H) = 1 + min1≤h≤H max{(h− 1), G(H − h)} .

This system has unique solution as it follows from the uniqueness of the
sequence G0, G1, ... GH , ... Hence this system can be adopted as a recursive
definition of a function, i.e. a recursive algorithm presented by its functional
pseudo-code. This is an example of the first (historically) face of Dynamic Pro-
gramming — a recursive method for optimization problems.

Dynamic Programming was introduced as a recursive method for optimiza-
tion problems by Richard Bellman in 1950s [5]. At this time the noun program-
ming had nothing in common with more recent computer programming, but
meant planning (compare: linear programming). The adjective dynamic points
out that Dynamic Programming is related to change of state (compare: dynamic
logic, dynamic system). Functional equations for the objective function (like in
the above) are called after Richard Bellman Bellman equations as well as the fol-
lowing Bellman Principle of Optimality (that we have use already): an optimal
program (or plan) remains optimal at every stage.

2 Recursion & Memoization vs. Dynamic Programming

If to analyze the recursive Dynamic Programming methodology accumulated in
Bellman Principle and the above recursive solution for Dropping Bricks Puz-
zle, then it is possible to suggest the following scheme of recursive Dynamic
Programming.

Definition 1. Let scheme of recursive Dynamic Programming be the following
recursive program scheme [7,8]

G(x) = if p(x) then f(x) else g(x, (G(ti(x)), i ∈ [1..n(x)])), (1)

where functional symbol G : X → Y stays for the objective function, predicate
symbol p ⊆ X stays for (i.e. represents or is interpreted by) a known predicate,



Inverting Dynamic Programming 219

functional symbol f : X → Y stays for a known function, functional symbol
g : X∗ → X stays a known function with a variable (but finite) number of
arguments n(x), and all functional symbols ti : X → X, i ∈ [1..n(x)] stays for
known functions also.

It is well-known [8] that the recursive program scheme (with uninterpreted
symbols) is not equivalent to any standard program scheme (i.e. a flowchart with
uninterpreted symbols with fixed amount of memory), but can be translated to
a program scheme with stack. Let us remark that in this paper we consider the
scheme of recursive Dynamic Programming with interpreted symbols. Usually
this interpretation is explicit. For example, in Dropping Bricks Puzzle we have

G(H) = if H = 0 then 0 else (1 + min
1≤h≤H

max{(h− 1), G(H − h)}).

Let us compute a value of this function G for a particular argument by
exercising the above recursive algorithm in the left-recursive order:
G(4) = 1 + min1≤h≤4 max{(h− 1), G(4− h)} =
= 1 + min{max{0, G(3)} , max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1 + min{max{0, 1 + min{max{0, G(2)} , max{1, G(1)} , max{2, G(0)}}} ,

max{1, G(2)} , max{2, G(1)} , max{3, G(0)}} =
= 1 + min{max{0, 1 + min{max{0, 1 + min{max{0, G(1)} , max{1, G(0)}}} ,

max{1, G(1)} , max{2, G(0)}}} , max{1, G(2)} , max{2, G(1)} ,
max{3, G(0)}} = . . . = 3.

This exercise illustrates what is called a descending Dynamic Programming.
One can remark that in the above example we recompute values of G for

some arguments several times (G(2) and G(1) in particular). This observation
leads to an idea to compute function values for new argument values once, then
save them (in a hash-table for example), and use them on demand (i.e. instead
re-computation). This technique is known in Functional Programming as mem-
oization [4].

Some authors claim that Recursion + Memoization = Dynamic Program-
ming [4], but we do not think so due to the following reasons. The first one is
historical, since the foundational paper [5] did not discuss memoization at all.
The second counterargument relies upon observation that recursion in Dynamic
programming has a very special form (never nesting in particular). And finally,
there exists also an iterative form of Dynamic Programming, that we discuss
below.

Definition 2. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. For every argument value v ∈ X, such
that p(v) does not hold, let base be the following set bas(v) of values {ti(v) : i ∈
[1..n]}. For every argument value v let support be the set spp(v) of all argument
values that occur in the computation of G(v).

Proposition 1. Let us consider a function G : X → Y that is defined by in-
terpreted scheme (1) of recursive Dynamic Programming. For every argument
value v ∈ X, if the objective function G is defined for v, then spp(v) is finite



220 N. Shilov

and it is possible to pre-compute (i.e. compute prior to computation of G(v))
the support spp(v) according to the following recursive algorithm

spp(x) = if p(x) then {x} else {x} ∪ (
⋃

y∈bas(x)
spp(y)). (2)

Proof. Correctness of the recursive algorithm 2 can be proved by induction on
recursion depth in computation of G(v). Ii G(v) is defined then finiteness of
spp(v) follows from König’s lemma, since bas(u) is finite for every argument
value u where bas is defined. �

Definition 3. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. Let us say that a function SPP : X →
2X is an upper support approximation, if for every argument value v, the fol-
lowing conditions hold:

– v ∈ SPP (v),

– spp(u) ⊆ SPP (v) for every u ∈ SPP (v),

– if spp(v) is finite then SPP (v) is finite.

In the case when support or its upper approximation is easy to compute, it
makes sense to use iterative ascending Dynamic Programming instead of recur-
sive descending Dynamic Programming with memoization.

Ascending Dynamic Programming comprises the following steps.

1. Input argument value v and compute SPP (v). Then compute and save values
of the objective function G for all argument values u that are in SPP (v)
such that p(u). For example, in Dropping Bricks Puzzle, if we would like to
compute value G(H), then spp(H) = [0..H] and the unique argument value
of this kind is 0, and, hence, the unique function value that should be saved
is G(0); one can save this value as element G[0] of integer array G[0..H].

2. Expand the set of saved values of the objective function by values that
can be immediately computed on base of the set of saved values: for ev-
ery u ∈ SPP (v), if G(u) is not computed yet, but for every w ∈ bas(u)
value G(w) has been computed and saved already, then compute and save
G(u) = g(u, (G(ti(u)), i ∈ [1..n])). For example, in Dropping Bricks Puz-
zle, if values G(0), ... G(K) have been saved in array G[0..H] in elements
G[0], ... G[K] (where 0 ≤ K < H), one can compute value G(K + 1) =
1 + min1≤kleqK max{(k − 1), G(H − k)} and save it G[K + 1].

3. Repeat step 2 until the moment, when you save the value of the objective
function for the argument value v. For example, Dropping Bricks Puzzle, step
2 should be executed H times and terminate after saving G[H] in G[0..H].

Let us observe that the ascending Dynamic Programming has not a recursive
form but the iterative one.



Inverting Dynamic Programming 221

3 Computing the Least Fix-Point

Let us formalize iterative ascending Dynamic Programming by means of im-
perative pseudo-code annotated by precondition and postcondition [6,3], i.e. by
triples in the following form {B}A{C}, where A is an algorithm in pseudo-code,
B — is a logical precondition, and C — is a logical postcondition. A triple
{B}A{C} is said to be valid (or that the algorithm A is partially correct with
respect to precondition B and postcondition C), if every terminating exercise of
A for input data that satisfy B, the output data satisfy C.

Formalization of the ascending Dynamic Programming follows.
\\Precondition:
{D is a non-empty set of argument values,

S and P are ‘‘trivial’’ and ‘‘target’’ subsets in D,

F : 2D →2D is a call-by-value total monotone function,

ρ : 2D×2D →Bool is a call-by-value total function

monotone on the second argument}
\\Template:
var Z:= S, Z1 : subsets of D;

repeat Z1:= Z ; Z:= F(Z) until (ρ(P,Z) or Z=Z1)

\\Postcondition:
{ρ(P,Z) ⇔ ρ(P, T ),
where T is the least fix-point of the mapping λQ.(S ∪ F (Q))}

We would like to refer this formalization as ascending Dynamic Programming
template, since (as we will see in the section 4) many particular instances of as-
cending Dynamic Programming algorithms can be generated from this template
by specialization of the domain D, sets S and P , and function F . (Like many
instances of backtracking and branch-and-bound algorithms can be generated
from the unified template that is presented and verified in [12].)

Partial correctness of the formalized ascending Dynamic Programming tem-
plate follows from Knaster-Tarski fix-point theorem [9]. We would not like to
present the exact formulation of the theorem, but would like to present the
following proposition that is a trivial corollary from the theorem.

Proposition 2. Let D be a non-empty set, G : 2D → 2D — be a total monotone
function, and R0, R1, ... be the following sequence of D-subsets: R0 = ∅ and
Rk+1 = G(Rk) for every k ≥ 0. Then there exists the least fix-point T ⊆ D of
the function G and R0 ⊆ R1 ⊆ R2 ⊆ . . . Rk ⊆ Rk+1 ⊆ . . . ⊆ T .

The following proposition is a trivial consequences of the above proposition.

Proposition 3. Dynamic Programming template is partially correct, i.e. for
any input data that meets the precondition, the algorithm instantiated from the
template either loops or halts in such a way that the postcondition holds upon the
termination. Assuming that for some input data the precondition of the Dynamic
Programming template is valid, and the domain D is finite, then the algorithm
instantiated from the template terminates on these data after (at most) |D| it-
erations of the loop repeat-until.



222 N. Shilov

Proof. Let us assume that a particular instance of the template terminates for
some input data that meets the precondition. According to the above proposi-
tion 2, the following function G = λQ.(S ∪ F (Q)) : 2D → 2D (that maps every
Q ⊆ D to S ∪ F (Q)) has the least fix-point. Let R0 = ∅ and Rk+1 = G(Rk) for
every k ≥ 0; then for every k > 0 values of set variables Z and Z1 immediately
after k iterations of the loop are Rk+1, and Rk respectively, and (according to
proposition 2) Rk ⊆ T , where is the least fix-point of the mapping G. Hence, if
the repeat-loop terminates due to condition ρ(P, Z), then ρ(P, T ) due to mono-
tonicity of G; if this loop terminates, but not due to the condition ρ(P, Z) (i.e.
this condition is not valid), then it terminates due to another condition Z=Z1,
that implies that the final value of X is equal to the least fix-point T , and hence
ρ(P, T ) is not valid also. �

4 Examples of the Template Specialization

In this section we illustrate how the ascending Dynamic Programming template
works, i.e. how concrete algorithms can be generated from it by specialization
(i.e. by instantiating concrete functions and predicates).

4.1 Computing Dynamic Programming

Let us start with Dropping Bricks Puzzle and adopt

– D to be an “initial segment” of the graph of the function G, i.e. the set of
all integer pairs (m,G(m)), where m represents a level (in [1..H]);

– S to be a singleton set {(0, 0)} that consists of the unique trivial pair, and
P to be another singleton set {(H,G(H))};

– F to be a function that maps any Q ⊆ D to {(m,n) ∈ D |
there exist integers n0, . . . nm−1 such that (0, n0), . . . (m− 1, nm−1) ∈ Q

and n = 1 + min1≤k≤m max{(k − 1), nm−k}};
– ρ(P,Q) to be ∃n : (H,n) ∈ (P ∩Q).

This specialization meets the precondition of the template of the ascending
Dynamic Programming, and D is the least fix-point of F . Hence (according
to proposition 3), the resulting algorithm terminates after H iterations of the
repeat-loop (since |D| = H), and (upon the termination) (H,G(H)) ∈Z (since
∃n : (H,n) ∈ (P∩Z) ⇔ ∃n : (H,n) ∈ (P ∩ T ) where T is D, the fix-point of F ),
but there is no any other n 6= G(H) such that (H,n) ∈Z (since P is a singleton).

The above example can be generalized as follows.

Proposition 4. Let us consider a function G : X → Y that is defined by scheme
(1) of recursive Dynamic Programming. Assume that SPP : X → 2X is some
upper approximation of the support function for G. Let v ∈ X be any value. If
to adopt

– the graph of G restricted on SPP (v) as D,
– a set {(u, f(u))|p(u) & u ∈ SPP (v)} as S,



Inverting Dynamic Programming 223

– a singleton {(v,G(v))} as P ,
– a mapping Q 7→ {(u,w) ∈ D | ∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈
Q & w = g(u,w1, . . . wn)} as F : 2D → 2D,

– ∃w : (v, w) ∈ (R ∩Q) as ρ(R,Q) : 2D × 2D → Bool,

then the algorithm that results from the template of the ascending Dynamic Pro-
gramming computes G(v) in the following sense: it terminates after iterating
repeat-loop |SPP (v)| times at most, upon the termination (v,G(v)) ∈Z and there
is no any w ∈ Y (other than G(v)) such that (v, w) ∈Z.

Proof. The described specialization meets the precondition of the template of
the ascending Dynamic Programming, and D is the least fix-point of F . Hence
(according to proposition 3), the resulting algorithm terminates after at most
|SPP (v)| iterations of the repeat-loop (since |D| ≤ |SPP (v)|), and (upon the
termination) (v,G(v)) ∈Z (since ∃w : (v, w) ∈ (P∩Z) ⇔ ∃w : (v, w) ∈ (P ∩ T )
where T is D, the fix-point of F ), but there is no any other w 6= G(v) such that
(v, w) ∈Z (since P is a singleton). �

4.2 Context-Free Parsing

Parsing theory for context-free (C-F) languages is well established and developed
technology [1,2]. The first sound and efficient algorithm for parsing C-F lan-
guages was developed independently by J. Cocke, D.H. Younger and T. Kasami
in period from 1965 to 1970. More efficient and practical parsing algorithms have
appeared since these times, nevertheless Cocke - Younger - Kasami algorithm
(CYK algorithm) still has educational importance nowadays2. A context-free
grammar (C-F grammar) is a tuple G = (N,E, P, S), where

– N and E are disjoint finite alphabets of non-terminals and terminals,
– P ⊆ N × (N ∪ E)∗ is a set of productions of the following form n → w,
n ∈ N , w ∈ (N ∪ E)∗,

– s ∈ N is the initial non-terminal.

A C-F grammar is in the Chomsky Normal Form (CNF) if the initial symbol does
not occur in the right-hand side of any production, and every production has the
form n → n′n′′ or n → e, where n, n′, n′′ ∈ N and e ∈ E. Derivation in a C-F
grammar G is a finite sequence of words w0, . . . wk, wk+1, . . . wm ∈ (N ∪E)∗,
(m ≥ 0), such that every word wk+1 within this sequence results from the
previous one wk by applying a production (in this grammar). For every words
w′, w′′ ∈ (N ∪ E)∗ let us write w′ ⇒ w′′ if there exists a derivation that starts
with w′ and finishes with w′′. Language L(G) generated by the grammar G is
defined as follows: L(G) = {w ∈ E∗ | s⇒ w}.

Two C-F grammars are said to be equivalent if they generate equal languages.
It is well-known fact that every C-F grammar that does not generate the empty
word is equivalent to some CNF grammar [1].

2 Recently M. Lange and H.F. Leiß suggested a generalized CYK algorithm for edu-
cational purposes [10].



224 N. Shilov

Definition 4. Assume that G = (N,E, P, s) is a given C-F grammar. Parsing
problem for L(G) can be formulated as follows: for input word w ∈ E∗ construct
the set of all pairs (n, u), n ∈ N and u ∈ E∗ is a (non-empty) subword of w,
such that n⇒ u.

In the sequel we discuss parsing problem for CNF grammars only. Let G =
(N,E, P, s) be a CNF grammar, w ∈ E∗ be the input word, L = L(G) be
the corresponding language, D be the set of all pairs (n, u), where n ∈ N and
u ∈ E∗ is a (non-empty) subword of w, and T = {(n, u) ∈ D | n ⇒ u}. It
is easy to see that T is the least fix-point of the following monotone function
F : 2D → 2D that maps every Q ⊆ D to F (Q) = {(n, e) ∈ D | e ∈ E, (n →
e) ∈ P} ∪ {(n, u) ∈ D | ∃(nprime, uprime), (nprimeprime, uprimeprime) ∈
Q : u ≡ uprimeuprimeprime and (n → nprimenprimeprime) ∈ P}. Hence
we can adopt {(n, e) ∈ D | e ∈ E, (n → e) ∈ P} as S, {(s, w)} as P in the
ascending Dynamic Programming template, and predicate FALSE as ρ. After
this specialization the template becomes CYK algorithm that solves the parsing
problem for L(G) by iterating repeat-loop at most |N | × |w| times.

5 Inverting Descending Dynamic Programming

Definition 5. Let G : X → Y be a function. A function G− : Y → X is said
to be inverse of G if the following properties hold:

– for every w ∈ Y , if w ∈ G(X) then G−(w) is defined and G(G−(w)) = w;
– for every w ∈ Y , if w /∈ G(X) then G−(w) is undefined.

Let us remark, that if a function G : X → Y is not injective, then G− is not
unique.

Let us assume that some total function G : X → Y is defined by recursive
scheme of Dynamic Programming 1. Let us assume also that X is countable (with
some fixed enumeration cnt : N → X), that we have the following abstract data
type SubSet which values are subsets of X (i.e. all subsets, not just finite), that
has standard set-theoretic operations union and intersection (applicable when at
least one argument is finite) and another choice operation fir : SubSet→ X that
computes for every set T the element of T with the smallest number (according
to cnt).

Assume that we want to design an algorithm that computes some inverse of
G. The simplest way to compute G−(w) for a given y ∈ Y is to proceed one by
one according to count as follows.
\\ Precondition:

{G : X → Y is a total computable function,

X is a countable set,

Fir : SubSet→ X is a choice function, y ∈ Y }
\\ Algorithm:

var x: X; var z: Y; var R:=X: SubSet;

repeat x:= Fir(R); z:= G(x); R:= R\{x} until (z=y or R=∅);



Inverting Dynamic Programming 225

if y 6=z then loop

\\ Postcondition:

{G(x) = y}.
Partial correctness of this algorithm is straightforward, but without memo-

ization this algorithm is extremely inefficient. More efficient way to compute the
inverse function is presented below as the following Inverse Dynamic Program-
ming algorithm.
\\ Precondition:

{G : X → Y is a computable function

defined by scheme of recursive Dynamic Programming (1),

SPP : X → 2X is an upper support approximation for G,
X is a countable set, Fir : SubSet→ X is a choice function,

y ∈ Y }
\\ Algorithm:

var x: X; var R:=X, T: SubSet;

var D:=∅: 2X×Y ;
var k : integer;

repeat x:= Fir(R); T:= SPP(x); R:= R\T;
D:= D ∪ {(u, f(u)) | p(u) & u ∈ T};
exercise k∈ [1..|T |] times: D:= D ∪ {(u,w) /∈ D |

∃w1, . . . wn : (t1(u), w1), . . . (tn(u), wn) ∈ D,
t1(u), . . . tn(u) ∈ T, & w = g(u,w1, . . . wn)}

until (∃u : (u, y) ∈ D or R=∅);
if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop

\\ Postcondition:

{G(x) = y}. (Parameter k may be any in the specified range and, maybe, it can
be determined by supercompilation [13,14].)

Proposition 5. Inverse Dynamic Programming algorithm is partially correct.

Proof. One can proceed according to Floyd - Hoare method [6,3] and use the
following (one and the same) invariant to both loops (i.e. for the external repeat-
loop and for the internal exercise-loop): D is a subset of graph of G. �
Proposition 6. Assume that for some input data the precondition of the Inverse
Dynamic Programming algorithm is valid and that the input value y belongs to
G(X). Then the algorithm eventually terminates.

Proof. A standard way to prove algorithm (and program) termination is via
potential (or bound) function [6,3], i.e. a function that maps states of the al-
gorithm to natural numbers so that every legal loop execution reduces value
of the function. Let n ∈ N be an integer such that y = G(cnt(n)), let m =∑

0≤i≤n |SPP (cnt(i))| and let π(D) = m − |D|. Then every legal iteration of
any loop of our algorithm reduces the value of this function π(D) at least by
one. �

As follows from propositions 5 and 6, the inverse Dynamic Programming
really computes an inverse function for a function defined by recursive scheme
for descending Dynamic Programming.



226 N. Shilov

Let us present an example. It does not make sense to invert function G that
solves Dropping Bricks Puzzle, since this function is not injective. So let us
consider a simpler injection function F : N → N

F (n) = if (n = 0 or n = 1) then 1 else F (n− 1) + F (n− 2)

that computes Fibonacci numbers. Let us assume that cnt is enumeration in
the standard order. Then our Inverse Dynamic Programming algorithm gets the
following form:
var x: N; var R:=N, T: 2N;

var D:=∅ : 2N×N;

var k : integer;

repeat x:= Fir(R); T:= [0..x]; R:= R\[0..x];
D:= D ∪ {(0, 1) | 0 ∈[0..x]} ∪ {(1, 1) | 1 ∈[0..x]};
exercise k∈[1..x] times: D:= D∪ {(u,w) /∈ D |

∃w1, w2 : (u− 1, w1), (u− 2, w2) ∈ D,
(u− 1), (u− 2) ∈[0..x], & w = w1 + w2}

until ∃u : (u, y) ∈ D;

if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop.

After some simplification one can get the following algorithm: var x: N; var

T: 2N; var D:=∅: 2N×N; var k : integer;

x:=0; D:= {(0, 1), (1, 1)};
repeat x:=x+1; D:= D ∪ {(x,w1 + w2) |

∃w1, w2 : (x− 1, w1), (x− 2, w2) ∈ D};
until ∃u : (u, y) ∈ D;

if ∃u : (u, y) ∈ D then x:= (u such that (u, y) ∈ D) else loop

that just computes and saves Fibonacci sequence in the “array” D and checks
whether y is in the array already.

6 Concluding Remarks

Author would not like to forth everyone to think about Dynamic Programming in
terms of fix-point computations, but believe that ascending Dynamic Program-
ming template presented in the paper will help to teach and (maybe) automatize
Algorithm Design. This approach to teaching Dynamic Programming is in use
in Master program at Information Technology Department of Novosibirsk State
University since 2003. A possible application of the unified template is data-flow
parallel implementation of the Dynamic Programming, but this topic need more
research.

Acknowledgments. The research is supported by joint Russian-Korea project
RFBR-12-07-91701-NIF-a.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, Vol.
1, Parsing. Prentice Hall (1972)



Inverting Dynamic Programming 227

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd Edition. Addison-Wesley (2007)

3. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verifcation of Sequential and Concurrent
Programs. Third edition, Springer (2009)

4. Astapov, D.: Recursion + Memoization = Dynamic Programming. (In Russian.)
Practice of Functional Programming n.3,17–33, available at http://fprog.ru/

2009/issue3/ (2009)
5. Bellman, R.: The theory of dynamic programming. Bulletin of the American Math-

ematical Society 60, 503–516 (1954)
6. Gries, D.: The Science of Programming. Springer (1987)
7. Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification.

Lecture Notes in Computer Science 36, Springer, Heidelberg (1975)
8. Kotov V.E., Sabelfeld V.K.: Theory of Program Schemata. (Teoria Skhem Pro-

gramm.) Science (Nauka), Moscow (1991) (in Russian)
9. Knaster, B., Tarski, A.: Un theoreme sur les fonctions d’ensembles. Ann. Soc. Polon.

Math., 6, 133–134 (1928)
10. Lange, M., Leiß, H.: To CNF or not to CNF? An Efficient Yet Pre-

sentable Version of the CYK Algorithm. Informatica Didactica 8, available
at http://www.informatica-didactica.de/cmsmadesimple/index.php?page=

LangeLeiss2009_en (2009).
11. Shilov, N.V.: A note on three Programming Paradigms. In: 2nd International

Valentin Turchin Memorial Workshop on Metacomputation in Russia, pp.173–184.
Ailamazyan Program Systems Institute, Pereslavl-Zalessky, Russia (2010)

12. Shilov, N.V.: Algorithm Design Template base on Temporal ADT. Proceedings of
18th International Symposium on Temporal Representation and Reasoning, IEEE
Computer Society, 157–162 (2011)

13. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3), 292–325 (1986)

14. Turchin, V.F.: Supercompilation: the approach and results. (Superkompilyatsya:
metody i rezultaty.) In: Current trends in architecture, design and implementation
of program systems. (Problemy arkhitektury, analiza i razrabotki programmnyh
system.). System Informatics (Sistemtaya Informatika) 6, Science (Nauka), Novosi-
birsk, 64–89 (1998) (in Russian)



Lightweight Polytypic Staging of DSLs in Scala?

Alexander V. Slesarenko

Keldysh Institute of Applied Mathematics, Moscow, Russia,
avslesarenko@gmail.com,

WWW home page: http://pat.keldysh.ru/~slesarenko/

Abstract. This paper describes Lightweight Polytypic Staging, - a new
approach to the implementation of deep embedding of DSLs. We use the
notion of polytypic DSL, – the DSL which is designed and implemented
by means of polytypic (data-generic) programming techniques.
We show how to combine various lightweight techniques available in
the Scala language (techniques based on expressive type system of the
language). In particular, we use polytypic (data-generic) programming,
polymorphic embedding, Lightweight Modular Staging (LMS) and lan-
guage virtualization.
The combination of polytypic programming and staging gives us new
opportunities for optimizations by transformation. It is traditional in
polytypic programming to implement a user-defined data type by first,
providing an isomorphic representation of the type built out of sums of
products and second, by defining semantics of domain primitives only for
sums of products. In polytypic staging context we introduce an isomor-
phism lifting, – a transformation that automatically lifts isomorphisms
out of the domain code and separates the domain semantics from the
user-defined views.
The implementation is based on the Scala-Virtualized compiler (an ex-
tension to facilitate deep DSL embedding) which makes the staging al-
most transparent to the DSL user (non-staged and staged code looks
literally the same). We show how to apply polytypic staging to a partic-
ular domain by describing an implementation of the corresponding DSL.
The domain is nested data parallelism and the DSL is the nested data
parallel language embedded in Scala. The paper is organized around the
specific DSL, but our implementation pattern should be applicable to
any polytypic DSL in general.

Keywords: Generic programming, Polytypic programming, Polytypic
staging, Nested Data Parallelism, Multi-stage programming, Domain-
specific languages, Language Virtualization

1 Introduction

A long-standing trend in software development for parallel computing is the
reduction of complexity, namely the development of easy-to-use languages and

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.



Lightweight Polytypic Staging of DSLs in Scala 229

libraries [8,9,24], encapsulation of complexity in an implementation of system
software [21], creation of interactive working environments [1].

In particular, it was shown [28,26] that a combination of a DSL approach
and program staging is a promising direction of work where sufficient perfor-
mance optimizations of staged code were achieved by exploiting domain-specific
semantics. So staging is a key point of DSL optimizations.

But what if the DSL for our domain can be naturaly implemeted by using
polytypic (generic) programming techniques? How can we stage generic code?
Interestingly, this is the case when we consider nested data parallelism (NDP)
as the domain. In our previous work[27] we developed an embedded polytypic
DSL for expressing nested data parallel algorithms in Scala language by using
generic programming [12] (polytypic programming [17]) techniques.

In this paper, we describe an attempt to stage our polytypic DSL, hence we
term this as polytypic staging. The implementation is lightweight in a sence that
it is based on an expressive type system of the Scala language. In section 5 we
briefly compare the lightweight staging approach with a traditional multi-stage
programming [29].

The idea behind our approach that is proposed here is based on a combina-
tion between Lightweight Modular Staging (LMS) [25] and polytypic (datatype-
generic) programming. The idea is that by writting programs using a polymor-
phic embedding style [14], programs can be interpreted in two modes: simulation
and code generation. In the simulation mode programs are given an unoptimized
(and slow), but straightforward implementation which is good for testing. In
code generation mode, a fast, optimized implementation is generated at run-
time. Datatype-generic programming techniques are then applied to allow the
library to be specialized with user-specific datatypes (built out of arrays, sums
and products) by providing isomorphic views types [15]. Term rewriting tech-
niques can be applied on the staging (code generation) phase to perform generic
and domain specific optimizations.

For domain specific foundations we rely on a series of publications [19,4,20]
on the nested data parallelism model. The model of NDP was first formulated in
the early 90’s [3], but still is not widely used in practice, although there is a series
of publications and a publicly available implementation [5]. On the other hand,
many techniques and technologies [2,7,14,23,25], which we use as a foundation
of our approach, appeared only in recent years so it is an interesting research
question to restate the problem and implement the model in a new environment.

We propose our implementation of NDP as a DSL embedded in the Scala-
Virtualized as the host language and packaged as a library. We compare it with
Parser Combinators library which also has limited expressiveness and inherent
composability, while still having a wide range of applications in different problem
domains.

From the DSL point of view, we regard our previous implementation as shal-
low embedding as oppose to deep embedding that is described in this paper and
which is consistent with our previous work.

In summary, this paper makes the following main contributions:



230 A. V. Slesarenko

1. We extend our previously published work [27] by introducing type-directed
Lightweight Polytypic Staging technique (LPS).

2. We describe how to extend the Lightweight Modular Staging (LMS) frame-
work by making it polytypic (datatype-generic) over a family of type con-
structors: sum, product and array.

3. We show how our framework is able to support user-specific data types by
providing isomorphic representations.

4. We show how the combination of polytypic programming and staging tech-
niques gives us new opportunities for optimizations by transformation by
introducing isomorphism lifting, – a transformation that automatically lifts
isomorphisms out of domain code and separates domain semantics from user-
defined views.

5. We show how to apply Lightweight Polytypic Staging to a special problem
domain of nested data parallelism.

In this paper we also describe some aspects of the design and implementation
of the Scalan library. 1

1.1 The DSL

We start with some examples of the DSL to illustrate the basic ideas of the NDP
domain from user’s perspective.2

Consider the definition of sparseVectorMul in Fig. 1. We represent a sparse
vector as an array of pairs where the integer value of the pair represents the
index of an element in the vector and the float value of the pair represents the
value of the element (compressed row format). Having this representation, we
can define a dot-product of sparse and dense vectors as a function over arrays.

trait PArray[A]

type VectorElem = (Int,Float)

type SparseVector = PArray[VectorElem]

type Vector = PArray[Float] // dense vector

type Matrix = PArray[SparseVector] // sparse matrix

def sparseVectorMul(sv: SparseVector, v: Vector): Float =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

def matrixVectorMul(matr: Matrix, vec: Vector): Vector =

for (row <- matr) yield sparseVectorMul(row, vec)

Fig. 1. Sparse Matrix Vector Multiplication

1 The complete code is available at http://github.org/scalan to supplement the paper.
2 We extensively use Scala listings in the paper and assume familiarity with the lan-

guage [22]. We only show parts of the code relevant to our discussion and refer to
our previous paper [27] for details of the library design and more samples.



Lightweight Polytypic Staging of DSLs in Scala 231

Instead of using the ordinary Array[T] type we use an abstract PArray[T]

trait and by doing that, first, make the code abstract, and second, express our
intent for a parallel evaluation.

When it comes to multiplying a sparse matrix with a dense vector, we can
reuse our previously defined parallel function sparseVectorMul to define a new
parallel function matrixVectorMul. This is the essence of nested data parallelism,
on the one hand, we are able to nest one parallel map inside another parallel
map and, on the other hand, it supports flattening that makes it possible to
automatically transform any nested code into flat form which is good for execu-
tion. And that is the reason why we need staging in this domain in a first place,
to be able to perform transformations.

We are free up to a family of product, sum and PArray type constructors (see
Fig. 2) to define data types and in fact it is our responsibility as a programmer
to define them properly. It is our choice here to represent sparse matrix as a
parallel array of sparse vectors and not dense ones (as they can have consider-
ably different memory usage characteristics). But what the polytypic DSL gives
us is that for any data type we define it provides us with the specialized under-
lying data structure that is built in a generic way from the type definition (see
section 2.4).

A,B = Unit | Int | Float | Boolean // base types

| (A,B) // product (pair of types)

| (A|B) // sum type where (A|B) = Either[A,B]

| PArray[A] // nested array

Fig. 2. Family of element types

We can also use a parallel function inside its own definition i.e. recursively.
Fig. 3 shows how the QuickSort recursive algorithm can be expressed in the
NDP model.

The DSL is purely functional, sequential and deterministic. The program can
be thought of as being executed by the vector virtual machine where each array
primitive is executed as one data-parallel step. We express parallelism (what
we want to be executed in parallel and what we don’t) by using types of an
input data (PArray in this case), intermediate data (i.e. subs which has type
PArray[PArray[Int]]) and also by using combinators over parallel data types
(map, partition).

Note how partition increases the nesting level so that we can express the
idea that both partitions should be executed in parallel using map. And then
results are combined back in a flat array by concat which has the following type

def concat[A:Elem](a: PA[PA[A]]): PA[A]



232 A. V. Slesarenko

trait PArray[T] {

def partition(flags:PA[Boolean]):PA[PA[T]]

}

type PA[A] = PArray[A]

def qsort(xs: PA[Int]): PA[Int] = {

val len = xs.length

if (len <= 1) xs

else {

val pivot = xs(len / 2)

val less = xs map { x ⇒ x < pivot }

val subs = xs.partition(less)

val sorted = subs map { sub ⇒ qsort(sub) }

concat(sorted)

}

}

Fig. 3. Parallel QuickSort

The point is that concat is a constant-time operation, and that is possible
because the representation of the type PA[PA[A]] is specially choosen to support
this. You can look at the Fig. 7 and probably guess how concat is implemented.

The implicit annotation A:Elem expresses a requirement that the type pa-
rameter A should be an instance of the type-class Elem[A] [7], which means, as
we will see later, that A is either built by using products, sum, and PArray con-
structors, or it is a user-specific data type isomorphic to some B:Elem. It is not
just any user defined Scala type but any Scala type can be made into type-class
Elem by providing an isomorphism.

We systematically use the techniques described in [7] to implement polytyp-
ism in our DSL. In particular, in the section 2 we will see how we can define
generic functions once and for all instances of the type-class Elem.

1.2 Adding More Types

If we limit the typing capabilities of the DSL to just the types shown in Fig. 2
we still be possible to cover many practical cases. It is limitied approach though,
since we cannot define recursive data types in this way due to the limitations
imposed by the Scala language itself. And it is not convenient for the user.

To both overcome this limitation and increase typing capabilities of the DSL
we make it possible to extend the family of types shown in Fig. 2 with any user-
specific type defined in Scala. The key point is to be able to make any such type
U an instance of type-class Elem. The idea is to define a canonical3 isomorphism
(iso for short) between U and some existing instance A:Elem. This finally ensures

3 Canonical isos are special because they are uniquely determined by the types in-
volved, that is, there is at most one canonical iso between two polymorphic type
schemes.



Lightweight Polytypic Staging of DSLs in Scala 233

that every user-specific type is represented by an isomorphic view type [15]. It
suffices to define a function on view types (and primitive or abstract types such
as Int and Boolean) in order to obtain a function that can be applied to values
of arbitrary data types.

Consider as an example the definition of the Point type shown in Fig. 4.
Given a user-specific type (Point in this case) all we need to do is to define an
instance of Iso[A,B] type-class (see IsoPoint) witnessing that Point is canonically
representable in terms of already defined instances of the Elem type-class.

case class Point(x: Int, y: Int)

implicit object IsoPoint extends Iso[(Int, Int), Point] {

def to = (p: (Int, Int)) ⇒ Point(p._1, p._2)

def from = (p: Point) ⇒ (p.x, p.y)

}

def distance(p1: Point, p2: Point): Float = {

val dx = p2.x - p1.x

val dy = p2.y - p1.y

sqrt(dx * dx + dy * dy)

}

def minDistance(ps: PArray[Point]): Float =

min(for (p <- ps) yield distance(Point(0,0), p))

case class Circle(loc: Point, r: Int)

implicit object IsoCircle extends Iso[(Point, Int), Circle] {

def from = (c: Circle) ⇒ (c.loc, c.r)

def to = (c: (Point, Int)) ⇒ Circle(c._1, c._2)

}

Fig. 4. User-specific data type

Once the Point type is made an instance of the Elem type-class via isomor-
phism it can in turn be used to both define other user-specific types and partic-
ipate in the isomorphims definitions for those types as it is shown in Fig. 4. We
describe the design of these features in section 4.

In our polytypic staging framework we are able to give both evaluation and
staging interpretation of all the examples discussed so far. This is described in
sections 3 and 4.

1.3 Outline

This paper is organized as follows. Section 2 briefly introduces the theoretical
foundations and techniques we use in our impelemtation. Section 3 shows the
design of the polytypic staging framework. Section 4 describes our handling of
user-specific data types by extending the polytypic staging framework with the
generic views on data types. Related work and conclusions are given in Section 5.



234 A. V. Slesarenko

2 Foundations of our approach

2.1 Polymorphic Embedding of DSLs

It is well known that a domain specific language (DSL) can be embedded in an
appropriate host language [16]. When embedding a DSL in a rich host language,
the embedded DSL (EDSL) can reuse the syntax of the host language, its module
system, typechecking(inference), existing libraries, its tool chain, and so on.

In pure embedding (or shallow embedding) the domain types are directly
implemented as host language types, and domain operations as host language
functions on these types. This approach is similar to the development of a tradi-
tional library, but the DSL approach emphasizes the domain semantics: concepts
and operations of the domain in the design and implementation of the library.

Because the domain operations are defined in terms of the domain semantics,
rather than the syntax of the DSL, this approach automatically yields compo-
sitional semantics with its well-known advantages, such as easier and modular
reasoning about programs and improved composability. However, the pure em-
bedding approach cannot utilize domain semantics for optimization purposes
because of tight coupling of the host language and the embedded one.

Recently, polymorphic embedding - a generalization of Hudaks approach - was
proposed [14] to support multiple interpretations by complementing the func-
tional abstraction mechanism with an object-oriented one. This approach intro-
duces the main advantage of an external DSL, while maintaining the strengths
of the embedded approach: compositionality and integration with the existing
language. In this framework, optimizations and analyses are just special inter-
pretations of the DSL program.

Considering advantages of the polymorphic embedding approach we employ
it in our design. For details we refer to [14]. Conside the following example

type Rep[A]

trait PArray[A]

type SparseVector = PArray[(Int,Float)]

type Vector = PArray[Float]

def sparseVectorMul(sv: Rep[SparseVector], v: Rep[Vector]) =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

On the DSL level we use product, sum and PArray type constructors and
express domain types as Scala’s abstract types (see SparseVector). Moreover,
we lift all the functions over abstract type constructor Rep. This is important
because later we can provide concrete definitions yielding specific implementa-
tions.

Our sequential implementation (we call it simulation) is implemented by
defining Rep as

type Rep[A] = A

And in our staged implementation (we call it code generation) is implemented
by defining Rep as

type Rep[A] = Exp[A]



Lightweight Polytypic Staging of DSLs in Scala 235

where Exp is a representation of terms evaluating to values of the type A. Later
we will see how it is defined in LMS framework.

The ultimate goal is to develop a polymorphically embedded DSL in the Scala
language in such a way that the same code could have two different implementa-
tions with equivalent semantics. And thus we would benefit from both simulation
(evaluation for debugging) and code generation (for actual data processing).

2.2 Generic programming

In addition to the polymorphic embedding technique, we also need a couple of
others that were recently developed in the area of generic programming. We shall
briefly overview them here starting with the notion of Phantom Types [6,11].4

Consider the definition of a data type (in a Haskell-like notation) shown in
Fig. 5.

data Type τ =

RInt with τ = Int

| RChar with τ = Char

| RPair (Type α) (Type β) with τ = (α, β)
| RList (Type α) with τ = [α]

Fig. 5. Type descriptors as phantom types

Types defined this way have some interesting properties:

– Type is not a container type: an element of Type Int is a runtime represen-
tation of type Int; it is not a data structure that contains integers.

– We cannot define a mapping function (α→ β) → (Type α → Type β) as for
many other data types.

– The type Type β might not even be inhabited: there are, for instance, no
type descriptors of type Type String

It has been shown [11] that phantom types appear naturally when we need to
represent types as data at runtime. In our DSL we make use of phantom types
to represent types of array elements as runtime data (see Fig. 10) and staged
values (see section 3).

Runtime type representations have been proposed as a lightweight founda-
tion of generic programming techniques [10]. The idea is to define a data type
whose elements (instances) represent types of data that we want to work with.
A Generic Function is one that employs runtime type representations and is
defined by induction on the structure of types.

4 We could have used a more general notion of GADT [18] but we stick with phantom
types as they are simplier and well enought for our presentation.



236 A. V. Slesarenko

Consider again the definition of the data type Type in Fig. 5. An element
rt of type Type τ is a runtime representation of τ . For example, following is a
representation of type String.

rString :: Type String

rString = RList RChar

A generic function pattern matches on the type representation and then takes
the appropriate action.

data Bit = 0|1

compress :: forall τ.Type τ → τ → [Bit]

compress (RInt) i = compressInt i

compress (RChar) c = compressChar c

compress (RList ra) [ ] = 0:[]

compress (RList ra) (a : as) = 1 : compress ra a ++ compress (RList ra) as

compress (RPair ra rb) (a, b) = compress ra a ++ (compress rb b)

We assume here that two functions are given
compressInt :: Int → [Bit]

compressChar :: Char → [Bit]

2.3 Generic programming in Scala

Generic functions can be encoded in Scala using an approach suggested in [23].
Fig. 6 shows the encodings in Scala for the above function compress.5

trait Rep[A]

implicit object RInt extends Rep[Int]

implicit object RChar extends Rep[Int]

case class RPair[A,B](ra:Rep[A], rb:Rep[B]) extends Rep[(A,B)]

implicit def RepPair[A,B](implicit ra:Rep[A], rb: Rep[B]) = RPair(ra,rb)

def compress[A](x:A)(implicit r:Rep[A]):List[Bit] = r match {

case RInt ⇒ compressInt (x)

case RChar ⇒ compressChar (x)

case RPair(a, b) ⇒ compress(x._1)(a) ++ compress(x._2)(b)

}

Fig. 6. Generic function in Scala

Traditionally, generic (polytypic) functions are defined for a family of types
built out of sums and products. We add PArray to the family of representation
types. Definition of a generic function should be given for each representation

5 The definition of compress for the case RList is straightforward and we leave it as
an exercise.



Lightweight Polytypic Staging of DSLs in Scala 237

type as shown in Fig. 6. For all other types it is usually required to give an iso-
morphic representation of the type in terms of the above fixed set of constructors.
We give an account of isomorphic representations in section 4.1.

In the impelementation of the DSL we use similar techniques and type rep-
resentations to implement array combinators as generic functions. But because
parallel arrays that we discuss here are all implemented using type-indexed data
types (also known as non-parametric representations) we follow a different pat-
tern to introduce generic functions in our library.

2.4 Type-indexed data types

A type-indexed data type is a data type that is constructed in a generic way from
an argument data type. It is a generic technique and we briefly introduce it here
adapted for our needs. For a more thorough treatment the reader is referred
to [13].

In our example, in the case of parallel arrays, we have to define an array type
by induction on the structure of the type of an array element.

Suppose we have a trait PArray[T] (to represent parallel arrays) and conve-
nience type synonym PA[T] defined as

trait PArray[A] // PArray stands for Parallel Array

type PA[A] = PArray[A]

For this abstract trait we want to define concrete representations depending
on the underlying structure of the type A of the array elements. As shown in Fig. 2
we consider a family of types constructed by the limted set of type constructors.

Thus, considering each case in the definition above, we can define a repre-
sentation transformation function RT (see Fig. 7) that works on types. It was
shown [4] how such array representations enable nested parallelism to be imple-
mented in a systematic way.

RT: * → *

RT [[PArray[Unit]]] = UnitArray(len:Int)

RT [[PArray[T]]] = BaseArray(arr:Array[T])

where T = Int | Float | Boolean

RT [[PArray[(A,B)]]] = PairArray(a: RT [[PArray[A]]],b:RT [[PArray[B]]])
RT [[PArray[(A|B)]] = SumArray(flags: RT [[PArray[Int]]],

a: RT [[PArray[A]]],
b: RT [[PArray[B]]])

RT [[PArray[PArray[A]]]] = NArray(values: RT [[PArray[A]]],
segments: RT [[PArray[(Int,Int)]]])

Fig. 7. Representation Transformation

Below we show how to use Scala’s case classes to represent structure nodes
of a concrete representation (UnitArray, BaseArray, etc.) and how to keep the



238 A. V. Slesarenko

data values (data nodes) unboxed in Scala arrays (Array[A]). A graphical illus-
tration of these representations is shown in Fig. 8. For details related to these
representations we refer to [4].

Fig. 8. Type-indexed representations of PArray

Consider as an example a representation of a sparse matrix rendered by
applying RT function to Matrix type. It is shown graphically in Fig. 9.

2.5 Type-indexed arrays in the DSL’s implementation

To employ the above techniques in the design of our DSL lets first represent the
type structure of an array element type by using the Scala encodings of generic
functions described above (see [27] for details).

Note, that in Scala we can equip type representations with generic functions
(replicate in this sample) by using inheritance. Moreover, we can use a concrete



Lightweight Polytypic Staging of DSLs in Scala 239

type VectorElem = (Int,Float)

type SparseVector = PArray[VectorElem]

type Matrix = PArray[SparseVector]

Fig. 9. Sparse matrix representation

array representation (PairArray) in the implementation for a particular type case
(pairElement). All these lead to a fully generic while still statically typed code.

To define generic (polytypic) functions over our arrays we first declare them
in the PArray trait

trait PArray[A] {

def length: Int

def map[R:Elem](f: A ⇒ R): PA[R]

/* and other methods */

}

And then we implement these abstract methods in concrete array classes
shown in Fig. 11. Note how the implementation changes depending on the type
of an array element. Each method declared in the PArray trait is a type indexed
function and each implementation in a concrete array class is an implementation
of the function for the particulay type case.

2.6 Lightweight Modular Staging (LMS)

So far, given a type A of an array element we know how to build a type-indexed
representation of the array using RT function thus yielding RT [[PA[A]]] type.
Next, we have seen how to encode in our DSL these array representations to-
gether with polytypic operations over them. These techniques are used in our
unstaged implementation of nested data parallelism (as described in [27]).

As it was mentioned before, the unstaged implementation is not intended to
be efficient, rather, it should be simple and straightforward, as it is supposed
to be used for debugging (in the aforementioned simulation mode). To enable



240 A. V. Slesarenko

type Elem[A] = Element[A] // type synonim

trait Element[A] { // type descriptor for type A

def replicate(count: Int, v: A): PA[A]

def fromArray(arr: Array[A]): PA[A]

}

class BaseElement[T] extends Element[T] {

def fromArray(arr:Array[T]) = BaseArray(arr)

def replicate(len:Int, v:T) = BaseArray(Array.fill(len)(v))

}

implicit val unitElem: Elem[Unit] = new UnitElement

implicit val intElem: Elem[Int] = new BaseElement[Int]

implicit val floatElem: Elem[Float] = new BaseElement[Float]

implicit def pairElem[A,B](implicit ea:Elem[A], eb:Elem[B]) =

new Element[(A,B)] {

def replicate(count: Int, v: (A,B)) =

PairArray(ea.replicate(count, v._1),

eb.replicate(count, v._2))

}

Fig. 10. Representation of the types of array elements

a parallel and efficient implementation, we employ a deep polymorphic embed-
ding technique, namely a particular instance of it known as Lightweight Modular
Staging (LMS) [25].

In the name, Lightweight means that it uses just Scala’s type system. Modular
means that we can choose how to represent intermediate representation (IR)
nodes, what optimizations to apply, and which code generators to use at runtime.
And Staging means that a program instead of executing a value, first, produces
other (optimized) program (in a form of a program graph) and then executes
that new program to produce the final result.

Consider the method matrixVectorMul in Fig. 1 and types Matrix, Vector

that were used in the declaration. In the LMS framework, in order to express
staging, we are required to lift some types using the type constructor Rep[_]

and use Rep[Matrix], Rep[Vector], etc. In fact, sparseVectorMul should have
been declared like this to enable polymorphic embedding

def sparseVectorMul(sv: Rep[SparseVector], v: Rep[Vector]): Rep[Float] =

sum(sv map { case Pair(i,value) ⇒ v(i) * value })

In the case of unstaged interpretation we define Rep as
type Rep[A] = A

which yields a unstaged implementation of the method above with the usual
evaluation semantics of the host language (i.e. Scala). On the other hand, LMS
is a staging framework and we want to build IR instead of just evaluating the
method. To achieve this, LMS defines Rep as shown in Fig. 12.

This, in effect, enables lifting of the method bodies too, so that its evaluation
yields a program graph. Lifting of expressions is performed when the code is



Lightweight Polytypic Staging of DSLs in Scala 241

type PA[A] = PArray[A] // convenience type synonim

trait PArray[A]

case class UnitArray(len: Int) extends PArray[Unit]{

def length = len

def map[R:Elem](f: Unit⇒ R) = element[R].replicate(len, f(()))

}

case class BaseArray[A:Elem](arr: Array[A]) extends PArray[A] {

def length = arr.length

def map[R:Elem](f: A ⇒ R) =

element[R].tabulate(arr.length)(i ⇒ f(arr(i)))

}

case class PairArray[A:Elem,B:Elem](a:PA[A],b:PA[B]) extends PArray[(A,B)]{

def length = a.length

def map[R:Elem](f: ((A,B)) ⇒ R) =

element[R].tabulate(length)(i ⇒ f(a(i),b(i)))

}

case class NArray[A:Elem](values: PA[A], segs: PA[(Int,Int)])

extends PArray[PArray[A]] {

def length = segs.length

def map[R:Elem](f: PA[A] ⇒ R): PA[R] =

element[R].tabulate(length)(i ⇒ {

val (p,l)= segs(i); f(values.slice(p,l))

})

}

Fig. 11. Polytypic PArray methods

compiled using the Scala-Virtualized compiler [2]. For example, consider the
following lines of code:

val x: Rep[Int] = 1

val y = x + 1

There is no method + defined for Rep[Int], but we can define it on DSL level
without providing any concrete implementation as follows

trait IntOps extends Base {

def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

When such a declaration is in the scope of x+1 then + is replaced by Scala
compiler with infix_+(x, toExp(1)). In a staging context infix_+ is defined so
that it generates an IR node of the operation

trait IntOpsExp extends BaseExp with IntOps {

case class IntPlus(x:Exp[Int],y:Exp[Int]) extends Def[Int]

def infix_+(x: Exp[Int], y: Exp[Int]) = IntPlus(x,y)

}



242 A. V. Slesarenko

trait BaseExp extends Base with Expressions {

type Rep[T] = Exp[T]

}

trait Expressions {

abstract class Exp[T]

case class Const[T](x: T) extends Exp[T]

case class Sym[T](n: Int) extends Exp[T]

abstract class Def[T] // operations (defined in subtraits)

class TP[T](val sym: Sym[T], val rhs: Def[T])

var globalDefs: List[TP[_]] = Nil

def findDefinition[T](d: Def[T]): TP[T] =

globalDefs.find(_.rhs == d)

def findOrCreateDefinition[T](d: Def[T]): TP[T] =

findDefinition(d).getOrElse{

createDefinition(fresh[T],d)

}

implicit def toExp[T](x: T): Exp[T] = Const(x)

implicit def toExp[T](d: Def[T]): Exp[T] =

findOrCreateDefinition(d).sym

}

Fig. 12. How Rep[T] is defined in LMS

Here IntPlus is an IR node that represents + in the program graph. Note
that infix_+ should return Rep[Int] while IntPlus extends Def[Int], so implicit
conversion

implicit def toExp[T](d: Def[T]): Exp[T] = findOrCreateDefinition(d).sym

which is defined in Expressions trait is called here thus providing graph building
machinery. We refer to [25] for detailed explanation of how the LMS works.

3 Polytypic Staging

We have shown that for each type A of array element we use the type repre-
sentation function RT to build type-indexed representation of PArray[A] type.
We also showed how we define PArray’s methods using polytypic techniques so
that once defined they work for all types in the family. Thus, emphasizing the
domain-specific nature of our library and considering its polytypic design we can
think of it as a polytypic DSL.

If we want to deeply embed our polytypic DSL in Scala by applying poly-
morphic embedding techniques in general and the LMS framework in particular
we need to answer the question: How are we going to lift the type-indexed types
along with the polytypic functions in the Rep world?. In this section we describe
the Polytypic Staging, our approach to a deep embedding of polytypic DSLs.
By design, our framework:



Lightweight Polytypic Staging of DSLs in Scala 243

1. is an extension of the LMS framework
2. respects the type-indexed representations described before
3. adds an additional dimension of flexibility to the LMS framework by making

it polytypic
4. behaves as core LMS in the non-polytypic case

3.1 Staged Values

To be consistent with the LMS framework, we do not change the original defi-
nition of Rep, but we need to make some extensions to account for a polytypic
case, they are shown on the following figure in italicized bold.

type Rep[T] = Exp[T]

abstract class Exp[+T] {

def Type: Manifest[T] = manifest[T] // in LMS

def Elem : Elem[T ] // added in Scalan
}

case class Sym[T: Elem](val id: Int) extends Exp[T] {

override def Elem = element[T]

}

case class Const[+T:Manifest](x: T) extends Def [T ]
def element[T] = implicitly[Element[T]]

These additions ensure that each staged value has a runtime type descriptor
that we use to implement polytypism. Whenever we construct a symbol we have
to provide implicitly or explisitly its type descriptor. We also treat constants as
definitions (more precisely as operations of arity 0), and we can do it without a
loss of generality since given a symbol we can always extract its right-hand-side
definition by using the Def extractor [22] defined in the core LMS framework.

object Def {

def unapply[T](e: Exp[T]): Option[Def[T]] = e match {

case s@Sym(_) ⇒ findDefinition(s).map(_.rhs)

case _ ⇒ None

}

}

Treating constants as definitions in our implementation of LMS means that any
lifted value of the type Rep[T] is always an instance of Sym[T] which simplifies
our implementation.

3.2 Staged Type Descriptors

In the staged context the descriptors of types of array elements shown in Fig. 10
remain unchanged. This means that we can keep our type representation schema
with one adaptation: we need to lift all the methods of the Element[T] trait.

Note that even after the lifting of the methods their bodies remain literally
the same. This is achieved first, by a systematic use of the Rep[T] type con-
structor in signatures of classes and methods and second, by using the Scala



244 A. V. Slesarenko

type Elem[A] = Element[A]

trait Element[A] {

def replicate(count: Rep[Int], v: Rep[A]): PA[A]

def fromArray(arr: Rep[Array[A]]): PA[A]

}

class BaseElem[T] extends Element[T] {

def fromArray(arr: Rep[Array[A]]) = BaseArray(arr)

def replicate(len: Rep[Int], v: Rep[A]) =

BaseArray(ArrayFill(len, v))

}

implicit val unitElem: Elem[Unit] = new UnitElem

implicit val intElem: Elem[Int] = new BaseElem[Int]

implicit val floatElem:Elem[Float]= new BaseElem[Float]

implicit def pairElem[A,B](implicit ea: Elem[A], eb: Elem[B]) =

new Element[(A,B)] {

def replicate(count:Rep[Int], v:Rep[(A,B)]): PA[(A,B)] =

PairArray(ea.replicate(count, v._1), eb.replicate(count, v._2))

}

Fig. 13. Staged type representations

idiom known as ”pimp my library” to add methods that work with values lifted
over Rep[T]. For example, consider expressions v._1 and v._2 in Fig. 13, whose
implementation is shown in Fig. 14.

def unzipPair[A,B](p: Rep[(A,B)]): (Rep[A],Rep[B]) = p match {

case Def(Tup(a, b)) ⇒ (a, b)

case _ ⇒ (First(p), Second(p))

}

class PairOps[A:Elem,B:Elem](p: Rep[(A,B)]) {

def _1: Rep[A] = { val (a, _) = unzipPair(p); a }

def _2: Rep[B] = { val (_, b) = unzipPair(p); b }

}

implicit def pimpPair[A:Elem,B:Elem](p: Rep[(A,B)]) = new PairOps(p)

case class Tup[A,B](a: Exp[A], b: Exp[B]) extends Def[(A,B)]

case class First[A,B](pair: Exp[(A,B)]) extends Def[A]

case class Second[A,B](pair: Exp[(A,B)]) extends Def[B]

Fig. 14. Staging methods using ’Pimp My Library’

We use the core LMS’s Def extractor to implement the staging logic. Given a
lifted pair (p: Rep[(A,B)]) we either successfully extract a Tup(a,b) constructor
and return the original constituents of the pair, or we emit the new IR nodes
thus deferring the tuple deconstruction until later stages. Figures above show



Lightweight Polytypic Staging of DSLs in Scala 245

how we implement our polytypic staging framework on top of the core LMS, but
as we will see in the next section, to lift type-indexed data type representations
of PArray[A] over Rep[_] and to stage type-indexed (polytypic) array methods
we still need to introduce some extensions above the core LMS.

3.3 Staged Type-Indexed Data Types

Polytypism in our DSL is focused around the PArray[A] trait (which on the DSL
level represents parallel arrays) and every value of the PArray[A] type has a
type-indexed representation that is built by induction on the structure of A. We
also extensively use a convenience type synonym PA defined as follows
trait PArray[A]

type PA[A] = Rep[PArray[A]]

Thus, in a staged context, PA is no longer a synonym of PArray and now it is
a synonym of a lifted PArray. In other words PA[T] is a lifted value of array
with elements of type T. It is not a key point in our implementation but the
introduction of PA[A] simplifies our presentation (and in fact greatly simplifies
the code of the library).

Let us use the code in Fig. 13 to describe how values of the type PArray

are staged (or lifted) in our polytypic staging framework. First, notice that the
replicate method of pairElem produces a value of the PA[(A,B)] type which is a
synonym of Rep[PArray[(A,B)]] and so it is a lifted PArray[(A,B)] and in LMS
such values are represented by symbols of type Sym[PArray[(A,B)]]. Thus having
a value of type PA[(A,B)] we can think of it as a value of some symbol of type
Sym[PArray[(A,B)]]. Next, recall that in LMS we get lifted values of the type
Rep[T] by the following implicit conversion (recall also that Rep[T] = Exp[T])

implicit def toExp[T](d: Def[T]): Exp[T] = findOrCreateDefinition(d).sym

The conversion is automatically inserted by the compiler, it converts any
definition to a symbol and builds a program graph as its side effect. We employ
this design by deriving all classes that represent parallel arrays from Def[T] with
appropriate T so that they can be first, converted to symbols and second, added
to the graph as array construction nodes. As an example see Fig. 13 where
PairArray is returned by the method replicate. The definitions to represent
arrays are shown in Fig. 15.6

Compare these classes with those shown in Fig. 11. and note how class signa-
tures became lifted either explicitly by using the Rep[T] constructor or implicitly
by redefining the PA[T] synonym as Rep[PArray[A]]. Moreover, the type repre-
sentation transformation function TR shown in Fig. 7 also remains almost the
same, but works with lifted types (see Fig. 16). This similarity is due to the
polymorphic embedding design of our approach where we want to give different
implementations to the same code.

Note, how we mix-in the PArray[A] trait into every graph node of the type
PADef[A]. In this way, when we stage (or lift over Rep) a type-indexed represen-
tation of PArray[T] we both create the data structure using our concrete array

6 Please, refer to the source code for the case of SumArray.



246 A. V. Slesarenko

abstract class PADef[A] extends Def[PArray[A]] with PArray[A]
case class UnitArray(len: Rep[Int]) extends PADef[Unit] {

def map[R:Elem](f: UnitRep ⇒ Rep[R]): PA[R] =

element[R].replicate(len, f(toRep(())))

}

case class BaseArray[A:Elem](arr: Rep[Array[T]]) extends PADef[A] {

def map[B:Elem](f: Rep[A] ⇒ Rep[B]) =

element[B].tabulate(arr.length)(i ⇒ f(arr(i)))

}

case class PairArray[A:Elem,B:Elem](a:PA[A],b:PA[B]) extends PADef[(A,B)]{

def map[R:Elem](f: Rep[(A,B)]⇒ Rep[R]): PA[R] = {

element[R].tabulate(length)(i ⇒ f(a(i),b(i)))

}

}

case class NArray[A:Elem](arr: PA[A], segments:PA[(Int,Int)])

extends PADef[PArray[A]] {

def map[R:Elem](f: PA[A] ⇒ R): PA[R] =

element[R].tabulate(length)(i ⇒ {

val Pair(p,l) = segments(i); f(arr.slice(p,l))

})

}

Fig. 15. Array classes as graph nodes (Defs)

classes and at the same time we build nodes of the program graph. This is an-
other key difference from the LMS framework. In the LPS design some nodes of
the graph can have a behavior.

The staged representation transformation (SRT ) is shown in Fig. 16. The
function L is a mapping of types of concrete arrays to the types of staged values.

A graphical illustration of these representations in a form of a program graph
is shown in Fig. 17 where we use the following methods that allow us to construct
new arrays:

def fromArray[T:Elem](x: Rep[Array[T]]): PA[T] =

element[T].fromArray(x)

def replicate[T:Elem](count: Rep[Int], v: Rep[T]):PA[T]=

element[T].replicate(count, v)

By a staged context (when type Rep[A] = Exp[A]) it is possible to achieve
an effect of constant propagation and a limited form of partial evaluation by
applying domain-specific rewritings (see Section 4). Our experiments show that if
all the input data of the function is known at staging time, our rewriting method,
while simple enough, is able to fully evaluate the function. It is illustrated in
Fig. 17 where the array building expressions are evaluated to a type-indexed
representation of the resulting arrays and that representation only contains data
arrays in Const nodes and concrete array nodes form Fig. 15 that represent
PArray[A] values.



Lightweight Polytypic Staging of DSLs in Scala 247

L, SRT: * → *

L[[UnitArray(len: Rep[Int])]] = Rep[PArray[Unit]]

L[[BaseArray(
arr:Rep[Array[T]])]] = Rep[PArray[T]]

where T=Int|Float|Boolean

L[[PairArray(a:PA[A], b:PA[B])]] = Rep[PArray[(A,B)]]

L[[SumArray(flags:PA[Boolean],
a:PA[A], b: PA[B])]] = Rep[PArray[(A|B)]]

L[[NArray(
values:PA[A],

segs:PA[(Int,Int)])]] = Rep[PArray[PArray[A]]]

SRT [[PArray[Unit]]] = UnitArray(len:Rep[Int])

SRT [[PArrya[T]]] = BaseArray(arr:Rep[Array[T]])

where T = Int|Float|Boolean

SRT [[PArray[(A,B)]]] = PairArray(a:L[[SRT [[PArray[A]]]]],
b:L[[SRT [[PArray[B]]]]])

SRT [[PArray[(A|B)]]] = SumArray(

flags: L[[SRT [[PArray[Int]]]]],
a: L[[SRT [[PArray[A]]]]],
b: L[[SRT [[PArray[B]]]]])

SRT [[PArray[PArray[A]]]] = NArray(

values : L[[SRT [[PArray[A]]]]],
segments: L[[SRT [[PArray[(Int,Int)]]]]])

Fig. 16. Staged Representation Transformation

3.4 Staged Polytypic Functions

The same way as we lift the methods in the type descriptors (types derived from
Element[T] and shown in Fig. 13) we can lift the methods in the concrete array
classes (those derived from PArray[T] and shown in Fig. 15).

Compare this code with the non-staged version in Fig. 11 and note how the
signatures are all lifted over Rep and the bodies of the methods remain literally
unchanged. It is interesting that polymorphic embedding allows to share the
same code for unstaged and staged implementation even in the library itself
which makes the design very flexible.

As a not very trivial example of staging, we show in Fig. 18 a program graph
that we get by staging of the function sparseVectorMul. The Lambda(x,exp) is a
representation in the graph of a lambda abstraction where x is a symbol that
represents the variable and exp is a symbol that represent the body of the lambda
term.



248 A. V. Slesarenko

val rowInds = fromArray(Array(0, 1))

val rowVals = replicate(2, 0.5f)

val sparseRow = rowInds.zip(rowVals)

val matr = replicate(2, sparseRow)

Fig. 17. Array constructors and the resulting graph

4 User-Specific Data Types

4.1 Isomorphic Representations

In this section we describe how to add any user-specific data type to our frame-
work. The key point is to be able to make any such type U an instance of typeclass
Elem. The idea is to define isomorphism between U and some existing instance
A:Elem. We extend our family of array element types as it is shown in Fig. 19.

In other words, type U can be regarded as belonging to the type-class Elem if
there is an isomorphism between U and some A:Elem. Type Iso[A,B] is defined
like this

trait Iso[A,U] {

def eA: Elem[A] // type descriptor for A

def eU: Elem[U] // type descriptor that is built with this Iso

def from: U ⇒ A // unstaged morphisms

def to: A ⇒ U

def fromStaged: Rep[U] ⇒ Rep[A] // staged morphisms

def toStaged: Rep[A] ⇒ Rep[U]

}

The reason we have separate versions for unstaged and staged isomorphism
is that in a staged context we need to have an unstaged version of isos too.

Next, we need to extend the representation transformation for both unstaged
(defined in Fig. 7) and staged (defined in Fig. 16) versions. Corresponding ex-
tensions are shown in Fig. 20.



Lightweight Polytypic Staging of DSLs in Scala 249

Fig. 18. Program graph for sparceVectorMul

Remember, that for every type A we need a runtime type descriptor Elem[A]

to be able to create arrays of type PArray[A]. For the case of user-specific data
type U the type descriptor is shown below

implicit def viewElement[A,U](implicit iso: Iso[A,U]): Elem[U] =

new Element[U] {

def replicate(count: Rep[Int], v:Rep[U]): PA[U] =

ViewArray(iso.eA.replicate(count, iso.fromStaged(v)), iso)

}

We use the type descriptor of an representation type iso.eA to build an
actual array and wrap it with ViewArray to get type-indexed representation for
PArray[U] (see Fig. 20). If the descriptor iso.eA itself or in some part is a result of
viewElement (so it is built from user-specific type) then we have nested structure
of ViewArray wrappers. Isomorphism lifting transformation (see 4.3) is able to



250 A. V. Slesarenko

A,B = Unit | Int | Float | Boolean // base types

| (A,B) // product (pair of types)

| (A|B) // sum type where (A|B) = Either[A,B]

| PArray[A] // nested array

| U if exist Iso[A,U ] for some A : Elem

Fig. 19. User-specific type as array element type

RT,L, SRT: * → *

RT [[PArray[U]]] = ViewArray(arr: RT [[PArray[A]]], iso: Iso[A,U])

if exists unique Iso[A,U] for some A:Elem

L[[ViewArray(arr: PA[A], iso:Iso[A,U])]] = Rep[PArray[U]]

SRT [[PArray[U]]] = ViewArray(arr: L[[SRT [[PArray[A]]]]], iso: Iso[A,U])

if exists unique Iso[A,U] for some A:Elem

Fig. 20. Representation transformation for user-specific types

eliminate this nesting, by combining corresponding morphisms (fromStaged in
this case).7

To complete our presentation of user-specific types we show an implementa-
tion of function map below. Notice the usage of the isomorphism in the body of
the function.

case class ViewArray[A,U](arr: PA[A], iso: Iso[A,U]) extends PArray[U] {

def map[R:Elem](f: Rep[U] ⇒ Rep[R]): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒ f(iso.toStaged(arr(i))))

}

}

4.2 Samples

Let us see how it works on a simple example. Consider user-specific data types
along with their isomorphic representations shown in Fig. 21. Given that def-
initions we can build for example an array of circles by applying one of the
constructor functions. (see Fig. 22)

4.3 Isomorphism lifting transformation

Given function f : U1 → U2 between two user-specific types, the isomorphims
lifting is a rewrite-based transformation that, when applied at graph generation

7 We claim, but have not yet proved this.



Lightweight Polytypic Staging of DSLs in Scala 251

case class ExpPoint(x: Rep[Int], y: Rep[Int]) extends Def[Point]

object ExpPoint {

class IsoExpPoint extends Point.IsoPoint {

override def fromStaged = (p: Rep[Point]) ⇒ (p.x, p.y)

override def toStaged = (p: Rep[(Int, Int)]) ⇒ ExpPoint(p._1, p._2)

}

}

case class ExpCircle(loc: Rep[Point], rad:Rep[Int]) extends Def[Circle]

object ExpCircle {

class IsoExpCircle extends Circle.IsoCircle {

override def fromStaged = (x: Rep[Circle]) ⇒ (x.loc, x.rad)

override def toStaged = (x: Rep[(Point, Int)]) ⇒
ExpCircle(x._1, x._2)

}

}

Fig. 21. Sample user-specific data types

val circles = replicate(2, Circle(Point(10, 20), 30))

Fig. 22. Isomorphisms lifted out from domain code

stage, transforms the function f in the composition toU2 ◦ f0 ◦ fromU1, where
f0 : U0

1 → U0
2 and U0

1 , U
0
2 - canonical isomorphic representations of the types U1

and U2 respectively.
To perform this transformation we need to combine isos in different ways.

Below we show a series of functions that build isos from isos.
For each instance A:Elem we have identity isomorphism

def identityIso[A:Elem]: Iso[A, A] = new Iso[A,A] {

def from = (x: A) ⇒ x

def to = (x: A) ⇒ x

def fromStaged = (x: Rep[A]) ⇒ x

def toStaged = (x: Rep[A]) ⇒ x

}

For each iso we can build its nested version

def nestIso[A,B](iso: Iso[A,B]) = new Iso[PArray[A], PArray[B]] {



252 A. V. Slesarenko

def from = (bs: PArray[B]) ⇒ bs map iso.from

def to = (as: PArray[A]) ⇒ as map iso.to

def fromStaged = (bs: Rep[PArray[B]]) ⇒ bs map iso.fromStaged

def toStaged = (as: Rep[PArray[A]]) ⇒ as map iso.toStaged

}

Given a pair of isomorphisms we can build their product

def pairIso[A1,B1,A2,B2](iso1: Iso[A1,B1], iso2: Iso[A2,B2]) =

new Iso[(A1, A2), (B1,B2)] {

def from = (b: (B1,B2)) ⇒ (iso1.from(b._1), iso2.from(b._2))

def to = (a: (A1, A2)) ⇒ (iso1.to(a._1), iso2.to(a._2))

def fromStaged = (b: Rep[(B1,B2)]) ⇒
(iso1.fromStaged(b._1), iso2.fromStaged(b._2))

def toStaged = (a: Rep[(A1, A2)]) ⇒
(iso1.toStaged(a._1), iso2.toStaged(a._2))

}

And we also can compose

def composeIso[A,B,C](iso2:Iso[B,C], iso1:Iso[A,B]) = new StagedIso[A,C]{

def from = (c: C) ⇒ iso1.from(iso2.from(c))

def to = (a: A) ⇒ iso2.to(iso1.to(a))

def fromStaged = (c: Rep[C]) ⇒ iso1.fromStaged(iso2.fromStaged(c))

def toStaged = (a: Rep[A]) ⇒ iso2.toStaged(iso1.toStaged(a))

}

Note that our staging framework is flexible enough so that we can build fully
generic isomorphism combinators on top of the existing polytypic framework
both for the unstaged and staged versions.

Given iso combinators we can use them to perform isomorphism lifting in our
polytypic staging framework. Since our staging framework is based on LMS we
can use its simple but powerfull enough rewriting method to implement required
transformations on the fly.

One of the benefits that we can get out of deep embedding is the ability
to perform domain-specific optimizations. For instance we can use the staging
time rewrites. Our method of rewriting is very simple and is based on the one
proposed in [25].

The method is based on the fact that every staged operation, which is rep-
resented by a graph node, in terms of the Scala language is represented by de-
scendants of the Def class. Every time a new definition is created it is converted
to the corresponding Exp by the special function shown in Fig. 23

The rewriting works using the following algorithm. If we can find the defi-
nition in the graph, we just return its symbol. Otherwise, we try to rewrite the
Def. If the result of rewrite is not defined then there is no rules that can be
applied so the definition is added to the graph. If the rewrite comes back with
a new symbol then we extract its definition from the graph (by using Def) and
go recursively with the new definition.



Lightweight Polytypic Staging of DSLs in Scala 253

implicit def toExp[T:Elem](d: Def[T]): Exp[T] = findDefinition(d) match {

case Some(TP(s, _)) ⇒ s

case None ⇒
var ns = rewrite(d)

ns match {

case null ⇒
val TP(res, _) = createDefinition(fresh[T], d)

res

case _ ⇒ ns match {

case Var(_) ⇒ ns

case Def(newD) ⇒ toExp(newD)

}

}

}

Fig. 23. Graph building and rewriting algorithm

Rewriting rules that perform isomorphism lifting are shown in Fig. 24.8

5 Conclusions and Related Work

In a traditional multi-stage programming the original program should be rewrit-
ten in a special quotation syntax to get a staged version where computation
and code generation is mixed and expressed explicitly by the programmer. In
this approach the compiler is able to statically ensure that the generated code
is type-safe. Moreover, the staged program is equivalent to original even though
it is partially evaluated at compile time. This compile time guarantees are the
most noticable advantages of multi-staged programming when compared with
our technique. On the other hand, the requirement to rewrite the original pro-
gram in the quotation syntax can be difficult to a non-experienced programmer.

In the lightweight staging approach, which is based on polymorphic embed-
ding, the staging itself is regarded as just a special interpretation of the domain
semantics in addition to the usual interpretation as evaluation. The same code
is interpreted in two different ways, so there is no need for rewriting to get a
staged version. The syntactic overhead of staging is minimal is this case. What
can be considered as disadvantage of the lightweight approach is that there is
no guarantees of correctness that come from the staging framework itself. It is
the responsibility of the author of the DSL to provide such a guarantees. It is
an interesting direction of further research to give a general characterisation of
correctness in lightweight staging context.

At the same time, lightweight staging based on polymorphic embedding by its
definition allows us to implement debugging by simulation. Given two equivalent

8 We only show the rules that demonstrate the usage of the iso combinators. Other
rules can be found in source code.



254 A. V. Slesarenko

override def rewrite[T:Elem](d: Def[T]) = d match {

case ViewArray(Def(ViewArray(arr, iso1)), iso2) ⇒ {

val compIso = composeIso(iso2, iso1); ViewArray(arr, compIso)

}

case NArray(Def(view@ViewArray(a, iso)), segs) ⇒ {

val nested = NArray(a, segs)

ViewArray(nested, nestIso(iso))

}

case PairArray(Def(v1@ViewArray(arr1, iso1)),

Def(v2@ViewArray(arr2, iso2))) ⇒ {

val pIso = pairIso(iso1, iso2)

val arr = PairArray(arr1, arr2)

ViewArray(arr, pIso)

}

case PairArray(Def(v1@ViewArray(arr1, iso1)), arr2) ⇒ {

val iso2 = identityIso

val pIso = pairIso(iso1, iso2)

val arr = PairArray(arr1, arr2)

ViewArray(arr, pIso)

}

case PairArray(arr2, Def(v1@ViewArray(arr1, iso1))) ⇒ {

val iso2 = identityIso

val pIso = pairIso(iso2, iso1)

ViewArray(arr, pIso)

}

case _ ⇒ super.rewrite(d)

}

Fig. 24. Isomorphism lifting rules

interpretations of the DSL, one - evaluation (which is simple), and another -
staged code generation (which can be quite involved), we can debug the program
in simulation mode using evaluation and then by applying staged interpretation
to the same code we can produce executable code to run with real data.

Our experience with embedding of the DSL for nested data parallelism (which
is a polytypic DSL) shows that our approach is

1. practical - allows for creation of high level expressive DSLs where staging is
almost transparent to the user

2. flexible - can be extended in various ways using power of the host language
Scala and user-specific data types

3. lightweight for the user - based on library approach rather than on host
language extension

Isomorphic representations or view types were proposed for Generic Haskell.
Our lifting transformation corresponds (in spirit) to bimap function described
in [15]. We have not proved it yet but there are reasons to believe that we will
be able to fully implement the lifting transformation as a set or rewrite rules.



Lightweight Polytypic Staging of DSLs in Scala 255

Clear separation of a domain code and isomorphisms in an intermediate
representation (IR graph) can be usefull for analisys and transformation as they
belong to the different domains with different algebraic properties.

In this paper we have described a new staging technique that can be used to
develop embedded DSLs for different polytypic domains, - the domains that ad-
mit specification and formalization in terms of generic (polytypic) programming.
To our best knowledge this the first attempt to state this problem explicitly.

Staging approach as it is described here is a front-end of the compiler tool-
chain. In polytypic context it opens up many questions both for research and
software engineering. That is also true for rewriting rules. Our experiments with
rewritings in NDP domain show that even simple rewriting strategy combined
with domain knowledge can exhibit radical optimizations not possible in the
context of general purpose language. We regard this questions as directions of
the future research.
Acknowledgments
The author expresses his gratitude to Sergei Romanenko, Andrei Klimov and
other participants of Refal seminar at Keldysh Institute for numerous useful
comments and fruitful discussions of this work.

References

1. Eclipse. http://eclipse.org/.
2. Philipp Haller Adriaan Moors, Tiark Rompf and Martin Odersky. Tool Demo:

Scala-Virtualized, 2011.
3. Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, Cambridge,

MA, USA, 1990.
4. Manuel M. T. Chakravarty and Gabriele Keller. An Approach to Fast Arrays in

Haskell, 2002.
5. Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele

Keller, and Simon Marlow. Data Parallel Haskell: a status report. In In DAMP
2007: Workshop on Declarative Aspects of Multicore Programming. ACM Press,
2007.

6. James Cheney and Ralf Hinze. Phantom types, 2003.
7. Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes as

Objects and Implicits. In n Proceedings of the 25th ACM International Conference
on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH/OOPSLA), October 2010.

8. Jeffrey Dean, Sanjay Ghemawat, and Google Inc. MapReduce: simplified data
processing on large clusters. In In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. USENIX Association,
2004.

9. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI: The Complete Reference (Vol.
2). Technical report, The MIT Press, 1998.

10. Ralf Hinze. A new approach to generic functional programming. In In The 27th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 119–132. ACM Press, 1999.



256 A. V. Slesarenko

11. Ralf Hinze. Fun with phantom types, 2003.
12. Ralf Hinze. Generics for the masses. SIGPLAN Not., 39:236–243, September 2004.
13. Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In SCI-

ENCE OF COMPUTER PROGRAMMING, pages 148–174, 2004.
14. Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-

morphic embedding of DSLs. In Proceedings of the 7th international conference on
Generative programming and component engineering, GPCE ’08, pages 137–148,
New York, NY, USA, 2008. ACM.

15. Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In In Tarmo Uustalu, editor, Proceedings 8th International
Conference on Mathematics of Program Construction, MPC’06, volume 4014 of
LNCS, pages 209–234. Springer-Verlag, 2006.

16. Paul Hudak. Building domain-specific embedded languages. ACM COMPUTING
SURVEYS, 28, 1996.

17. Patrik Jansson. Polytypic programming. In 2nd Int. School on Advanced Func-
tional Programming, pages 68–114. Springer-Verlag, 1996.

18. Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for gadts. In ICFP, pages
50–61, 2006.

19. Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell, 2008.

20. Gabriele Keller and Manuel M.T. Chakravarty. Flattening Trees, 1998.
21. NVIDIA. NVIDIA CUDA C Programming Guide. http://developer.download.

nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_

Guide.pdf, 2011.
22. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, Second

Edition. Artima, 2010.
23. Bruno C.d.S. Oliveira and Jeremy Gibbons. Scala for generic programmers. In

Proceedings of the ACM SIGPLAN workshop on Generic programming, WGP ’08,
pages 25–36, New York, NY, USA, 2008. ACM.

24. Aleksandar Prokopec, Tiark Rompf, Phil Bagwell, and Martin Odersky. A generic
parallel collection framework, 2010.

25. Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Proceedings of the ninth
international conference on Generative programming and component engineering,
GPCE ’10, pages 127–136, New York, NY, USA, 2010. ACM.

26. Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. Building-blocks for performance oriented
dsls. In DSL, pages 93–117, 2011.

27. Alexander Slesarenko. Scalan: polytypic library for nested parallelism in Scala.
Preprint 22, Keldysh Institute of Applied Mathematics, 2011.

28. Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi,
Michael Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. Optiml: An
implicitly parallel domain-specific language for machine learning. In Lise Getoor
and Tobias Scheffer, editors, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages 609–616, New York, NY, USA,
June 2011. ACM.

29. Walid Taha. A gentle introduction to multi-stage programming. In Domain-Specific
Program Generation, pages 30–50, 2003.



Author Index

Adamovich, Alexei, 11

Burmako, Eugene, 23

Dever, Michael, 33

Grechanik, Sergei A., 48

Hamilton, G.W., 33, 66, 88, 184

Jones, Neil D., 87, 88

Klimov, Andrei V., 91, 112

Klyuchnikov, Ilya G., 112, 142
Krustev, Dimitur, 165

Mendel-Gleason, Gavin E., 184

Nepejvoda, Nikolai N., 203

Odersky, Martin, 23

Romanenko, Sergei A., 112, 142

Shilov, Nikolay, 216
Slesarenko, Alexander V., 228



Íàó÷íîå èçäàíèå

Òðóäû êîíôåðåíöèè

Ñáîðíèê òðóäîâ Òðåòüåãî ìåæäóíàðîäíîãî ñåìèíàðà ïî ìåòàâû÷èñëåíèÿì èìå-

íè Â.Ô. Òóð÷èíà, ã. Ïåðåñëàâëü-Çàëåññêèé, 5�9 èþëÿ 2012 ã.

Ïîä ðåäàêöèåé À. Â. Êëèìîâà è Ñ. À. Ðîìàíåíêî.

Äëÿ íàó÷íûõ ðàáîòíèêîâ, àñïèðàíòîâ è ñòóäåíòîâ.

Èçäàòåëüñòâî ¾Óíèâåðñèòåò ãîðîäà Ïåðåñëàâëÿ¿,
152020 ã. Ïåðåñëàâëü-Çàëåññêèé, óë. Ñîâåòñêàÿ 2.

Ãàðíèòóðà Computer Modern. Ôîðìàò 60×84/16.
Äèçàéí îáëîæêè: Í.À. Ôåäîòîâà. Ó÷. èçä. ë. 16,2.
Óñë. ïå÷. ë. 13,3. Ïîäïèñàíî ê ïå÷àòè 15.06.2012.
Îòâåòñòâåííûé çà âûïóñê: Ñ.Ì. Àáðàìîâ.

Îòïå÷àòàíî â ÎÎÎ �Ðåãèîí�. Ïå÷àòü öèôðîâàÿ. Áóìàãà îôñåòíàÿ. Òèðàæ 150 ýêç. Çàêàç 14.

152025 ßðîñëàâñêàÿ îáëàñòü, ã. Ïåðåñëàâëü-Çàëåññêèé, óë. Ñòðîèòåëåé, ä. 41


	Optimization of Imperative Functional Parallel Programs with Non-local Program Transformations
	Scala Macros, a Technical Report
	A Comparison of Program Transformation Systems
	Overgraph Representation for Multi-Result Supercompilation
	A Hierarchy of Program Transformers
	Obfuscation by Partial Evaluation of Distorted Interpreters (Invited Talk)
	Superlinear Speedup by Program Transformation (Extended Abstract)
	Why Multi-Result Supercompilation Matters: Case Study of Reachability Problems for Transition Systems
	Automatic Verification of Counter Systems via Domain-Specific Multi-Result Supercompilation
	Formalizing and Implementing Multi-Result Supercompilation
	A Metacomputation Toolkit for a Subset of F and Its Application to Software Testing: Towards Metacomputation for the Masses
	Development of the Productive Forces
	Reversivity, Reversibility and Retractability
	Inverting Dynamic Programming
	Lightweight Polytypic Staging of DSLs in Scala

