
1 / 66

Reversivity, Reversibility and Retractability

Nikolai N. Nepejvoda

July 9, 2012

Brief history 1

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

2 / 66

Landauer, von Neumann: Reversivity
Thermodynamic lower bound for information
processing is

Generalized Landauer —

von Neumann principle

Ediss > T × kB × ln P

kB is the Bolzmann’s constant, P is the number
of states of atomic computing element.

Landauer 1961: to avoid this limit is possible only
if our actions are invertible

Brief history 1

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

2 / 66

Landauer, von Neumann: Reversivity
Thermodynamic lower bound for information
processing is

Generalized Landauer —

von Neumann principle

Ediss > T × kB × ln P

kB is the Bolzmann’s constant, P is the number
of states of atomic computing element.
Landauer 1961: to avoid this limit is possible only
if our actions are invertible

Brief history 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

3 / 66

Bennett 1973: Reversibility Possibility to undo any
action

It is possible to emulate any Turing machine by
reversible one for the cost of extra time and
garbage

Time > 3k ∙ 2
O

T

2k

Store > S ∙ (1 + O(k))
(1)

where k can be chosen between 1 and log2 T .
Reversibility is not full invertibility: we cannot
undo which is not done. Thus reversibility has no
relation to LvN principle.

Brief history 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

3 / 66

Bennett 1973: Reversibility Possibility to undo any
action
It is possible to emulate any Turing machine by
reversible one for the cost of extra time and
garbage

Time > 3k ∙ 2
O

T

2k

Store > S ∙ (1 + O(k))
(1)

where k can be chosen between 1 and log2 T .

Reversibility is not full invertibility: we cannot
undo which is not done. Thus reversibility has no
relation to LvN principle.

Brief history 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

3 / 66

Bennett 1973: Reversibility Possibility to undo any
action
It is possible to emulate any Turing machine by
reversible one for the cost of extra time and
garbage

Time > 3k ∙ 2
O

T

2k

Store > S ∙ (1 + O(k))
(1)

where k can be chosen between 1 and log2 T .
Reversibility is not full invertibility: we cannot
undo which is not done. Thus reversibility has no
relation to LvN principle.

Brief history 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

4 / 66

H. Axelsen, R. Glück 2011: Reversibility is not
Turing complete

By reversible Turing machine we can compute
exactly all injective computable function
There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function bool3 → bool3

(Toffoli gate) which is a basis for all invertible
Boolean functions
Different gates are proposed now and extensively
studied algorithms to build reversible extensions of
usual boolean functions from those gates

Brief history 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

4 / 66

H. Axelsen, R. Glück 2011: Reversibility is not
Turing complete
By reversible Turing machine we can compute
exactly all injective computable function

There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function bool3 → bool3

(Toffoli gate) which is a basis for all invertible
Boolean functions
Different gates are proposed now and extensively
studied algorithms to build reversible extensions of
usual boolean functions from those gates

Brief history 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

4 / 66

H. Axelsen, R. Glück 2011: Reversibility is not
Turing complete
By reversible Turing machine we can compute
exactly all injective computable function
There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function bool3 → bool3

(Toffoli gate) which is a basis for all invertible
Boolean functions
Different gates are proposed now and extensively
studied algorithms to build reversible extensions of
usual boolean functions from those gates

Brief history 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

4 / 66

H. Axelsen, R. Glück 2011: Reversibility is not
Turing complete
By reversible Turing machine we can compute
exactly all injective computable function
There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function bool3 → bool3

(Toffoli gate) which is a basis for all invertible
Boolean functions

Different gates are proposed now and extensively
studied algorithms to build reversible extensions of
usual boolean functions from those gates

Brief history 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

4 / 66

H. Axelsen, R. Glück 2011: Reversibility is not
Turing complete
By reversible Turing machine we can compute
exactly all injective computable function
There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function bool3 → bool3

(Toffoli gate) which is a basis for all invertible
Boolean functions
Different gates are proposed now and extensively
studied algorithms to build reversible extensions of
usual boolean functions from those gates

Brief history 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

5 / 66

Retractability: a good companion

People extensively studied different method of
program inversions
We not always are to invert a whole program
functional. Usually it is sufficient to retract some
results up to their reasons.
One of practically used kinds of program retraction
is error analysis.
Practically we need rather to restore conditions
than values

Brief history 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

5 / 66

Retractability: a good companion
People extensively studied different method of
program inversions

We not always are to invert a whole program
functional. Usually it is sufficient to retract some
results up to their reasons.
One of practically used kinds of program retraction
is error analysis.
Practically we need rather to restore conditions
than values

Brief history 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

5 / 66

Retractability: a good companion
People extensively studied different method of
program inversions
We not always are to invert a whole program
functional. Usually it is sufficient to retract some
results up to their reasons.

One of practically used kinds of program retraction
is error analysis.
Practically we need rather to restore conditions
than values

Brief history 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

5 / 66

Retractability: a good companion
People extensively studied different method of
program inversions
We not always are to invert a whole program
functional. Usually it is sufficient to retract some
results up to their reasons.
One of practically used kinds of program retraction
is error analysis.

Practically we need rather to restore conditions
than values

Brief history 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

5 / 66

Retractability: a good companion
People extensively studied different method of
program inversions
We not always are to invert a whole program
functional. Usually it is sufficient to retract some
results up to their reasons.
One of practically used kinds of program retraction
is error analysis.
Practically we need rather to restore conditions
than values

Constructivism as a tool for CS
and Informatics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

6 / 66

Constructive understanding

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

7 / 66

Our statements are considered as problems which
are to be solved in such a way that ideal abstract
but effective construction can be extracted from
this solution

There are no logical values. Statement is to be
realized and different proofs can give different
realizations.
Effectivity is not treated as absolute notion of
Turing completeness. We are to construct our
result by admissible for the ptoblem tools and by
admissible spending of resources

Constructive understanding

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

7 / 66

Our statements are considered as problems which
are to be solved in such a way that ideal abstract
but effective construction can be extracted from
this solution
There are no logical values. Statement is to be
realized and different proofs can give different
realizations.

Effectivity is not treated as absolute notion of
Turing completeness. We are to construct our
result by admissible for the ptoblem tools and by
admissible spending of resources

Constructive understanding

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

7 / 66

Our statements are considered as problems which
are to be solved in such a way that ideal abstract
but effective construction can be extracted from
this solution
There are no logical values. Statement is to be
realized and different proofs can give different
realizations.
Effectivity is not treated as absolute notion of
Turing completeness. We are to construct our
result by admissible for the ptoblem tools and by
admissible spending of resources

Constructive paradigm

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

8 / 66

There are no universal methods and silver bullets.
When somebody claims that the method can solve
everything this persdon is a crook or fanatic or
politician or simply a lying advertiser.

We are to choose the best tools fitting our
problems.
Tools for different domains and for different
systems of values can be incompatible and using
them “in interoperable manner” is a mortal trick.
Example: Curry paradox (1930). Logic is
incompatible with λ-calculus.
This does not prevent to use different constructive
tools in different modules of a single system.

Constructive paradigm

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

8 / 66

There are no universal methods and silver bullets.
When somebody claims that the method can solve
everything this persdon is a crook or fanatic or
politician or simply a lying advertiser.
We are to choose the best tools fitting our
problems.

Tools for different domains and for different
systems of values can be incompatible and using
them “in interoperable manner” is a mortal trick.
Example: Curry paradox (1930). Logic is
incompatible with λ-calculus.
This does not prevent to use different constructive
tools in different modules of a single system.

Constructive paradigm

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

8 / 66

There are no universal methods and silver bullets.
When somebody claims that the method can solve
everything this persdon is a crook or fanatic or
politician or simply a lying advertiser.
We are to choose the best tools fitting our
problems.
Tools for different domains and for different
systems of values can be incompatible and using
them “in interoperable manner” is a mortal trick.
Example: Curry paradox (1930). Logic is
incompatible with λ-calculus.

This does not prevent to use different constructive
tools in different modules of a single system.

Constructive paradigm

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

8 / 66

There are no universal methods and silver bullets.
When somebody claims that the method can solve
everything this persdon is a crook or fanatic or
politician or simply a lying advertiser.
We are to choose the best tools fitting our
problems.
Tools for different domains and for different
systems of values can be incompatible and using
them “in interoperable manner” is a mortal trick.
Example: Curry paradox (1930). Logic is
incompatible with λ-calculus.
This does not prevent to use different constructive
tools in different modules of a single system.

Constructive rationalism

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

9 / 66

Constructivism is really another form of rational
thinking which is alternative to usual
“Aristotelian” one.

We seek solutions instead of “THE HOLY
ABSOLUTE TRUTH”
Thus we are versatile and allow other people think
differently
Thus we are ruthless and intolerant because way
of thinking of a person makes his values, goals and
prejudices explicit. We try to oppose those who
uses inadequate tools for dirty purposes. Each
person has first of all responsibility and only if
he/her is responsible he/her can claim rights.

Constructive rationalism

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

9 / 66

Constructivism is really another form of rational
thinking which is alternative to usual
“Aristotelian” one.
We seek solutions instead of “THE HOLY
ABSOLUTE TRUTH”

Thus we are versatile and allow other people think
differently
Thus we are ruthless and intolerant because way
of thinking of a person makes his values, goals and
prejudices explicit. We try to oppose those who
uses inadequate tools for dirty purposes. Each
person has first of all responsibility and only if
he/her is responsible he/her can claim rights.

Constructive rationalism

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

9 / 66

Constructivism is really another form of rational
thinking which is alternative to usual
“Aristotelian” one.
We seek solutions instead of “THE HOLY
ABSOLUTE TRUTH”
Thus we are versatile and allow other people think
differently

Thus we are ruthless and intolerant because way
of thinking of a person makes his values, goals and
prejudices explicit. We try to oppose those who
uses inadequate tools for dirty purposes. Each
person has first of all responsibility and only if
he/her is responsible he/her can claim rights.

Constructive rationalism

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

9 / 66

Constructivism is really another form of rational
thinking which is alternative to usual
“Aristotelian” one.
We seek solutions instead of “THE HOLY
ABSOLUTE TRUTH”
Thus we are versatile and allow other people think
differently
Thus we are ruthless and intolerant because way
of thinking of a person makes his values, goals and
prejudices explicit. We try to oppose those who
uses inadequate tools for dirty purposes. Each
person has first of all responsibility and only if
he/her is responsible he/her can claim rights.

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)

The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic

Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems

We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.

Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.

Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

10 / 66

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be
finite and use finite information on arguments.
Formal system is the classical logic without
A ∨ ¬A.
Removing irrelevant supposition ‘We know all’ we
get a stronger system which includes the whole
classical logic as a isomorphic image (A. Glivenko,
1929)

Intuitionistic logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

11 / 66

There are new possibilities: to express ignorance
and to use it as a positive factor; to express in a
short and concise way complex conditions on used
tools; to analyse a level of constructivity of
theorems and solutions.

But there are no possibilities to express that our
resources are restricted and take into account the
main resource restriction.
This logic was created as a logic of ideal mental
construction and ideally fits to this mental and
real domain
Thus Yessenin-Volpin proposed in 1960 to consider
logics for restricted constructions.

Intuitionistic logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

11 / 66

There are new possibilities: to express ignorance
and to use it as a positive factor; to express in a
short and concise way complex conditions on used
tools; to analyse a level of constructivity of
theorems and solutions.
But there are no possibilities to express that our
resources are restricted and take into account the
main resource restriction.

This logic was created as a logic of ideal mental
construction and ideally fits to this mental and
real domain
Thus Yessenin-Volpin proposed in 1960 to consider
logics for restricted constructions.

Intuitionistic logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

11 / 66

There are new possibilities: to express ignorance
and to use it as a positive factor; to express in a
short and concise way complex conditions on used
tools; to analyse a level of constructivity of
theorems and solutions.
But there are no possibilities to express that our
resources are restricted and take into account the
main resource restriction.
This logic was created as a logic of ideal mental
construction and ideally fits to this mental and
real domain

Thus Yessenin-Volpin proposed in 1960 to consider
logics for restricted constructions.

Intuitionistic logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

11 / 66

There are new possibilities: to express ignorance
and to use it as a positive factor; to express in a
short and concise way complex conditions on used
tools; to analyse a level of constructivity of
theorems and solutions.
But there are no possibilities to express that our
resources are restricted and take into account the
main resource restriction.
This logic was created as a logic of ideal mental
construction and ideally fits to this mental and
real domain
Thus Yessenin-Volpin proposed in 1960 to consider
logics for restricted constructions.

Intuitionistic logic 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

12 / 66

NOTE. If we do not insert natural numbers,
induction or fixed point intuitionistic logic gives
very effective solutions which are linear in time
and space modulo primitive functions.
(Nepejvoda 1979)

This is one of partial cases of the common
principle:
Worst enemies of a good systems are new
possibilities
Thus let us do not criticize a system for it cannot
do something (e.g. express a factorial) It must
work perfectly on its native domain.

Intuitionistic logic 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

12 / 66

NOTE. If we do not insert natural numbers,
induction or fixed point intuitionistic logic gives
very effective solutions which are linear in time
and space modulo primitive functions.
(Nepejvoda 1979)
This is one of partial cases of the common
principle:
Worst enemies of a good systems are new
possibilities

Thus let us do not criticize a system for it cannot
do something (e.g. express a factorial) It must
work perfectly on its native domain.

Intuitionistic logic 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

12 / 66

NOTE. If we do not insert natural numbers,
induction or fixed point intuitionistic logic gives
very effective solutions which are linear in time
and space modulo primitive functions.
(Nepejvoda 1979)
This is one of partial cases of the common
principle:
Worst enemies of a good systems are new
possibilities
Thus let us do not criticize a system for it cannot
do something (e.g. express a factorial) It must
work perfectly on its native domain.

Restricted constructions

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

13 / 66

Yessenin-Volpin could not imagine how drastically
changed logic after we take into account that
“finite in theory means infinite in practice”

If teoretician says: “This is possible in
principle” practitioner must understand:
“This is practically impossible”

1983: Nilpotent logic of restricted time (N.
Nepejvoda)
1988: Linear logic of restricted money (J.-Y.
Girard)
2008: Reversive logic of invertible actions (N.
Nepejvoda & A. Nepejvoda)

Restricted constructions

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

13 / 66

Yessenin-Volpin could not imagine how drastically
changed logic after we take into account that
“finite in theory means infinite in practice”

If teoretician says: “This is possible in
principle” practitioner must understand:
“This is practically impossible”

1983: Nilpotent logic of restricted time (N.
Nepejvoda)
1988: Linear logic of restricted money (J.-Y.
Girard)
2008: Reversive logic of invertible actions (N.
Nepejvoda & A. Nepejvoda)

Restricted constructions

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

13 / 66

Yessenin-Volpin could not imagine how drastically
changed logic after we take into account that
“finite in theory means infinite in practice”

If teoretician says: “This is possible in
principle” practitioner must understand:
“This is practically impossible”

1983: Nilpotent logic of restricted time (N.
Nepejvoda)

1988: Linear logic of restricted money (J.-Y.
Girard)
2008: Reversive logic of invertible actions (N.
Nepejvoda & A. Nepejvoda)

Restricted constructions

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

13 / 66

Yessenin-Volpin could not imagine how drastically
changed logic after we take into account that
“finite in theory means infinite in practice”

If teoretician says: “This is possible in
principle” practitioner must understand:
“This is practically impossible”

1983: Nilpotent logic of restricted time (N.
Nepejvoda)
1988: Linear logic of restricted money (J.-Y.
Girard)

2008: Reversive logic of invertible actions (N.
Nepejvoda & A. Nepejvoda)

Restricted constructions

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

13 / 66

Yessenin-Volpin could not imagine how drastically
changed logic after we take into account that
“finite in theory means infinite in practice”

If teoretician says: “This is possible in
principle” practitioner must understand:
“This is practically impossible”

1983: Nilpotent logic of restricted time (N.
Nepejvoda)
1988: Linear logic of restricted money (J.-Y.
Girard)
2008: Reversive logic of invertible actions (N.
Nepejvoda & A. Nepejvoda)

Restricted constructions 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

14 / 66

All logics of restricted constructions are very
non-classical and mutually inconsistent

Nilpotent (aka automate or flowchart): No
constructive conjunctions (no parallelism in
automate) A⇒ A is true only if A is always false.
Propositional fragment has simple formalisms and
is easily decidable
Linear: all classical, intuitionistic and much more
connectives. Propositional fragment is
undecidable. No A⇒ A&A
Reversive: no constructive disjunctions.
Paraconsistent. No A⇒ A&A, A&A⇒ A.

Restricted constructions 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

14 / 66

All logics of restricted constructions are very
non-classical and mutually inconsistent
Nilpotent (aka automate or flowchart): No
constructive conjunctions (no parallelism in
automate) A⇒ A is true only if A is always false.
Propositional fragment has simple formalisms and
is easily decidable

Linear: all classical, intuitionistic and much more
connectives. Propositional fragment is
undecidable. No A⇒ A&A
Reversive: no constructive disjunctions.
Paraconsistent. No A⇒ A&A, A&A⇒ A.

Restricted constructions 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

14 / 66

All logics of restricted constructions are very
non-classical and mutually inconsistent
Nilpotent (aka automate or flowchart): No
constructive conjunctions (no parallelism in
automate) A⇒ A is true only if A is always false.
Propositional fragment has simple formalisms and
is easily decidable
Linear: all classical, intuitionistic and much more
connectives. Propositional fragment is
undecidable. No A⇒ A&A

Reversive: no constructive disjunctions.
Paraconsistent. No A⇒ A&A, A&A⇒ A.

Restricted constructions 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics
Constructive
understanding

Constructive
paradigm

Constructive
rationalism

Intuitionistic logic

Intuitionistic logic 2

Intuitionistic logic 3

Restricted
constructions
Restricted
constructions 2

Retractability

Reversibility

Reversivity

Summary

14 / 66

All logics of restricted constructions are very
non-classical and mutually inconsistent
Nilpotent (aka automate or flowchart): No
constructive conjunctions (no parallelism in
automate) A⇒ A is true only if A is always false.
Propositional fragment has simple formalisms and
is easily decidable
Linear: all classical, intuitionistic and much more
connectives. Propositional fragment is
undecidable. No A⇒ A&A
Reversive: no constructive disjunctions.
Paraconsistent. No A⇒ A&A, A&A⇒ A.

Retractability

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

15 / 66

Zaslavsky logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

16 / 66

There are only constructive connectives
⇒ ∨& ∼ ∀∃. Their semantic is defined through
two notions of realizability: positive and negative
one. This logic is called intuitionistic symmetric
logic.

■ 〈a, b〉r+A&B ≡ ar+A ∧ br+B;
〈i, c〉r−A&B ≡ (i = 1 ∧ cr−A) or
(i = 2 ∧ cr−B);

■ 〈i, c〉r+A&B ≡ (i = 1 ∧ cr+A) or
(i = 2 ∧ cr+B);
〈a, b〉r−A ∨ B ≡ ar−A ∧ br−B;

Zaslavsky logic

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

16 / 66

There are only constructive connectives
⇒ ∨& ∼ ∀∃. Their semantic is defined through
two notions of realizability: positive and negative
one. This logic is called intuitionistic symmetric
logic.

■ 〈a, b〉r+A&B ≡ ar+A ∧ br+B;
〈i, c〉r−A&B ≡ (i = 1 ∧ cr−A) or
(i = 2 ∧ cr−B);

■ 〈i, c〉r+A&B ≡ (i = 1 ∧ cr+A) or
(i = 2 ∧ cr+B);
〈a, b〉r−A ∨ B ≡ ar−A ∧ br−B;

Zaslavsky logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

17 / 66

■ 〈f, g〉r+A⇒ B ≡ ∀a (ar+A ⊃!(a f) ∧
(a f)r+B)∧∀b (br−B ⊃!(b g)∧(b g)r−A);
〈a, b〉r−A⇒ B ≡ ar+A ∧ br−B;

■ ar+ ∼ A ≡ ar−A;
ar− ∼ A ≡ ar+A;

Zaslavsky logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

17 / 66

■ 〈f, g〉r+A⇒ B ≡ ∀a (ar+A ⊃!(a f) ∧
(a f)r+B)∧∀b (br−B ⊃!(b g)∧(b g)r−A);
〈a, b〉r−A⇒ B ≡ ar+A ∧ br−B;

■ ar+ ∼ A ≡ ar−A;
ar− ∼ A ≡ ar+A;

Zaslavsky logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

18 / 66

■ fr+∀xA(x) ≡ for all a
(a ∈ U ⊃!(a f) ∧ (a f)r+A(a));
〈u, a〉r−∀xA(x) ≡ exists u
(u ∈ U ∧ ar−A(u));

■ 〈u, a〉r+∃xA(x) ≡ exists u
(u ∈ U ∧ ar+A(u));
fr−∃xA(x) ≡ for all a
(a ∈ U ⊃!(a f) ∧ (a f)r−A(a));

Zaslavsky logic 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

18 / 66

■ fr+∀xA(x) ≡ for all a
(a ∈ U ⊃!(a f) ∧ (a f)r+A(a));
〈u, a〉r−∀xA(x) ≡ exists u
(u ∈ U ∧ ar−A(u));

■ 〈u, a〉r+∃xA(x) ≡ exists u
(u ∈ U ∧ ar+A(u));
fr−∃xA(x) ≡ for all a
(a ∈ U ⊃!(a f) ∧ (a f)r−A(a));

Sample applied theory

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

19 / 66

Let the following theory fragment describes some
packages in functional language

∀x ((A(x)⇒ N(x)), ϕr ∀y (N(y)⇒∼ ∃xM(x)),
g r ∀x(C(x)⇒ L(x) ∨ E(x) ∨M(x)),
∀x (L(x)⇒ D(x)), ∀x (H(x)⇒ T (x, (x f)))

which is a part of a constructive theory describing
some packages of programs

Our goal

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

20 / 66

Let we proved a formula

∀x (A(x) &
(∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))
⇒ ∃z T (y, z))

Proof consists of two parts: forward
(computation) and backwards (analysis)

Our goal

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

20 / 66

Let we proved a formula

∀x (A(x) &
(∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))
⇒ ∃z T (y, z))

Proof consists of two parts: forward
(computation) and backwards (analysis)

Forward proof

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

21 / 66

∗ A(z), ∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y),
z is arbitrary∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N(z)
∼ ∃xM(x)
∗ C(u), u is arbitrary∣
∣
∣
∣
∣
∣
∣
∣

L(u) ∨ E(u) ∨M(u)
∼M(u)
∗ L(u) ∗ E(u)
| D(u)

∀x (C(x)⇒ D(x) ∨ E(x))
H(c1)
T (z, (c1 f))

Backward proof

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

22 / 66

∗ ∼ T (y, z), y, z are arbitrary∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∼ A(x)∨ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))
∗ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∼ H(x), x is arbitrary
∃x (C(x) &∼ D(x) &∼ E(x))
L(c2) ∨ E(c2) ∨M(c2)
∼ L(c2) ∼ E(c2)
M(c2)
∼ N(y)
∼ A(y)

∗ ∼ A(y)

∼ A(y)

Program and analysis

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

23 / 66

Here our direct program is

Φ : func (obj, func(func(obj)void⊕ void) obj) obj =

λx, Ψ. ((λx. case (x g)

in 1 : 1, 2 : 2, 3 : error esac Ψ) f)

If its result is wrong, an error is in A. The reason
of this trouble is probably a wrong value of x
which formally does not enter into a resulting
program.

Program and analysis

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

23 / 66

Here our direct program is

Φ : func (obj, func(func(obj)void⊕ void) obj) obj =

λx, Ψ. ((λx. case (x g)

in 1 : 1, 2 : 2, 3 : error esac Ψ) f)

If its result is wrong, an error is in A. The reason
of this trouble is probably a wrong value of x
which formally does not enter into a resulting
program.

Ghosts

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

24 / 66

Moreover here we have an interesting duality. G.
S. Tseytin pointed out in 1970 that program
values are not sufficient to analyze a program.
Program is surrounded by ghosts which are
necessary to understand and to transform a
program but are at least useless during its
computation. During retraction ghosts become
computable entities while values of direct program
become ghosts.

Slabs

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Zaslavsky logic

Zaslavsky logic 2

Zaslavsky logic 2

Sample applied
theory

Our goal

Forward proof

Backward proof

Program and
analysis

Ghosts

Slabs

Reversibility

Reversivity

Summary

25 / 66

There is a dual notion: a slab. This is what is not
needed logically but is inserted from some side
reasons: lack of constructions in PL, ‘effectivity’
and so on. For example (x,y):=(y,x+y) we are
forced to express like
z:=x; x:=y; y:=x+z;

Reversibility

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

26 / 66

A semigroup

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

27 / 66

An algebraic definition of reversibility
Let X be an enumerated set. Let C(X,X) be a
set of all total computable functions f : X → X.
A semigroup R ⊂ C(X,X) having a neutral
element e = λx.x and having a right inverse f−1

for each f (i.e. such f−1 that f ◦ f−1 = e) is
called reversible computability upon set of objects
X.

Shortcoming to incoming

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

28 / 66

Because reversibility has no connection to
Landauer limit we don’t need to assure undoing
down to atomic actions in reversible computing
because reversibility is needed only for external
reasons (say many legal and business program
must be able to reconstruct the state of the
system for any previous time moment). Hence a
reversible program can use modules written in
irreversible manner if we grant undoing of their
results.

Shortcoming to incoming 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

29 / 66

From this point we can see strategic mistakes
made in the design of reversible language Janus.
For example, there is a brilliant invention of Janus
authors that each unary function f is extended up
to its reversible extension

(x y g) = 〈x ∗ (y f), y〉

where ∀x, y, z (x ∗ z = y ∗ z ⊃ x = y). They
showed that each unary function can be extended
in such manner.

Shortcoming to incoming 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

30 / 66

This excellent shot had a wrong goal and is
missed. Of course it is too much for reversibility
but too less for reversivity (it grants only
undoing).

But excellent ideas are always useful though not
always where they had been proposed. A.
Nepejvoda yesterday stated connections of r.e.
with simple proofs.

Shortcoming to incoming 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

30 / 66

This excellent shot had a wrong goal and is
missed. Of course it is too much for reversibility
but too less for reversivity (it grants only undoing).
But excellent ideas are always useful though not
always where they had been proposed. A.
Nepejvoda yesterday stated connections of r.e.
with simple proofs.

Challenging claim

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

A semigroup

Shortcoming to
incoming

Shortcoming to
incoming 2

Shortcoming to
incoming 3

Challenging claim

Reversivity

Summary

31 / 66

There is no need of reversible programming
language. All needed can be formulated as clear
and easily checked automatically discipline of
programming in traditional language.

Reversivity

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

32 / 66

Constructive reversive logic (CRL)

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

33 / 66

For a mathematical semantic we consider an
arbitrary group G. One more important step was
proposed and successfully developed by J.-Y.
Girard in his linear logic (using commutative
monoid to represent money-spending actions). For
our case it sounds as follows:

States are the same group as actions.

Thus G is called both the group of actions and
the group of states.

Language of CRL

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

34 / 66

CRL is a propositional logic. The primitives of
reversive logic language are propositional symbols
A, B, C. . . , five connectives of classical logic (⊃,
≡, ∧, ∨, ¬) called here descriptive connectives,
four constructive logical connectives ⇒, &,∼, E.
E is null-ary, ¬ and ∼ are unary, all others are
binary.
Classical and constructive connectives are fully
interoperable and can be mixed arbitrarily. This is
not the case in other constructive logics of
restricted constructions.

Informal semantic of CRL

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

35 / 66

Let signature Σ be a nonempty set of
propositional symbols.
Classical connectives are read and understood in
standard way. ⇒ reads “can be transformed”,
A&B reads “sequential conjunction” or “A then
B”1, ∼ A is a preventive negation which can be
read in different contexts as “undo A” or “prevent
A”.

1Of course we can read this “and” in the sense of famous Kleene’s
examples: “Mary married and born a child”, “Mary born a child and
married”.

Formal semantic of CRL

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

36 / 66

Realization of a formula in the interpretation I.
The set of realizations for A is denoted rA.

1. ar A , a ∈ ζ(A) where A is propositional
letter and A ∈ Σ.

2. Classical connectives are standard. E.g.
ar (A ∧ B) , arA and ar B.

3. ar (A⇒ B) , ∀b ∈ G (br A ⊃ b ◦ ar
B). Thus a transforms solutions of A into
solutions of B.

Formal semantic of CRL 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

37 / 66

4 a ◦ br (A & B) , ar A ∧ br B. A
solution of B is applied to a solution of A.

5 ar ∼ A , a−1 r A. a undoes a solution of
A or prevents it.

6 ar E , a = e.

CRL and programming

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

38 / 66

Here we have no constructive disjunction. If
introduced it demands an �interleaving
product� of groups: a group of all products
a1 ◦ b1 ◦ ∙ ∙ ∙ ◦ an ◦ bn where ai are from realizations
of A and bi are from one of B. This destroys
finiteness and means that conditionals demand
increasing memory. Analyzing constructions of
Fredkin and Toffoli we see that it is.

CRL and programming 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

39 / 66

So pure reversive programming language is to be
without conditionals and loops but from the very
beginning functional one. In practice we are to use
irreversive operations (at least initializing and
result writing) and very restricted use of
conditionals and loops. Of course there are no
recursions and reversive language is not
Turing-complete. Atomic computing elements for
reversive computer are to be group-valued not
binary.

Gains of group semantics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

40 / 66

Composition of group elements a ◦ b can be
understood by any of three ways:

1. We perform the state-transfoming action a
then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a
and b.

All those interpretations are compatible and fully
interoperable. This is the main peculiarity of
group as a space of elements and actions.

Gains of group semantics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

40 / 66

Composition of group elements a ◦ b can be
understood by any of three ways:

1. We perform the state-transfoming action a
then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a
and b.

All those interpretations are compatible and fully
interoperable. This is the main peculiarity of
group as a space of elements and actions.

Gains of group semantics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

40 / 66

Composition of group elements a ◦ b can be
understood by any of three ways:

1. We perform the state-transfoming action a
then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a
and b.

All those interpretations are compatible and fully
interoperable. This is the main peculiarity of
group as a space of elements and actions.

Gains of group semantics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

40 / 66

Composition of group elements a ◦ b can be
understood by any of three ways:

1. We perform the state-transfoming action a
then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a
and b.

All those interpretations are compatible and fully
interoperable. This is the main peculiarity of
group as a space of elements and actions.

Gains of group semantics

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

40 / 66

Composition of group elements a ◦ b can be
understood by any of three ways:

1. We perform the state-transfoming action a
then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a
and b.

All those interpretations are compatible and fully
interoperable. This is the main peculiarity of
group as a space of elements and actions.

Sketch: Botik language 1

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

41 / 66

Program consists of header, definitions section,
input section, program body and output section.
Heading is:
PROGRAM 〈Program name〉 Output section is
OUTPUT
write 〈variable list〉
END OUTPUT

Sketch: Botik language 2

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

42 / 66

Definitions section begins by a string
DEFINITIONS, and ends by END DEFINITIONS.
Here all names and all explicit subgroups are
defined Subgroup definition has one of two forms
GROUP STANDARD # Only one group and it is
defined externally

All atoms except boolean are from this
group
Several data types:
GROUP g1,g2: EXTERNAL, ck: [0..k], tn:
TRANSPOSITION[n]
In modeling admissible elementary types are cyclic
groups, permutation groups and direct products of
Boolean.

Sketch: Botik language 3

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

43 / 66

Semidirect product construction is a central here.
D o P is defined through a homomorphism
ϕ : P → Aut D with the following operation:

〈d1, p1〉 ◦ 〈d2, p2〉 = 〈d1 ◦ (d2 (p2 ϕ)), p1 ◦ p2〉

Sketch: Botik language 3a

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

44 / 66

A semdirect product usually is given implicitly by a
list of some variables of the same type: (a,b,c). It
means that to compute new values of those
variables could be used other from the same list
but each only once on each step. Here is an
example:
var c=(a,b);
. . .
{c;(b,E);(E,-a)}

Sketch: Botik language 4

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

45 / 66

Atoms can be variables, plain atoms and
constants. Variables can be changed during
execution. Initial values of variables and simple
atoms are given in input section. Constants get
values in definitions section. There is one constant
of any type: E.
One cyclic variables can be declared as guarded.
When it becomes 0, program is ended.

Sketch: Botik language 5

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

46 / 66

Arrays have a cyclic index, for example
[pn] array [i] fib1, fib2

Here [pn] is a type of elements, numder of
elements is defined by type of i. Thus array has an
associated index variable.
Predicates are only unary and only on a cyclic
group:
predicate [ck] pr
Here is a function:
function f1={if p1 then -a2; a3; a1

else a4; -a1 fi; a1}

Sketch: Botik language 6

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

47 / 66

Input section
INPUT
. . .
END INPUT
Here all values of variables and predicates are to
be given by read <list of names> or directly. Only
in this section a value can be copied many times.

Sketch: Botik language 7

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

48 / 66

Program body is a sequence of segments.
Segments are separated by ; or by , . Comma
means that these segments are independent.
Weak segment is

v

〈
possible sequence of operators

of the same type,
divided by semicolons

〉

Segment can be preceded by − (inversion).

Sketch: Botik language 8

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

49 / 66

Segment is a weak segment without −. Its first
element is whether a variable or a conditional with
both alternatives are segments. This variable is
the basic. All other elements are understood as
operators changing the basic. After a segment
there can be −, inverting action for basic variable.

Sketch: Botik language 8

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

50 / 66

Types of segments

to N do t od

Loop segment

if P then t else r fi

Conditional segment (P is boolean, t, r are weak
segments of the same type).

Classes of segments

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

51 / 66

Classes of segments
No loops and conditionals: pure.
No loops: conditional;
no conditionals: looping;
no conditionals inside loops and loops inside
conditionals: safe;
otherwise: dangerous.

example program 1a

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

52 / 66

PROGRAM Action directe

DEFINITIONS # All names used in a program

are specified here

group standard

atom var c

atom a1, a2, a3, a4, a5, a6, a7

predicate p1, p2

function f={a1; if p1

|>then -a2; a3; a1

else a4; -a1 fi}
function g={a1; to 51 do -a1 od}
function h={a1; a3; -a1}
END DEFINITIONS

example program 1b

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

53 / 66

INPUT

initial values of all atoms and

predicates are given here;

usually they are computed

by external program

and transferred into

read c, a1, a2, a3, a4, a5, a6, a7

p1=¬(a4,a6)
if the domain of a predicate

or the value of an atom

is fixed for all executions

it can be defined inside

...

END INPUT

example program 1c

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

54 / 66

{c;
-{to 14 do

-g; h; a7;

od; a2};
we take an inverse

#of the whole program block

if p2 then -f; h else f fi

f; -g; -a4; h;}-
Direct action leads

to opposite

results than desired :)

OUTPUT # a substructure transferred

#to external processor

is defined here

write c

END OUTPUT

Problem with conditionals

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

55 / 66

if P then t else r fi Let G is a basic group of
program commands, H is a group for alternatives.
Then to compute this conditional we need a group
Z2 ×G×G×H with an operation

〈z, a1, b1, c1〉 ◦ 〈0, a2, b2, c2〉 = 〈z, a1 ◦ a2, b1 ◦ b2, c1 ◦ c2〉
〈z, a1, b1, c1〉 ◦ 〈1, a2, b2, c2〉 =
〈z ⊕ 1, a1 ◦ b2, b1 ◦ a2, c1 ◦ c2〉

(2)
This can be described also as (G×G)o (Z2×H).

Some estimations

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

56 / 66

They hold during program translation!

1. pure programs do not change a group;

2. each written loop adds an additive constant to
the number of the group elements;

3. each executed conditional (roughly speaking)
doubles the number of elements in a group.

Some estimations

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

56 / 66

They hold during program translation!

1. pure programs do not change a group;

2. each written loop adds an additive constant to
the number of the group elements;

3. each executed conditional (roughly speaking)
doubles the number of elements in a group.

Some estimations

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

56 / 66

They hold during program translation!

1. pure programs do not change a group;

2. each written loop adds an additive constant to
the number of the group elements;

3. each executed conditional (roughly speaking)
doubles the number of elements in a group.

Some estimations

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

56 / 66

They hold during program translation!

1. pure programs do not change a group;

2. each written loop adds an additive constant to
the number of the group elements;

3. each executed conditional (roughly speaking)
doubles the number of elements in a group.

Some estimations

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

56 / 66

They hold during program translation!

1. pure programs do not change a group;

2. each written loop adds an additive constant to
the number of the group elements;

3. each executed conditional (roughly speaking)
doubles the number of elements in a group.

More sophisticated example

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

57 / 66

Let we try to apply the same actin very many
times. This corresponds in group to compute
a ◦ bω. Then we represent ω in Fibonacci system.
This can be easily made by usual computer. Let
number of bits in representation is k. Then we
define and transfer to reversive program two
predicates: (i fib odd), (i fib even). First
one is 1 iff i is odd and the corresponding digit is
equal to 1. (i fib even) is the same for even
indices.

Large loop program

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

58 / 66

PROGRAM Fibonacci power
DEFINITIONS
int atom n
GROUP tn: TRANSPOSITION[n]
tp atom var a,b,d
tp atom e
(tp,tp) var c is (a,b)
constant e=E
int atom k
int atom var i [0..k] guarded
boolean atom l; predicate [i] fib odd, fib even
END DEFINITIONS

Large loop program

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

59 / 66

INPUT read a, k
b← a
i ← 1
l ← TRUE
d ← E
read fib odd, fib even
END INPUT

Large loop program

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

60 / 66

to k do
{c; if l then (e,a) else (b,e) fi};
{d; if (i fib odd) then

a else if (i fib odd) then b else e
fi fi};

{i;1},
{l; true}
od
OUTPUT
write d
END OUTPUT

Large loop program

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Constructive
reversive logic (CRL)

Language of CRL

Informal semantic of
CRL
Formal semantic of
CRL
Formal semantic of
CRL 2
CRL and
programming

CRL and
programming 2

Gains of group
semantics
Sketch: Botik
language 1

Sketch: Botik
language 2

Sketch: Botik
language 3

Sketch: Botik
language 3a

Sketch: Botik
language 4

Sketch: Botik
language 5

Sketch: Botik
language 6

Sketch: Botik
language 7

Sketch: Botik
language 8

Sketch: Botik
language 8

Classes of segments

example program 1a

example program 1b

example program 1c

Problem with
conditionals

Some estimations
More sophisticated
example

Large loop program

Large loop program

Large loop program

Large loop program

Summary

61 / 66

This program looks on the first glance hopelessly
dangerous but transforming algebraic structures
we really can get an effective algorithm to execute
it do not losing its good properties.
♥^

Summary

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

62 / 66

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

63 / 66

There are three substantially different but usually
mixed notions of inverse computability. They need
different tools and use different logics.

A reversive computation demands full invertibility
of actions. Only it can grant minimization of heat
pollution.
Reversive computability is not Turing-complete
and a reversive processor can work only as
specialized unit of an usual (for example von
Neumann) computer.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

63 / 66

There are three substantially different but usually
mixed notions of inverse computability. They need
different tools and use different logics.
A reversive computation demands full invertibility
of actions. Only it can grant minimization of heat
pollution.

Reversive computability is not Turing-complete
and a reversive processor can work only as
specialized unit of an usual (for example von
Neumann) computer.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

63 / 66

There are three substantially different but usually
mixed notions of inverse computability. They need
different tools and use different logics.
A reversive computation demands full invertibility
of actions. Only it can grant minimization of heat
pollution.
Reversive computability is not Turing-complete
and a reversive processor can work only as
specialized unit of an usual (for example von
Neumann) computer.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

63 / 66

There are three substantially different but usually
mixed notions of inverse computability. They need
different tools and use different logics.
A reversive computation demands full invertibility
of actions. Only it can grant minimization of heat
pollution.
Reversive computability is not Turing-complete
and a reversive processor can work only as
specialized unit of an usual (for example von
Neumann) computer.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

64 / 66

It is necessary to compute in a reversive program
the algebraic structures of data types and of the
whole data space before program compilation
because each modification of programs changes all
data structures in it. This algebraic computation
can be somewhat sophisticated.

A reversible computing (unrestricted undoing) can
be implemented in traditional computers by
traditional programming languages as a discipline
of programming.
A program retraction (computation of precondition
which hold or fail for the given result) can be
made by means of almost traditional logic. During
retraction values and ghosts are interchanged.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

64 / 66

It is necessary to compute in a reversive program
the algebraic structures of data types and of the
whole data space before program compilation
because each modification of programs changes all
data structures in it. This algebraic computation
can be somewhat sophisticated.
A reversible computing (unrestricted undoing) can
be implemented in traditional computers by
traditional programming languages as a discipline
of programming.

A program retraction (computation of precondition
which hold or fail for the given result) can be
made by means of almost traditional logic. During
retraction values and ghosts are interchanged.

Thanks!

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

64 / 66

It is necessary to compute in a reversive program
the algebraic structures of data types and of the
whole data space before program compilation
because each modification of programs changes all
data structures in it. This algebraic computation
can be somewhat sophisticated.
A reversible computing (unrestricted undoing) can
be implemented in traditional computers by
traditional programming languages as a discipline
of programming.
A program retraction (computation of precondition
which hold or fail for the given result) can be
made by means of almost traditional logic. During
retraction values and ghosts are interchanged.

Publications

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

65 / 66

Непейвода Н.Н.: Уроки конструктивизма.
Geidelberg: Lambert Academic Publishing, 98 pp.
(2011)
Непейвода Н.Н.: Реверсивные конструктивные
логики. Логические исследования, 15, 150–168
(2009)
Непейвода А. Н.: О сюрьективной импликации в
реверсивной логике. VI Смирновские чтения по
логике (2009)
Непейвода А. Н. Элементы реверсивных
вычислений Управление большими системами
труды VI всероссийской школы-семинара
молодых ученых, Ижевск (2009)

Publications

Brief history 1

Brief history 2

Brief history 3

Brief history 4

Constructivism as a
tool for CS and
Informatics

Retractability

Reversibility

Reversivity

Summary

Thanks!

Thanks!

Publications

Publications

66 / 66

Непейвода А. Н.: О реверсивной альтернативе
традиционным вычислениям. Трехмерная
визуализация научной, технической и
социальной реальности. Технологии
высокополигонального моделирования : труды
Второй междунар. конф., Ижевск (2010).
Непейвода А. Н.: Функциональное
программирование над группой. Системный
анализ и семиотическое моделирование: труды
первой всероссийской конференции, 2011,
Казань (2011)

	Brief history 1
	Brief history 2
	Brief history 3
	Brief history 4
	Constructivism as a tool for CS and Informatics
	Constructive understanding
	Constructive paradigm
	Constructive rationalism
	Intuitionistic logic
	Intuitionistic logic 2
	Intuitionistic logic 3
	Restricted constructions
	Restricted constructions 2

	Retractability
	Zaslavsky logic
	Zaslavsky logic 2
	Zaslavsky logic 2
	Sample applied theory
	Our goal
	Forward proof
	Backward proof
	Program and analysis
	Ghosts
	Slabs

	Reversibility
	A semigroup
	Shortcoming to incoming
	Shortcoming to incoming 2
	Shortcoming to incoming 3
	Challenging claim

	Reversivity
	Constructive reversive logic (CRL)
	Language of CRL
	Informal semantic of CRL
	Formal semantic of CRL
	Formal semantic of CRL 2
	CRL and programming
	CRL and programming 2
	Gains of group semantics
	Sketch: Botik language 1
	Sketch: Botik language 2
	Sketch: Botik language 3
	Sketch: Botik language 3a
	Sketch: Botik language 4
	Sketch: Botik language 5
	Sketch: Botik language 6
	Sketch: Botik language 7
	Sketch: Botik language 8
	Sketch: Botik language 8
	Classes of segments
	example program 1a
	example program 1b
	example program 1c
	Problem with conditionals
	Some estimations
	More sophisticated example
	Large loop program
	Large loop program
	Large loop program
	Large loop program

	Summary
	Thanks!
	Thanks!
	Publications
	Publications

