Reversivity, Reversibility and Retractability

Nikolai N. Nepejvoda

July 9, 2012
Landauer, von Neumann: **Reversivity**

Thermodynamic lower bound for information processing is

Generalized Landauer — von Neumann principle

\[E_{\text{diss}} \geq T \times k_B \times \ln P \]

\(k_B \) is the Boltzmann’s constant, \(P \) is the number of states of atomic computing element.
Landauer, von Neumann: **Reversivity**

Thermodynamic lower bound for information processing is

Generalized Landauer — von Neumann principle

\[E_{\text{diss}} \geq T \times k_B \times \ln P \]

\(k_B \) is the Boltzmann’s constant, \(P \) is the number of states of atomic computing element.

Landauer 1961: to avoid this limit is possible only if our actions are *invertible*
Bennett 1973: **Reversibility** Possibility to undo any action

Bennett 1973: \[\text{Reversibility} \quad \text{Possibility to undo any action} \]
Bennett 1973: **Reversibility** Possibility to undo any action

It is possible to emulate any Turing machine by reversible one for the cost of extra time and garbage

\[
\text{Time} > 3^k \cdot 2^{O\left(\frac{T}{2^k}\right)} \quad \text{Store} > S \cdot (1 + O(k)) \tag{1}
\]

where \(k \) can be chosen between 1 and \(\log_2 T \).
Bennett 1973: **Reversibility** Possibility to undo any action

It is possible to emulate any Turing machine by reversible one for the cost of extra time and garbage

\[
\text{Time} > 3^k \cdot 2 \left(\frac{T}{2^k}\right) \quad \text{Store} > S \cdot (1 + O(k)) \tag{1}
\]

where \(k\) can be chosen between 1 and \(\log_2 T\).

Reversibility is not full invertibility: we cannot undo which is not done. Thus reversibility has no relation to LvN principle.
H. Axelsen, R. Glück 2011: **Reversibility is not Turing complete**

By reversible Turing machine we can compute exactly all injective computable functions. There exists an universal reversible Turing machine. T. Toffoli 1980

There is an invertible function $\text{bool}^3 \rightarrow \text{bool}^3$ (Toffoli gate) which is a basis for all invertible Boolean functions. Different gates are proposed now and extensively studied algorithms to build reversible extensions of usual boolean functions from those gates.
H. Axelsen, R. Glück 2011: **Reversibility is not Turing complete**

By reversible Turing machine we can compute exactly all injective computable function.
H. Axelsen, R. Glück 2011: **Reversibility is not Turing complete**

By reversible Turing machine we can compute exactly all injective computable function

There exists an universal reversible Turing machine
H. Axelsen, R. Glück 2011: Reversibility is not Turing complete

By reversible Turing machine we can compute exactly all injective computable function
There exists an universal reversible Turing machine

T. Toffoli 1980
There is an invertible function $\text{bool}^3 \rightarrow \text{bool}^3$
(Toffoli gate) which is a basis for all invertible Boolean functions
H. Axelsen, R. Glück 2011: Reversibility is not Turing complete

By reversible Turing machine we can compute exactly all injective computable function

There exists an universal reversible Turing machine

T. Toffoli 1980

There is an invertible function \(\text{bool}^3 \to \text{bool}^3 \) (Toffoli gate) which is a basis for all invertible Boolean functions

Different gates are proposed now and extensively studied algorithms to build reversible extensions of usual boolean functions from those gates
Retractability: a good companion
Retractability: a good companion
People extensively studied different method of program inversions
Retractability: a good companion
People extensively studied different method of program inversions
We not always are to invert a whole program functional. Usually it is sufficient to *retract* some results up to their reasons.
Retractability: a good companion
People extensively studied different method of program inversions
We not always are to invert a whole program functional. Usually it is sufficient to retract some results up to their reasons.
One of practically used kinds of program retraction is error analysis.
Retractability: a good companion
People extensively studied different method of program inversions
We not always are to invert a whole program functional. Usually it is sufficient to retract some results up to their reasons.
One of practically used kinds of program retraction is error analysis.
Practically we need rather to restore conditions than values
Constructivism as a tool for CS and Informatics

Constructive understanding
Constructive paradigm
Constructive rationalism
Intuitionistic logic
Intuitionistic logic 2
Intuitionistic logic 3
Restricted constructions
Restricted constructions 2
Retractability
Reversibility
Reversivity
Summary
Our statements are considered as problems which are to be solved in such a way that ideal abstract but effective construction can be extracted from this solution.
Constructive understanding

Our statements are considered as problems which are to be solved in such a way that ideal abstract but effective construction can be extracted from this solution. There are no logical values. Statement is to be realized and different proofs can give different realizations.
Our statements are considered as problems which are to be solved in such a way that ideal abstract but effective construction can be extracted from this solution. There are no logical values. Statement is to be realized and different proofs can give different realizations. Effectivity is not treated as absolute notion of Turing completeness. We are to construct our result by admissible for the problem tools and by admissible spending of resources.
Constructive paradigm

There are no universal methods and silver bullets. When somebody claims that the method can solve everything this person is a crook or fanatic or politician or simply a lying advertiser.
There are no universal methods and silver bullets. When somebody claims that the method can solve everything this person is a crook or fanatic or politician or simply a lying advertiser. We are to choose the best tools fitting our problems.
There are no universal methods and silver bullets. When somebody claims that the method can solve everything this person is a crook or fanatic or politician or simply a lying advertiser. We are to choose the best tools fitting our problems. Tools for different domains and for different systems of values can be incompatible and using them “in interoperable manner” is a mortal trick. Example: Curry paradox (1930). Logic is incompatible with λ-calculus.
There are no universal methods and silver bullets. When somebody claims that the method can solve everything this person is a crook or fanatic or politician or simply a lying advertiser. We are to choose the best tools fitting our problems.

Tools for different domains and for different systems of values can be incompatible and using them “in interoperable manner” is a mortal trick. Example: Curry paradox (1930). Logic is incompatible with λ-calculus.

This does not prevent to use different constructive tools in different modules of a single system.
Constructivism is really another form of rational thinking which is alternative to usual “Aristotelian” one.
Constructivism is really another form of rational thinking which is alternative to usual “Aristotelian” one. We seek solutions instead of “THE HOLY ABSOLUTE TRUTH”
Constructivism is really another form of rational thinking which is alternative to usual “Aristotelian” one. We seek solutions instead of “THE HOLY ABSOLUTE TRUTH” Thus we are versatile and allow other people think differently
Constructivism is really another form of rational thinking which is alternative to usual “Aristotelian” one. We seek solutions instead of “THE HOLY ABSOLUTE TRUTH” Thus we are versatile and allow other people think differently Thus we are ruthless and intolerant because way of thinking of a person makes his values, goals and prejudices explicit. We try to oppose those who uses inadequate tools for dirty purposes. Each person has first of all responsibility and only if he/her is responsible he/her can claim rights.
Intuitionistic logic

L. E. J. Brouwer (1908)

The language is the same as for classical logic. Formulas are understood as problems. We are interested in ideal mental constructions. Our only restriction is that their execution is to be finite and use finite information on arguments. Formal system is the classical logic without $A \lor \neg A$. Removing irrelevant supposition 'We know all' we get a stronger system which includes the whole classical logic as an isomorphic image (A. Glivenko, 1929).
L. E. J. Brouwer (1908)
The language is the same as for classical logic
L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be finite and use finite information on arguments.
L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be finite and use finite information on arguments.
Formal system is the classical logic without $A \lor \neg A$.
Intuitionistic logic

L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be finite and use finite information on arguments.
Formal system is the classical logic without $A \lor \neg A$.
Removing irrelevant supposition ‘We know all’ we get a stronger system which includes the whole classical logic as a isomorphic image (A. Glivenko, 1929)
L. E. J. Brouwer (1908)
The language is the same as for classical logic
Formulas are understood as problems
We are interested in ideal mental constructions.
Our only restriction is that their execution is to be finite and use finite information on arguments.
Formal system is the classical logic without $A \lor \neg A$.
Removing irrelevant supposition ‘We know all’ we get a stronger system which includes the whole classical logic as a isomorphic image (A. Glivenko, 1929)
There are new possibilities: to express ignorance and to use it as a positive factor; to express in a short and concise way complex conditions on used tools; to analyse a level of constructivity of theorems and solutions.
There are new possibilities: to express ignorance and to use it as a positive factor; to express in a short and concise way complex conditions on used tools; to analyse a level of constructivity of theorems and solutions. But there are no possibilities to express that our resources are restricted and take into account the main resource restriction.
There are new possibilities: to express ignorance and to use it as a positive factor; to express in a short and concise way complex conditions on used tools; to analyse a level of constructivity of theorems and solutions.

But there are no possibilities to express that our resources are restricted and take into account the main resource restriction.

This logic was created as a logic of ideal mental construction and ideally fits to this mental and real domain.
There are new possibilities: to express ignorance and to use it as a positive factor; to express in a short and concise way complex conditions on used tools; to analyse a level of constructivity of theorems and solutions. But there are no possibilities to express that our resources are restricted and take into account the main resource restriction.

This logic was created as a logic of ideal mental construction and ideally fits to this mental and real domain. Thus Yessenin-Volpin proposed in 1960 to consider logics for restricted constructions.
NOTE. If we do not insert natural numbers, induction or fixed point intuitionistic logic gives very effective solutions which are linear in time and space \textit{modulo} primitive functions. (Nepejvoda 1979)
NOTE. If we do not insert natural numbers, induction or fixed point intuitionistic logic gives very effective solutions which are linear in time and space \textit{modulo} primitive functions. (Nepejvoda 1979)

This is one of partial cases of the common principle:

\textbf{Worst enemies of a good systems are new possibilities}
NOTE. If we do not insert natural numbers, induction or fixed point intuitionistic logic gives very effective solutions which are linear in time and space **modulo** primitive functions. (Nepejvoda 1979)

This is one of partial cases of the common principle:

Worst enemies of a good systems are new possibilities

Thus let us do not criticize a system for it cannot do something (e.g. express a factorial) It must work perfectly on its native domain.
Yessenin-Volpin could not imagine how drastically changed logic after we take into account that “finite in theory means infinite in practice”
Yessenin-Volpin could not imagine how drastically changed logic after we take into account that “finite in theory means infinite in practice”

If theoretician says: “This is possible in principle” practitioner must understand: “This is practically impossible”
Yessenin-Volpin could not imagine how drastically changed logic after we take into account that “finite in theory means infinite in practice”

If theoretician says: “This is possible in principle” practitioner must understand: “This is practically impossible”

1983: Nilpotent logic of restricted time (N. Nepeyvoda)
Yessenin-Volpin could not imagine how drastically changed logic after we take into account that “finite in theory means infinite in practice”

If theoretician says: “This is possible in principle” practitioner must understand: “This is practically impossible”

1983: Nilpotent logic of restricted time (N. Nepejvoda)
1988: Linear logic of restricted money (J.-Y. Girard)
Yessenin-Volpin could not imagine how drastically changed logic after we take into account that “finite in theory means infinite in practice”

If theoretician says: “This is possible in principle” practitioner must understand: “This is practically impossible”

1983: Nilpotent logic of restricted time (N. Nepejvoda)
1988: Linear logic of restricted money (J.-Y. Girard)
2008: Reversive logic of invertible actions (N. Nepejvoda & A. Nepejvoda)
All logics of restricted constructions are very non-classical and mutually inconsistent
All logics of restricted constructions are very non-classical and mutually inconsistent. Nilpotent (aka automate or flowchart): No constructive conjunctions (no parallelism in automate) \(A \Rightarrow A \) is true only if \(A \) is always false. Propositional fragment has simple formalisms and is easily decidable.
All logics of restricted constructions are very non-classical and mutually inconsistent

Nilpotent (aka automate or flowchart): No constructive conjunctions (no parallelism in automate) $A \Rightarrow A$ is true only if A is always false. Propositional fragment has simple formalisms and is easily decidable

Linear: all classical, intuitionistic and much more connectives. Propositional fragment is undecidable. No $A \Rightarrow A\&A$
All logics of restricted constructions are very non-classical and mutually inconsistent. Nilpotent (aka automate or flowchart): No constructive conjunctions (no parallelism in automate) $A \Rightarrow A$ is true only if A is always false. Propositional fragment has simple formalisms and is easily decidable.

Linear: all classical, intuitionistic and much more connectives. Propositional fragment is undecidable. No $A \Rightarrow A \& A$.

Retractability

Retractability

Zaslavsky logic
Zaslavsky logic 2
Zaslavsky logic 2
Sample applied theory
Our goal
Forward proof
Backward proof
Program and analysis
Ghosts
Slabs

Reversibility

Reversity

Summary
There are only constructive connectives \(\Rightarrow \lor \& \sim \forall \exists \). Their semantic is defined through two notions of realizability: positive and negative one. This logic is called intuitionistic symmetric logic.

\[
\langle a, b \rangle \, R^+ A \& B \equiv a R^+ A \land b R^+ B; \\
\langle i, c \rangle \, R^- A \& B \equiv (i = 1 \land c R^- A) \text{ or } (i = 2 \land c R^- B);
\]
There are only constructive connectives $\Rightarrow \lor \land \sim \land \exists$. Their semantic is defined through two notions of realizability: positive and negative one. This logic is called intuitionistic symmetric logic.

- $\langle a, b \rangle \text{R}^+ A \land B \equiv a\text{R}^+ A \land b\text{R}^+ B$;
- $\langle i, c \rangle \text{R}^- A \land B \equiv (i = 1 \land c\text{R}^- A)$ or $(i = 2 \land c\text{R}^- B)$;

- $\langle i, c \rangle \text{R}^+ A \land B \equiv (i = 1 \land c\text{R}^+ A)$ or $(i = 2 \land c\text{R}^+ B)$;
- $\langle a, b \rangle \text{R}^- A \lor B \equiv a\text{R}^- A \land b\text{R}^- B$;
Zaslavsky logic 2

\[\langle f, g \rangle \circledast^+ A \Rightarrow B \equiv \forall a \ (a \circledast^+ A \supset ! (a \ f) \land (a \ f) \circledast^+ B) \land \forall b \ (b \circledast^- B \supset ! (b \ g) \land (b \ g) \circledast^- A); \]

\[\langle a, b \rangle \circledast^- A \Rightarrow B \equiv a \circledast^+ A \land b \circledast^- B; \]
Zaslavsky logic 2

\[\langle f, g \rangle \circ A \Rightarrow B \equiv \forall a \ (a \circ A \supset !(a \ f) \land (a \ f) \circ B) \land \forall b \ (b \circ B \supset !(b \ g) \land (b \ g) \circ A) ; \]
\[\langle a, b \rangle \bullet A \Rightarrow B \equiv a \circ A \land b \circ B ; \]

\[
\begin{align*}
\text{Retractability} \\
\text{Zaslavsky logic 2} \\
\text{Zaslavsky logic 2} \\
\text{Sample applied theory} \\
\text{Our goal} \\
\text{Forward proof} \\
\text{Backward proof} \\
\text{Program and analysis} \\
\text{Ghosts} \\
\text{Slabs} \\
\text{Reversibility} \\
\text{Reversivity} \\
\text{Summary}
\end{align*}
\]
Zaslavsky logic 2

\[f \mathcal{R}^+ \forall x A(x) \equiv \text{for all } a \]
\[(a \in U \supset ! (a f) \land (a f) \mathcal{R}^+ A(a)); \]
\[\langle u, a \rangle \mathcal{R}^- \forall x A(x) \equiv \text{exists } u \]
\[(u \in U \land a \mathcal{R}^- A(u)); \]

Retractability
Zaslavsky logic
Zaslavsky logic 2
Zaslavsky logic 2
Sample applied theory
Our goal
Forward proof
Backward proof
Program and analysis
Ghosts
Slabs
Reversibility
Reversivity
Summary
Zaslavsky logic 2

\[f(\mathbb{R})^+ \forall x A(x) \equiv \text{for all } a \]
\[(a \in U \supset ! (a f) \land (a f)(\mathbb{R})^+ A(a)) ; \]
\[\langle u, a \rangle (\mathbb{R})^- \forall x A(x) \equiv \text{exists } u \]
\[(u \in U \land a(\mathbb{R})^- A(u)) ; \]

\[\langle u, a \rangle (\mathbb{R})^+ \exists x A(x) \equiv \text{exists } u \]
\[(u \in U \land a(\mathbb{R})^+ A(u)) ; \]
\[f(\mathbb{R})^- \exists x A(x) \equiv \text{for all } a \]
\[(a \in U \supset ! (a f) \land (a f)(\mathbb{R})^- A(a)) ; \]
Let the following theory fragment describes some packages in functional language

$$\forall x \left((A(x) \Rightarrow N(x)) , \quad \varphi \uparrow \forall y \left(N(y) \Rightarrow \sim \exists x \ M(x) \right) \right)$$

$g \uparrow \forall x \left(C(x) \Rightarrow L(x) \lor E(x) \lor M(x) \right) , \quad \forall x \left(L(x) \Rightarrow D(x) \right) , \quad \forall x \left(H(x) \Rightarrow T(x, (x \ f)) \right)$

which is a part of a constructive theory describing some packages of programs
Our goal

Let we proved a formula

\[\forall x \ (A(x) \ & \ (\forall x \ (C(x) \Rightarrow D(x) \lor E(x))) \Rightarrow \exists y \ H(y)) \Rightarrow \exists z \ T(y, z) \]
Let we proved a formula

\[
\forall x \ (A(x) \ & \ \\
(\forall x \ (C'(x) \Rightarrow D(x) \lor E(x))) \Rightarrow \exists y \ H(y))
\Rightarrow \exists z \ T(y, z)
\]

Proof consists of two parts: forward (computation) and backwards (analysis).
Forward proof

\[* \, A(z), \, \forall x \, (C(x) \Rightarrow D(x) \lor E(x)) \Rightarrow \exists y \, H(y), \]
\[z \text{ is arbitrary} \]

\[N(z) \]
\[\sim \exists x \, M(x) \]
\[* \, C(u), \, u \text{ is arbitrary} \]

\[L(u) \lor E(u) \lor M(u) \]
\[\sim M(u) \]
\[* \, L(u) \quad * \, E(u) \]
\[H(c_1) \]
\[T(z, (c_1 f)) \]
Brief history 1
Brief history 2
Brief history 3
Brief history 4
Constructivism as a tool for CS and Informatics
Retractability
Zaslavsky logic
Zaslavsky logic 2
Sample applied theory
Our goal
Forward proof
Backward proof
Program and analysis
Ghosts
Slabs
Reversibility
Reversivity
Summary

Backward proof

* \(\sim T(y, z), \ y, z \) are arbitrary
* \(\sim A(x) \lor \sim (\forall x (C(x) \Rightarrow D(x) \lor E(x))) \Rightarrow \exists y H(y) \)
* \(\sim (\forall x (C(x) \Rightarrow D(x) \lor E(x))) \Rightarrow \exists y H(y) \)

\(\sim H(x), \ x \) is arbitrary
\(\exists x (C(x) \land \sim D(x) \land \sim E(x)) \)

\(L(c_2) \lor E(c_2) \lor M(c_2) \)
\(\sim L(c_2) \sim E(c_2) \)

\(M(c_2) \sim N(y) \sim A(y) \sim A(y) \)
Here our direct program is

\[\Phi : \text{func (obj, func(func(obj)void ⊕ void) obj) obj} \]

\[\lambda x, \Psi. ((\lambda x. \text{case } (x \ g) \text{ in } 1 : 1, 2 : 2, 3 : \text{ error esac } \Psi) f) \]
Here our direct program is

\[
\Phi : \text{func} \ (\text{obj}, \ \text{func}(\text{func}(\text{obj}) \text{void} \oplus \text{void}) \ \text{obj}) \ \text{obj} \\
\quad \lambda x, \Psi. ((\lambda x. \text{case} \ (x \ g) \ \text{in} \ 1 : 1, 2 : 2, 3 : \text{error esac} \ \Psi) \ f)
\]

If its result is wrong, an error is in \(A \). The reason of this trouble is probably a wrong value of \(x \) which formally does not enter into a resulting program.
Moreover here we have an interesting duality. G. S. Tseytin pointed out in 1970 that program values are not sufficient to analyze a program. Program is surrounded by *ghosts* which are necessary to understand and to transform a program but are at least useless during its computation. During retraction ghosts become computable entities while values of direct program become ghosts.
There is a dual notion: a *slab*. This is what is not needed logically but is inserted from some side reasons: lack of constructions in PL, ‘effectivity’ and so on. For example \((x,y):=(y,x+y)\) we are forced to express like
\[z:=x; \quad x:=y; \quad y:=x+z; \]
Reversibility
An algebraic definition of reversibility

Let X be an enumerated set. Let $\mathcal{C}(X, X)$ be a set of all total computable functions $f : X \rightarrow X$. A semigroup $R \subset \mathcal{C}(X, X)$ having a neutral element $e = \lambda x. x$ and having a right inverse f^{-1} for each f (i.e. such f^{-1} that $f \circ f^{-1} = e$) is called reversible computability upon set of objects X.
Because reversibility has no connection to Landauer limit we don’t need to assure undoing down to atomic actions in reversible computing because reversibility is needed only for external reasons (say many legal and business program must be able to reconstruct the state of the system for any previous time moment). Hence a reversible program can use modules written in irreversible manner if we grant undoing of their results.
From this point we can see strategic mistakes made in the design of reversible language Janus. For example, there is a brilliant invention of Janus authors that each unary function f is extended up to its reversible extension

$$(x \ y \ g) = \langle x \ast (y \ f), y \rangle$$

where $\forall x, y, z \ (x \ast z = y \ast z \supset x = y)$. They showed that each unary function can be extended in such manner.
This excellent shot had a wrong goal and is missed. Of course it is too much for reversibility but too less for reversivity (it grants only undoing).
This excellent shot had a wrong goal and is missed. Of course it is too much for reversibility but too less for reversivity (it grants only undoing). But excellent ideas are always useful though not always where they had been proposed. A. Nepejvoda yesterday stated connections of r.e. with simple proofs.
There is no need of reversible programming language. All needed can be formulated as clear and easily checked automatically discipline of programming in traditional language.
Reversivity

Constructive reversive logic (CRL)
Language of CRL
Informal semantic of CRL
Formal semantic of CRL
Formal semantic of CRL 2
CRL and programming
CRL and programming 2
Gains of group semantics
Sketch: Botik language 1
Sketch: Botik language 2
Sketch: Botik language 3

Reversivity

Retractability

Reversibility
For a mathematical semantic we consider an arbitrary group G. One more important step was proposed and successfully developed by J.-Y. Girard in his linear logic (using commutative monoid to represent money-spending actions). For our case it sounds as follows:

States are the same group as actions.

Thus G is called both *the group of actions* and *the group of states*.
CRL is a propositional logic. The primitives of reversible logic language are propositional symbols $A, B, C\ldots$, five connectives of classical logic (\supset, \equiv, \land, \lor, \neg) called here *descriptive connectives*, four constructive logical connectives $\Rightarrow, \&, \sim, E$. E is null-ary, \neg and \sim are unary, all others are binary.

Classical and constructive connectives are fully interoperable and can be mixed arbitrarily. This is not the case in other constructive logics of restricted constructions.
Informal semantic of CRL

Let *signature* \(\Sigma \) be a nonempty set of propositional symbols.

Classical connectives are read and understood in standard way. \(\Rightarrow \) reads “can be transformed”, \(A \& B \) reads “*sequential conjunction*” or “*A then B*”\(^1\), \(\sim A \) is a preventive negation which can be read in different contexts as “undo \(A \)” or “prevent \(A \)”.

\(^1\)Of course we can read this “and” in the sense of famous Kleene’s examples: “Mary married and born a child”, “Mary born a child and married”.
Realization of a formula in the interpretation I. The set of realizations for A is denoted $\mathbb{R}A$.

1. $a \mathbb{R} A \triangleq a \in \zeta(A)$ where A is propositional letter and $A \in \Sigma$.

2. Classical connectives are standard. E.g. $a \mathbb{R} (A \wedge B) \triangleq a \mathbb{R} A$ and $a \mathbb{R} B$.

3. $a \mathbb{R} (A \Rightarrow B) \triangleq \forall b \in G (b \mathbb{R} A \supset b \circ a \mathbb{R} B)$. Thus a transforms solutions of A into solutions of B.
4 \[a \circ b \odot (A \land B) \triangleq a \odot A \land b \odot B. \] A solution of \(B \) is applied to a solution of \(A \).

5 \[a \odot \sim A \triangleq a^{-1} \odot A. \] \(a \) undoes a solution of \(A \) or prevents it.

6 \[a \odot E \triangleq a = e. \]
Here we have no constructive disjunction. If introduced it demands an «interleaving product» of groups: a group of all products \(a_1 \circ b_1 \circ \cdots \circ a_n \circ b_n \) where \(a_i \) are from realizations of \(A \) and \(b_i \) are from one of \(B \). This destroys finiteness and means that conditionals demand increasing memory. Analyzing constructions of Fredkin and Toffoli we see that it is.
So pure reversive programming language is to be without conditionals and loops but from the very beginning functional one. In practice we are to use irreversible operations (at least initializing and result writing) and very restricted use of conditionals and loops. Of course there are no recursions and reversive language is not Turing-complete. Atomic computing elements for reversive computer are to be group-valued not binary.
Composition of group elements $a \circ b$ can be understood by any of three ways:
Gains of group semantics

Composition of group elements $a \circ b$ can be understood by any of three ways:

1. We perform the state-transfoming action a then the action b;
Composition of group elements $a \circ b$ can be understood by any of three ways:

1. We perform the state-transfoming action a then the action b;

2. We apply the function b to a;
Composition of group elements $a \circ b$ can be understood by any of three ways:

1. We perform the state-transfoming action a then the action b;

2. We apply the function b to a;

3. We construct a composition of functions a and b.
Gains of group semantics

Composition of group elements \(a \circ b \) can be understood by any of three ways:

1. We perform the state-transfoming action \(a \) then the action \(b \);

2. We apply the function \(b \) to \(a \);

3. We construct a composition of functions \(a \) and \(b \).

All those interpretations are compatible and fully interoperable. This is the main peculiarity of group as a space of elements and actions.
Program consists of header, definitions section, input section, program body and output section. Heading is:

PROGRAM ⟨Program_name⟩ Output section is OUTPUT

\textbf{write} ⟨variable list⟩

END OUTPUT
Definitions section begins by a string DEFINITIONS, and ends by END DEFINITIONS. Here all names and all explicit subgroups are defined. Subgroup definition has one of two forms:

GROUP STANDARD

- # Only one group and it is defined externally
- # All atoms except boolean are from this group

Several data types:

GROUP g1, g2: EXTERNAL, ck: [0..k], tn: TRANSPOSITION[n]

In modeling admissible elementary types are cyclic groups, permutation groups and direct products of Boolean.
Semidirect product construction is a central here. \(D \rtimes P \) is defined through a homomorphism \(\varphi : P \rightarrow \text{Aut} D \) with the following operation:

\[
\langle d_1, p_1 \rangle \circ \langle d_2, p_2 \rangle = \langle d_1 \circ (d_2 (p_2 \varphi)), p_1 \circ p_2 \rangle
\]
A semirect product usually is given implicitly by a list of some variables of the same type: \((a,b,c)\). It means that to compute new values of those variables could be used other from the same list but each only once on each step. Here is an example:

```plaintext
var c = (a,b);

\ldots

\{c;(b,E);(E,-a)\}
```
Atoms can be variables, plain atoms and constants. Variables can be changed during execution. Initial values of variables and simple atoms are given in input section. Constants get values in definitions section. There is one constant of any type: \(E\).

One cyclic variables can be declared as guarded. When it becomes \(0\), program is ended.
Arrays have a cyclic index, for example

```
[pn] array [i] fib1, fib2
```

Here `[pn]` is a type of elements, number of elements is defined by type of `i`. Thus array has an associated index variable.

Predicates are only unary and only on a cyclic group:

```
predicate [ck] pr
```

Here is a function:

```
function f1=
  {if p1 then -a2; a3; a1
   else a4; -a1 fi; a1}
```
Input section

INPUT

. . .

END INPUT

Here all values of variables and predicates are to be given by read \(<\text{list_of_names}>\) or directly. Only in this section a value can be copied many times.
Program body is a sequence of segments. Segments are separated by ; or by ,. Comma means that these segments are independent. Weak segment is

\[
\left\{ \begin{array}{l}
\text{possible sequence of operators of the same type, divided by semicolons}
\end{array} \right.
\]

Segment can be preceded by — (inversion).
Segment is a weak segment without −. Its first element is whether a variable or a conditional with both alternatives are segments. This variable is the basic. All other elements are understood as operators changing the basic. After a segment there can be −, inverting action for basic variable.
Brief history 1
Brief history 2
Brief history 3
Brief history 4
Constructivism as a tool for CS and Informatics
Retractability
Reversibility
Reversivity
Constructive reversive logic (CRL)
Language of CRL
Informal semantic of CRL
Formal semantic of CRL
Formal semantic of CRL 2
CRL and programming
CRL and programming 2
Gains of group semantics
Sketch: Botik language 1
Sketch: Botik language 2
Sketch: Botik language 3

Sketch: Botik language 8

Types of segments

\[
\text{to } N \text{ do } t \text{ od}
\]

Loop segment

\[
\text{if } P \text{ then } t \text{ else } r \text{ fi}
\]

Conditional segment (P is boolean, t, r are weak segments of the same type).
Classes of segments

No loops and conditionals: pure.
No loops: conditional;
no conditionals: looping;
no conditionals inside loops and loops inside conditionals: safe;
otherwise: dangerous.
example program 1a

PROGRAM Action_directe
DEFINITIONS # All names used in a program are specified here

group standard
atom var c
atom a1, a2, a3, a4, a5, a6, a7
predicate p1, p2
function f={a1; if p1 |>then -a2; a3; a1
 else a4; -a1 fi}
function g={a1; to 51 do -a1 od}
function h={a1; a3; -a1}
END DEFINITIONS
example program 1b

INPUT

initial values of all atoms and
predicates are given here;
usually they are computed
by external program
and transferred into
read c, a1, a2, a3, a4, a5, a6, a7
p1=¬(a4,a6)
if the domain of a predicate
or the value of an atom
is fixed for all executions
it can be defined inside
...

END INPUT
Example program 1c

```
{c;
-{
  to 14 do
    -g; h; a7;
    od; a2};
  # we take an inverse
  # of the whole program block
  if p2 then -f; h else f fi
  f; -g; -a4; h;}
-# Direct action leads
# to opposite
# results than desired :)
OUTPUT # a substructure transferred
  # to external processor
  # is defined here
  write c
END OUTPUT
```
Let G is a basic group of program commands, H is a group for alternatives. Then to compute this conditional we need a group $\mathbb{Z}_2 \times G \times G \times H$ with an operation

$$\langle z, a_1, b_1, c_1 \rangle \circ \langle 0, a_2, b_2, c_2 \rangle = \langle z, a_1 \circ a_2, b_1 \circ b_2, c_1 \circ c_2 \rangle$$

$$\langle z, a_1, b_1, c_1 \rangle \circ \langle 1, a_2, b_2, c_2 \rangle = \langle z \oplus 1, a_1 \circ b_2, b_1 \circ a_2, c_1 \circ c_2 \rangle$$

This can be described also as $(G \times G) \rtimes (\mathbb{Z}_2 \times H)$.

\[\text{(2)} \]
Some estimations

They hold during program translation!
They hold during program translation!

1. pure programs do not change a group;
They hold during program translation!

1. pure programs do not change a group;
2. each written loop adds an additive constant to the number of the group elements;
They hold during program translation!

1. pure programs do not change a group;
2. each written loop adds an additive constant to the number of the group elements;
3. each executed conditional (roughly speaking) doubles the number of elements in a group.
Some estimations

They hold during program translation!

1. pure programs do not change a group;
2. each written loop adds an additive constant to the number of the group elements;
3. each executed conditional (roughly speaking) doubles the number of elements in a group.
Let we try to apply the same actin very many times. This corresponds in group to compute \(a \circ b^\omega \). Then we represent \(\omega \) in Fibonacci system. This can be easily made by usual computer. Let number of bits in representation is \(k \). Then we define and transfer to reversive program two predicates: \((i \text{ fib_odd}), (i \text{ fib_even})\). First one is 1 iff \(i \) is odd and the corresponding digit is equal to 1. \((i \text{ fib_even})\) is the same for even indices.
Large loop program

PROGRAM Fibonacci_power

DEFINITIONS

int atom n

GROUP tn: TRANSPOSITION[n]

tp atom var a,b,d

tp atom e

(tp,tp) var c is (a,b)

constant e=E

int atom k

int atom var i [0..k] guarded

boolean atom l; predicate [i] fib_odd, fib_even

END DEFINITIONS
Large loop program

INPUT read a, k
b ← a
i ← 1
l ← TRUE
d ← E
read fib_odd, fib_even
END INPUT
Large loop program

to k do
 \{c; if l then (e,a) else (b,e) fi\};
 \{d; if (i fib_odd) then a else if (i fib_odd) then b else e fi fi\};
 \{i;1\},
 \{l; true\}
od
OUTPUT
write d
END OUTPUT
This program looks on the first glance hopelessly dangerous but transforming algebraic structures we really can get an effective algorithm to execute it do not losing its good properties.

♥ 😊
Summary
There are three substantially different but usually mixed notions of inverse computability. They need different tools and use different logics.
There are three substantially different but usually mixed notions of inverse computability. They need different tools and use different logics. A reversive computation demands full invertibility of actions. Only it can grant minimization of heat pollution.
There are three substantially different but usually mixed notions of inverse computability. They need different tools and use different logics. A reversive computation demands full invertibility of actions. Only it can grant minimization of heat pollution. Reversive computability is not Turing-complete and a reversive processor can work only as specialized unit of an usual (for example von Neumann) computer.
There are three substantially different but usually mixed notions of inverse computability. They need different tools and use different logics. A reversive computation demands full invertibility of actions. Only it can grant minimization of heat pollution. Reversible computability is not Turing-complete and a reversive processor can work only as specialized unit of an usual (for example von Neumann) computer.
It is necessary to compute in a reversive program the algebraic structures of data types and of the whole data space before program compilation because each modification of programs changes all data structures in it. This algebraic computation can be somewhat sophisticated.
It is necessary to compute in a reversive program the algebraic structures of data types and of the whole data space before program compilation because each modification of programs changes all data structures in it. This algebraic computation can be somewhat sophisticated. A reversible computing (unrestricted undoing) can be implemented in traditional computers by traditional programming languages as a discipline of programming.
It is necessary to compute in a reversible program the algebraic structures of data types and of the whole data space before program compilation because each modification of programs changes all data structures in it. This algebraic computation can be somewhat sophisticated. A reversible computing (unrestricted undoing) can be implemented in traditional computers by traditional programming languages as a discipline of programming.

A program retraction (computation of precondition which hold or fail for the given result) can be made by means of almost traditional logic. During retraction values and ghosts are interchanged.
Publications

Brief history 1
Brief history 2
Brief history 3
Brief history 4

Constructivism as a tool for CS and Informatics
Retractability
Reversibility
Reversivity
Summary
Thanks!
Thanks!

Publications

Непейвода А. Н.: О сюръективной импликации в реверсивной логике. VI Смирновские чтения по логике (2009)

Непейвода А. Н. Элементы реверсивных вычислений Управление большими системами труды VI всероссийской школы-семинара молодых ученых, Ижевск (2009)