
Reversivity, Reversibility and Retractability

Nikolai N. Nepejvoda

Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, Russia,
152020

nepejvodann@gmail.com,
WWW home page: http://site.u.pereslavl.ru/Personal/NikolaiNNepeivoda/

Abstract. Three essentially different but usually mixed notions of pro-
gram invertibility are considered. Reversivity when each action has a full
inverse. Reversibility when each action can be undone (right inverse). Re-
tractability when erroneous result can be retracted down to error in data.
Constructive logical, algebraic, programming and realization aspects are
considered for those types of programs.

Keywords: constructive logics, reversible computing, reversive logic,
program inversion

1 Origins of reversivity

R. Landauer [1961] pointed out that there is an important kind of computations
not investigated earlier and not intensively studied now (though not forgotten).
Consider, for example, a superconductor based computer. Its elements are to be
cooled by liquid hydrogen to provide superconductor properties of elements. Hot
pollution could be fatal for this kind of processor. Thus we need all actions of
our computer not to induce heat pollution. Landauer showed that it is physically
possible if all actions are invertible.

The following formula describes the state of arts here:

Generalized Landauer – von Neumann principle

Ediss > T × kB × lnP
(1)

Here T is the temperature in K◦, kB is the Boltzmann’s constant, P is the number
of states of atomic computing element (assuming that energy needed to transfer
between any two states is equal). A fresh work on this topic which contains an
attempt of experimental verification of Landauer’s principle is [2012L].

Bennett [1973] proposed in 1973 to make logically reversible computer (in
the sense of boolean logic). He at first time made a big error which was inherited
by further works.

In the common sense invertible action is that which can be wholly undone.
For example adding block of text to Word file we always can delete it. This is
semi-invertible action: we can undo it after it is done but cannot prevent it by
doing an inverse action before it. For example accepting and rejecting changes in

204 N. N. Nepejvoda

Word document is a semi-invertible action (inside one Word session). Accepting
and rejecting them in ‘track changes’ mode is a fully invertible one. This shows
a deep difference between reversive (invertible) and reversible (semi-invertible)
computing. The second one cannot diminish heat pollution and cannot be applied
if our basic computing units are mostly invertible (e.g. quantum or DNA).

Toffoli [1980)] and Fredkin [1982] showed that it is possible to perform the
full set of boolean computations on superconductor based computations almost
without hot generation by the cost of doubled memory. A superconductor ele-
ments based cell can change state without hot generation if numbers of zeros
and ones do not change. Thus Toffoli proposed to consider computations where
each cell contains the same number of zeros and ones forever but they danced
inside during computation process. Inevitable hot generators are only setting
the initial state of a computer and reading the final result from some parts of
superconductor cells.

Merkle [1992] proposed another variant of reversible binary logic devices. His
goal is to beat physical barrier for computer productivity. His description of a
problem is brilliant [1996]:
“If the exponential trends of recent decades continue, energy dissipation per
logic operation will reach kT (for T = 300 Kelvins) early in the next century.
Either energy dissipation per logic operation will be reduced significantly below
3 ·10−21 joules, or we will fail to achieve computers that simultaneously combine
high packing densities with gigahertz or higher speeds of operation. There are
only two ways that energy dissipation can be reduced below 3 · 10−21 joules: by
operating at temperatures below room temperature (thus reducing kT), or by
using thermodynamically reversible logic. Low temperature operation doesn’t
actually reduce total energy dissipation, it just shifts it from computation to re-
frigeration. Thermodynamically reversible logic elements, in contrast, can reduce
total energy dissipation per logic operation to � kT .”

The main error here is that almost all authors forget that to get a new
memory location is also an energy-dissipating action. Moreover those who in
concrete considerations do not allow this action (e.g. Merkle, Toffoli) do not
mention this restriction in their comments.

There is a spread (rather little but slowly growing until this day) of works
considering “reversible logic” and reversible computing. Too narrow point of view
of all these works is to consider reversible computing only as boolean reversible
transformations. Thus brilliant but restricted ideas of Merkle, Toffoli and Fredkin
are accepted as “axiomatic” which cannot be discussed but only developed (as
a good example see [2003]). We emphasize that boolean elements are only a
tradition of current hardware but not its sine qua non property. Thus those
aspects of reversivity which will become crucial if reversive super processors
would be made technically: “How to program those exotic units?” and “What
we cannot put into them without destroying their potentially best sides?” are
not touched and even not seen.

And we are to emphasize the following:

Reversivity, Reversibility and Retractability 205

REVERSIVITY
To overcome the Landauer principle we need full invertibility, not
only possibility of undoing: each action f must have an action f−1

s.t. f ◦ f−1 = f−1 ◦ f = e where e is an empty action.

This was assumed in the original works and repeatedly pointed out by inde-
pendent researchers (see e.g. [2001Bub,2005Mar,2012L])

Thus we need more general mathematical and more logical consideration of
this extremely interesting and specific domain. Constructive logic of reversivity
is the first step into a new realm.

Now we consider three notions of (semi) invertibility in the order from an
almost traditional up to the most striking, leading to a fresh paradigm and
therefore totally inadequately treated.

2 Retractability

Main peculiarity of constructive logics is that they are not truth-value based.
Formulas are treated as problems and we are interested in solution of this prob-
lem which can be for different logics and theories whether a mathematical object
or a program or another entity. If a is a solution of a problem represented by a
logical formula A we say ‘a realizes A’ (ar A).

I don’t know a systematic survey of all branches of constructive mathematic
written in English. Constructivism now is a system where different main re-
sources and different resource restrictions lead to very exotic, mutually incon-
sistent and fine systems (see [2011NNN]). The logic of knowledge is the intu-
itionistic logic; the logic of money is the linear logic of Girard; the logic of time,
automata and real actions is the nilpotent logic; the logic of reversivity and soul
is partially described below. One of main philosophical consequences of construc-
tivism is that it is a mortal trick of a society to allow those people which are
thinking inside the logic of money to govern the real things or the knowledge
discovering process.

Some formulas in constructive logics can have a trivial underlying problem
and thus be treated as descriptive ones (usually as classical). For example for-
mulas ¬A in intuitionistic logic are descriptive and classical logic can be isomor-
phically embedded into intuitionistic (but not vice versa).

In this section we use almost forgotten and not developed further results of
constructive logic applications to programming. “Sturm und Drang” of this topic
was in last 70-ths — early 80-ths. There were many fine algorithms and strong
results (see e. g. [NNN1982,Mar1982,1991,1998]) but their practical applications
meet some obstacles.

Obstacle 1. Swamp. As usually, after big advance there arose a huge bor-
ing work to develop techniques and technologies of practical work with: new
possibilities opened (it is easier but often demands a full change of traditional
manner of actions); with new dangers and shortcomings which accompany each
innovation. Big benefits always go together with big disadvantages. To lead new

206 N. N. Nepejvoda

footpath through a swamp is hard and boring work. We cannot make here big
promises (if we didn’t lost remains of honor). We cannot show any spectacular
results here. We cannot easily explain significance of our work to outsiders (=
peer reviewers). Thus we cannot get grants and our work dies before reaching
the another bank of a swamp and a new living space. Constructive logics had
faced with the necessity to develop essentially another technique of formalization
because traditional one did not works good. This work had become their swamp.

Obstacle 2. Disorientation. The theoretical works are mostly disorienting
here because they usually treated so “practical and important” examples as
factorial or Ackermann’s function. These examples are both too primitive in their
structure and too connected with the specific data types and the traditional set
of atomic operations but easily understood by theoristsoutsiders. They were out
of mainstream of both theoretical and practical informatics which now works
with abstract and varying structures and constructs new programs not from the
computer primitives but from modules, objects and patterns.

Obstacle 3. Fake advertising. Japan ‘Fifth generation project’ used con-
structive logic as one of its banners. In reality they have adopted more traditional
but leading into deadlock tools (e.g. Prolog). A reputation of a fallen project was
transferred into its ‘used’ theory.

A program is retractable if it allows to retract from properties and/or errors
in the result to properties or errors in the data. The logic of retractable struc-
tured program is symmetric intuitionistic logic (SIL) investigated by I. Zaslavsky
[1979].

In this logic there are only constructive connectives ⇒ ∨& ∼ ∀∃. Their
semantic is defined through the two notions of realizability: positive and negative
one.

Definition 1. Realizabilities for SIL.

1. 〈a, b〉r+ A & B ≡ ar+ A ∧ br+ B;
〈i, c〉r− A & B ≡ (i = 1 ∧ cr− A) or (i = 2 ∧ cr− B);

2. 〈i, c〉r+ A ∨B ≡ (i = 1 ∧ cr+ A) or (i = 2 ∧ cr+ B);
〈a, b〉r− A ∨B ≡ ar− A ∧ br− B;

3. 〈f, g〉r+ A⇒ B ≡ for all a (ar+ A ⊃!(a f) ∧ (a f) r+B) ∧
for all b (br− B ⊃!(b g) ∧ (b g) r− A);
〈a, b〉r− A⇒ B ≡ar+ A∧ br− B;

4. ar+∼ A ≡ ar− A;
ar−∼ A ≡ar+ A;

5. f r+ ∀xA(x) ≡ for all a (a ∈ U ⊃!(a f) ∧ (a f) r+ A(a));
〈u, a〉r− ∀xA(x) ≡ exists u (u ∈ U∧ ar− A(u));

6. 〈u, a〉r+ ∃xA(x) ≡ exists u (u ∈ U∧ ar+ A(u));
f r− ∃xA(x) ≡ for all a (a ∈ U ⊃!(a f) ∧ (a f) r− A(a));

Here !t denotes �value of t exists�; U is the set of all primitive objects of
our model.

The usual rules for negation are valid for SIL. There is an extraction algo-
rithm which can extract two procedures from a proof of formula of the form:

∀x1 . . . xn (A1& . . .&Am ⇒ ∃y1 . . . yk (B1& . . . Bl))

Reversivity, Reversibility and Retractability 207

The first procedure finds y for all x satisfying A. The second one shows how to
find such j that ∼ Aj(x0) having ∼ Bi(x0, y0). Thus we have both a program
and a routine to analyze its errors.

Now we consider an example. Let in a subtheory (essentially constructive
formulas are specified by their realizations)

∀x ((A(x)⇒ N(x)), ϕr ∀y (N(y)⇒∼ ∃xM(x)),
g r ∀x(C(x)⇒ L(x) ∨ E(x) ∨M(x)),
∀x (L(x)⇒ D(x)), ∀x (H(x)⇒ T (x, (x f)))

which is a part of a constructive theory describing some packages of programs
we proved a formula

∀x (A(x) & (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))⇒ ∃y H(y))⇒ ∃z T (y, z))

by the following proof:

∗ A(z), ∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y), z is arbitrary∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N(z)
∼ ∃xM(x)
∗ C(u), u is arbitrary∣∣∣∣∣∣∣∣
L(u) ∨ E(u) ∨M(u)
∼M(u)
∗ L(u) ∗ E(u)
| D(u)
∀x (C(x)⇒ D(x) ∨ E(x))
H(c1)
T (z, (c1 f))

∗ ∼ T (y, z), y, z are arbitrary∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∼ A(x)∨ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))
∗ ∼ (∀x (C(x)⇒ D(x) ∨ E(x))⇒ ∃y H(y))∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∼ H(x), x is arbitrary
∃x (C(x) &∼ D(x) &∼ E(x))
L(c2) ∨ E(c2) ∨M(c2)
∼ L(c2) ∼ E(c2)
M(c2)
∼ N(y)
∼ A(y)

∗ ∼ A(y)

∼ A(y)

Here our direct program is

Φ : func (obj, func(func(obj)void⊕ void) obj) obj =

λx, Ψ. ((λx. case (x g) in 1 : 1, 2 : 2, 3 : error esac Ψ) f)

If its result is wrong, an error is in A. The reason of this trouble is probably a
wrong value of x which formally does not enter into a resulting program.

208 N. N. Nepejvoda

A procedure of backward analysis given originally for error diagnosis can be
used for other kinds of backward computations of program condition. We have
to stress that during this kind of backward computations we are interested not
in restoring of values but in information about initial values which had been lost
or not taken into account before program computation.

Retraction is first order process even for functional programs in the major-
ity of practical situations (roughly speaking if our positive suppositions do not
include a demand to grant an erroneous result of a procedure).

Moreover here we have an interesting duality. G. S. Tseytin pointed out
in 1970 that program values are not sufficient to analyze a program. Program
is surrounded by ghosts which are necessary to understand and to transform a
program but are at least useless during its computation. During retraction ghosts
become computable entities while values of direct program become ghosts.

3 Reversibility

Invertibility cannot be considered as a property of some exotic classes of hard-
ware computations. In business and legal practice it is sometimes necessary to
provide a possibility to restore easily the precise state of the whole system for
each given moment in the past. In many interactive program systems it is nec-
essary to provide unrestricted undoing.

Program allowing unrestricted undoing is called reversible.

Definition 2. Let X be an enumerated set. Let C(X,X) be a set of all total
computable functions f : X → X. A semigroup R ⊂ C(X,X) having a neutral
element e = λx.x and having a right inverse f−1 for each f (i.e. such f−1 that
f ◦ f−1 = e) is called reversible computability upon set of objects X.

We emphasize once more that reversibility has no relation to problem of
heat generation and programming physically reversive units. Nevertheless it is
practically essential and interesting.

Main results on �possibility to make any Turing computable function invert-
ible� consider only reversibility. In publications two notions �reversivity� and
�reversibility� are systematically muddled together.

A reversible processor can in principle work autonomously. But it is necessary
to remember lower bounds of extra resources needed for reversibility as stated
in [1973].

Time > 3k · 2
O

 T

2k


Store > S · (1 +O(k)) (2)

where k can be chosen between 1 and log2 T . Here we have somewhat shifted
notions. Bennett result and its further generalizations consider a problem how
to simulate an irreversible computation on reversible processor. In practice we
are interested in the same result but not in the same computation flow. Thus
this bound is theoretically correct but practically somewhat misleading.

Reversivity, Reversibility and Retractability 209

Moreover we don’t need to assure undoing down to atomic actions in re-
versible computing because reversibility is needed only for external reasons (say
many legal and business program must be able to reconstruct the state of the sys-
tem for any previous time moment). Hence a reversible program can use modules
written in irreversible manner if we grant undoing of their results.

From this point we can see strategic mistakes made in the design of reversible
language Janus [2007]. For example, there is a brilliant invention of Janus authors
that each unary function f is extended up to its reversible extension

(x y g) = 〈x ∗ (y f), y〉

where ∀x, y, z (x ∗ z = y ∗ z ⊃ x = y). They showed that each unary function
can be extended in such manner. But this excellent shot had a wrong goal and
is missed. Of course it is too much for reversibility but too less for reversivity (it
grants only undoing).

Now we will outline some reasons why there is no need of a reversible pro-
gramming languages. Reversibility can be reached by a discipline of programming
in a traditional structured language.

It is necessary to prohibit completely any invisible side effects of functions
and procedures.

Each procedure f can have only in and inout parameters and have a dual
procedure undo f which makes undoing of its effects.

Each function can have only in parameters and needs no undoing procedure.
Let us remember the remark of E. Dijkstra and D. Gries [2010Dij,1981Gr]

that natural assignment statements are to have a form x1, . . . , xn ← t1, . . . , tn.
Let now classify all variables in all program points as virgin, used and

monk ones. Now each assignment must have one of two forms. A multi form
x1, . . . , xn ← y1, . . . , yn where the right side contains no virgin variables and
each used variable from the left side must occur at least once in the right side.
A single form x← t where x is virgin. After this x becomes used.

Case statements and loops are unified in a spider statement form proposed
in [NNN1982] (this is an extension of Dijkstra’s loops and guarded commands
and had used e.g. by Bel’tyukov in his language ÊÛË):

for i,x1,. . . ,xn do N1: S1,. . . , Nk: Sk out L1: T1,. . . , Lm: Tm new U od.

Here i is an integer variable, Nj, Lj are integers, i, x1, . . . , xn are frozen inside
each loop step and can be changed only in new part. Inside loop they are called
monks.

A spider loop is executed as follows. If the value of i does not equal to any
of Nj, Lj there is an error. If it is equal to some Nj, the corresponding statement
Sj is executed, then U is executed and the loop continues. If it is equal to some
Lj, the loop is finished after execution of Tj and U.

Those conditions (easy to formulate as a discipline and technology of pro-
gramming and easy to check) are sufficient to grant reversibility.

Thus conditionals and loops do not hinder reversibility and only force us
sometimes to introduce some additional information.

Constructive logic of reversibility is a good problem for a new research.

210 N. N. Nepejvoda

4 Reversivity

Constructive reversive logic (CRL) was described and investigated in [2009]
For a mathematical semantic we consider an arbitrary group G. One more

important step was proposed and successfully developed by J.-Y. Girard in his
linear logic (using commutative monoid to represent money-spending actions).
For our case it sounds as follows:

States are the same group as actions.

Thus G is called both the group of actions and the group of states.
Each propositional letter corresponds to a subset of the group1, and each

element α of the group represents the function λx. x ◦ α.
Thus in the functional language based on groups application of f to a is to

be written (a f) in contrary to usual (f a). Composition of group elements a ◦ b
can be understood by any of three ways:

1. We perform the state-transfoming action a then the action b;
2. We apply the function b to a;
3. We construct a composition of functions a and b.

All those interpretations are compatible and fully interoperable. This is the main
peculiarity of group as a space of elements and actions.

CRL is a propositional logic. The primitives of reversive logic language are
propositional symbols A, B, C. . . , five connectives of classical logic (⊃, ≡, ∧,
∨, ¬) called here descriptive connectives, four constructive logical connectives
⇒,&,∼, E. E is null-ary, ¬ and ∼ are unary, all others are binary. We adopt the
following priority of binary connectives (form the weakest one up to strongest):
⇒ & ≡⊃ ∧∨ but we use parenthesis rather than priorities of ≡⊃ and ∧∨ for
the needs of easy reading. Let signature Σ be a nonempty set of propositional
symbols.

Classical connectives are read and understood in standard way.⇒ reads “can
be transformed”, A&B reads “sequential conjunction” or “A then B”2, ∼ A is
a preventive negation which can be read in different contexts as “undo A” or
“prevent A”.

Classical and constructive connectives are fully interoperable3 and can be
mixed arbitrarily. This is not the case in other constructive logics of restricted
constructions.

A formula A is descriptive if there are no constructive connectives. A formula
A is pure constructive if there are no classical connectives. Therefore proposi-
tional letters are both classical and pure constructive formulas.

1 Attention! This subset is not obliged to be a subgroup or stable in the sense of the
linear logic. This is a principal distinction from quantum logics and other algebraic
logics.

2 Of course we can read this “and” in the sense of famous Kleene’s examples: “Mary
married and born a child”, “Mary born a child and married”.

3 As it is called in modern programming.

Reversivity, Reversibility and Retractability 211

Our main semantic notion is “element a realizes a formula A in an interpre-
tation I” (I |= arA). If an interpretation is fixed we omit I.

, means �is equivalent by definition�

Definition 3. Interpretation of a signature Σ is a pair consisting of a group G
and of a function ζ : Σ → PG which maps propositional letters into power set of
G. A subset which is assigned to a propositional symbol A in I is denoted ζI(A).
If I is fixed we omit the index.

Definition 4. Realization of a formula in the interpretation I.

1. ar A , a ∈ ζ(A) where A is propositional letter and A ∈ Σ.
2. For all classical connectives their definitions are standard. E.g.

ar (A ∧B) , arA and ar B.
3. a r (A⇒ B) , ∀b ∈ G (b r A ⊃ b ◦ a r B). Thus a transforms solutions

of A into solutions of B.
4. a ◦ b r (A & B) , a r A ∧ b r B. A solution of B is applied to a solution

of A.
5. ar ∼ A , a−1 r A. a undoes a solution of A or prevents it.
6. ar E , a = e.

The set of realizations for A is denoted rA.

Whenever an interpretation I is mentioned it is assumed that I is an inter-
pretation for the signature of our formulas.

Definition 5. A is true in I if rA = G. A is valid if A is true in each I.
Validity of A is denoted |= A.
A is realizable in I if rA 6= ∅. A is totally realizable if A is realizable in each
interpretation I.

CRL diverges from other constructive logics. Say, both A&A⇒ A and A⇒
A&A are invalid. A is realizable iff ∼ A is but these formulas do not imply one
another. A ⇒ A is totally realizable but is true iff A or ¬A is true. Quantifiers
can be expressed here on propositional level. For example

∀A ≡ (A ∨ ¬A)⇒ A.

Here we have no constructive disjunction. If introduced it demands an �in-
terleaving product� of groups: a group of all products a1◦b1◦· · ·◦an◦bn where ai
are from realizations of A and bi are from one of B. This destroys finiteness and
means that conditionals demand increasing memory. Analyzing constructions of
Fredkin and Toffoli we see that it is.

So pure reversive programming language is to be without conditionals and
loops but from the very beginning functional one [2009A,2009Izh,2009VIZ,2010].
In practice we are to use irreversive operations (at least initializing and result
writing) and very restricted use of conditionals and loops. Of course there are
no recursions and reversive language is not Turing-complete. Atomic computing
elements for reversive computer are to be group-valued not binary.

212 N. N. Nepejvoda

A basic skeleton for reversive programming language can be the following.
Programs can be pure, conditional, cyclic and generic. Atomic actions are

pure. Compositions of pure programs are pure. Functions with pure body are
pure.

Pure programs are conditional. A construction

if P then t else r fi

is conditional if t and r are conditional. Compositions of conditional programs
and functions with conditional bodies are conditional.

Pure programs are cyclic. A construction

to N do t od

is cyclic if t is cyclic and N is a constant natural number. Compositions of cyclic
programs are cyclic. Functions with cyclic bodies are cyclic.

If pr is a program of each three above classes then -(pr) is a program of the
same class. Brackets around atoms and functions can be omitted.

Generic program is a composition of programs of types above. Reversive
module has a form
<definitions> <input> <generic program> <output>.
Forms of <definitions>, <input> and <output> parts we will not consider at
the moment.

Consider an example of program scheme with one type only and without
parameters of functions.

DEFINITIONS # All names used in a program are specified here

atom a1, a2, a3, a4, a5, a6, a7

predicate p1, p2

function f=(a1; if p1 then -a2; a3; a1 else a4; -a1 fi)

function g=(a1; to 51 do -a1 od)

function h=(a1; a3; -a1)

END DEFINITIONS

INPUT

initial values of all atoms and predicates are given here;

usually they are computed by external program

and transferred into

p1=¬(a4,a6) # if the domain of a predicate

or the value of an atom is fixed for all executions

it can be defined inside

...

END INPUT

-{to 14 do

-g; h; a7;

od; a2}; # we take an inverse of the whole program block

if p2 then -f; h else f fi

Reversivity, Reversibility and Retractability 213

f; -g; -a4; h;

OUTPUT # a substructure transferred to external processor

is defined here

...

END OUTPUT

Thus conditional parts cannot be used inside cyclic parts and vice versa.

The problem of data types for reversive programs is fine and interesting.
For example we cannot restrict ourselves by direct products of some standard
groups. Consider an example. Let in a conditional statement if P then t else r
fi functions t and r are computed dynamically. Then if G is a group of programs
and H is a group of data we are to represent the corresponding group as follows.
Its underlying set is Z2 ×G×G×H, and the group operation is

〈z, a1, b1, c1〉 ◦ 〈0, a2, b2, c2〉 = 〈z, a1 ◦ a2, b1 ◦ b2, c1 ◦ c2〉
〈z, a1, b1, c1〉 ◦ 〈1, a2, b2, c2〉 = 〈z ⊕ 1, a1 ◦ b2, b1 ◦ a2, c1 ◦ c2〉

(3)

Say, our program scheme with atoms from a group G needs much more com-
plex group to be executed. The technique of computation of this group during
translation of reversive program needs somewhat sophisticated algebraic tech-
nique and will be published in a separate paper. Here only note that

1. pure programs do not change a group;

2. each written loop adds an additive constant to the number of the group
elements;

3. each executed conditional (roughly speaking) doubles the number of elements
in a group.

During computation flow a group remains the same. Each change of a program
can change its group.

Therefore a practical reversive processor can be a mill which makes a large
amount of transformations with a low number of branches.

Each proof of A ⇒ B in a reversive constructive logic gives a pure pro-
gram to reach a state where B holds from any state with A. By the standard
technique of precondition computation described in Gries [1981Gr] we can ex-
tend specifications of pure segments up throughout our program by conditions
which hold in given points inside our programs. The whole process demands
a very sophisticated and original logical tools and was partially described in
[2009,2009Izh,2009VIZ].

So we see that realization of reversive programming demands a new theoret-
ical and practical paradigm. It is to compose non-standard logical and program-
ming tools together with algebraic ones into a single system. Underestimation of
complexity and misunderstanding of nature of this problem are two main sources
of 30-year stagnation in this domain, both in theory and in practice.

And last but not least. A reversive program must be reversive down to the
atomic constructions and here we cannot use modules written in other languages.

214 N. N. Nepejvoda

Moreover reversive modules also cannot be used by other reversive programs be-
cause input and output destroy reversivity. We can use only function definitions
given in a reversive language.

Applying our considerations of program retraction to the case of reversivity
we see that the reversive constructive logic provides an instrument of effective
retraction but this retraction is in its essence irreversive. Therefore error or
condition analysis for a reversive processor must be performed by traditional
one.

5 Conclusion

1. There are three substantially different but usually mixed notions of inverse
computability. They need different tools and use different logics.

2. A reversive computation demands full invertibility of actions. Only it can
grant minimization of heat pollution.

3. Reversive computability is not Turing-complete and a reversive processor
can work only as specialized unit of an usual (for example von Neumann)
computer.

4. Binary elements are maybe the worst choice for reversive computation. This
process demands group-based elements.

5. It is necessary to compute in a reversive program the algebraic structures of
data types and of the whole data space before program compilation because
each modification of programs changes all data structures in it. This algebraic
computation can be somewhat sophisticated.

6. A reversible computing (unrestricted undoing) can be implemented in tra-
ditional computers by traditional programming languages as a discipline of
programming.

7. A program retraction (computation of precondition which hold or fail for
the given result) can be made by means of almost traditional logic. During
retraction values and ghosts are interchanged.

References

1961. Landauer. R: Irreversibility and heat generation in the computing process. IBM
J. of R & D, 5, 183–191 (1961)

2001Bub. Bub, Jeffrey: Maxwell’s Demon and the Thermodynamics of Computation.
Stud. Hist. Phil. Mod. Phys., 32, No. 4, pp. 569—579 (2001)

2005Mar. Maroney, O J E: The (absence of a) relationship between thermodynamic
and logical reversibility. Studies In History and Philosophy of Science Part B: Studies
In History and Philosophy of Modern Physics. 36, Issue 2, 355-–374 (2005)

1973. Bennett, C. H.: Logical reversibility of computation. IBM J. of R & D, 17, no.
6, 525–532 (1973)

1980). Toffoli, T. Reversible Computing. MIT TR MIT/LCS/TM-151 (1980)
1982. Fredkin, E. and Toffoli, T.: Conservative logic. Int.l J.l of Theor.l Phys., 21, 219–

253 (1982)

Reversivity, Reversibility and Retractability 215

1992. Merkle, R.C.: Towards Practical Reversible Logic. Workshop on Phys. and
Comp., PhysComp ’92, October, Dallas Texas; IEEE press (1992)

1996. Merkle R. C.: Helical logic. Nanotechnology, 7, 325–339, (1996)
2003. Shende, V. V. Prasad, A.K. Markov, I. L., Hayes, J. P.: Synthesis of Reversible

Logic Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 22(6), 710–722 (2003)

2012L. Antoine Berut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul
Dillenschneider & Eric Lutz: Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature, March 2012.

2007. Yokoyama T., Glück R.: A reversible programming language and its invertible
self-interpreter. Partial Evaluation and Program manipulation. (2007)

2010Dij. Dijkstra, Edsger W.: A Discipline of Programming. Prentice Hall (2010)
1981Gr. Gries, D.: The Science of Programming. (1981)
2011NNN. Nepejvoda, N.N.: Óðîêè êîíñòðóêòèâèçìà.

Geidelberg: Lambert Academic Publishing, 98 pp. (2011)
2009. Nepejvoda, N.N.: Ðåâåðñèâíûå êîíñòðóêòèâíûå ëîãèêè. Ëîãè÷åñêèå èññëåäî-
âàíèÿ, 15, 150�168 (2009)

2009A. Íåïåéâîäà À. Í.: Î ñþðüåêòèâíîé èìïëèêàöèè â ðåâåðñèâíîé ëîãèêå. VI
Ñìèðíîâñêèå ÷òåíèÿ ïî ëîãèêå (2009)

2009Izh. Íåïåéâîäà À. Í. Ýëåìåíòû ðåâåðñèâíûõ âû÷èñëåíèé Óïðàâëåíèå áîëü-
øèìè ñèñòåìàìè òðóäû VI âñåðîññèéñêîé øêîëû-ñåìèíàðà ìîëîäûõ ó÷åíûõ,
Èæåâñê (2009))

2009VIZ. Íåïåéâîäà À. Í.: Î ðåâåðñèâíîé àëüòåðíàòèâå òðàäèöèîííûì âû÷èñëå-
íèÿì. Òðåõìåðíàÿ âèçóàëèçàöèÿ íàó÷íîé, òåõíè÷åñêîé è ñîöèàëüíîé ðåàëüíîñòè.
Òåõíîëîãèè âûñîêîïîëèãîíàëüíîãî ìîäåëèðîâàíèÿ : òðóäû Âòîðîé ìåæäóíàð.
êîíô., Èæåâñê (2010).)

2010. Íåïåéâîäà À. Í.: Ôóíêöèîíàëüíîå ïðîãðàììèðîâàíèå íàä ãðóïïîé. Ñèñòåì-
íûé àíàëèç è ñåìèîòè÷åñêîå ìîäåëèðîâàíèå: òðóäû ïåðâîé âñåðîññèéñêîé êîí-
ôåðåíöèè, 2011, Êàçàíü (2011)

1979. Çàñëàâñêèé È.Ä.: Ñèììåòðè÷åñêàÿ êîíñòðóêòèâíàÿ ëîãèêà. Åðåâàí, (1979)
NNN1982. Nepejvoda N. N. Logical approach to Programming. Logic, methodology

and philosophy of science VI. 109–122 (1982)
Mar1982. Martin-Löf P. Constructive mathematics and computer programming. Logic,

methodology and philosophy of science VI. 153–179 (1982)
1991. Nepejvoda N. N. A bridge between constructive logic and computer program-

ming. Theoretical Computer Science, 90 253–270 (1991)
1998. Nepejvoda N. N. Some analogues of partial and mixed computations in the

logical programming approach. New Generation Computing, 17,309–327 (1999)

	Origins of reversivity
	Retractability
	Reversibility
	Reversivity
	Conclusion

