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Introduction

The Problem

CoInductive Nat : Type :=

| Zero : Nat

| Succ : Nat -> Nat.

CoFixpoint plus (x : Nat) (y : Nat) : Nat :=

match x with

| Zero => y

| Succ x’ => Succ (plus x’ y)

end.

Require Import List.

CoFixpoint sumlen (xs : list Nat) : Nat :=

match xs with

| nil => Zero

| cons x xs’ => Succ (plus x (Succ (sumlen xs’)))

end.

FAIL!
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Introduction

The Problem

CoInductive Sierp : Set :=

| T : Sierp

| DS : Sierp -> Sierp.

CoInductive CoEq : Sierp -> Sierp -> Prop :=

| coeq_base : CoEq T T

| coeq_next : forall x y, CoEq x y -> CoEq (DS x) (DS y).

CoFixpoint join (x : Sierp) (y : Sierp) : Sierp :=

match x with

| T => T

| DS x’ => match y with

| T => T

| DS y’ => DS (join x’ y’)

end

end.

Definition exist (xs : Stream A) (P : A -> Sierp) : Sierp :=

match xs with

| Cons x xs’ => join (P x) (exist xs’ P)

end.
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Introduction

The Problem

data Bool : Set where

true : Bool

false : Bool

data Nat : Set where

zero : Nat

succ : Nat -> Nat

codata Stream (A : Set) : Set where

_::_ : A -> Stream A -> Stream A

le : Nat -> Nat -> Bool

le zero _ = true

le _ zero = false

le (succ x) (succ y) = le x y

pred : Nat -> Nat

pred zero = zero

pred (succ x) = x

f : Stream Nat -> Stream Nat

f (x :: y :: xs) = if (le x y)

then (x :: (f (y :: xs)))

else (f ((pred x) :: y :: xs))

FAIL!

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 5 / 36



Introduction

The Problem

data Bool : Set where

true : Bool

false : Bool

data Nat : Set where

zero : Nat

succ : Nat -> Nat

codata Stream (A : Set) : Set where

_::_ : A -> Stream A -> Stream A

le : Nat -> Nat -> Bool

le zero _ = true

le _ zero = false

le (succ x) (succ y) = le x y

pred : Nat -> Nat

pred zero = zero

pred (succ x) = x

f : Stream Nat -> Stream Nat

f (x :: y :: xs) = if (le x y)

then (x :: (f (y :: xs)))

else (f ((pred x) :: y :: xs))

FAIL!

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 5 / 36



Introduction

The Problem

What’s going on here?

The problem is that infinite datatypes are not ok unless you can show
that they are actually always going to do something and not sit
around computing nothing forever.

Agda, Coq etc. have amazing type systems that let you prove
virtually anything.

This means we have to be very careful to avoid proofs which are
vacuous.

The program

f :: forall A,A
f = f

is a problem.
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Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:

Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:

Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:

Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs

⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs ⇔ Programs

Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs ⇔ Programs
Propositions

⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Types

Types are an approach to demonstrating properties by giving evidence.

The Curry-Howard Correspondence keeps the specification and
programs tightly coupled.

I Curry-Howard says:
Proofs ⇔ Programs
Propositions ⇔ Types

Type checking is much easier* than theorem proving and you only
need to trust your type checker which reduces the size of the kernel of
trust. We don’t have to trust the method which generates the proofs.

* Except when it isn’t - undecidable type checking etc...

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 7 / 36



Introduction

Use supercompilation!

Program transformers can help type theories know when things are
equivalent.

They can also transform programs which are not type correct into
ones that are.

If we find a systematic way to justify our transformations we can mix
type theory and program transformation to correctly type more
programs.

Bisimulation relations can give us a uniform justification of proof
equivalence which leave the program transformation technique up to
the implementer as long as they supply the relation.
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Type Theory

Types

Contexts of free variables

Γ ` t : A

A program term

A type which the program satisfies
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Type Theory

Types

Antecedents

...

Γ1 ` t1 : A1
· · ·

...

Γn ` tn : An

Γ ` t : A

Consequent
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Type Theory

Modus Ponens

Implication

Proposition

...

A→ B

...

A

B
ImpElim

Consequent
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Type Theory

Modus Ponens - AKA: Function Application

Function

Proposition

...

Γ ` f : A→ B

...

A

B
ImpElim

Consequent
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Type Theory

Modus Ponens - AKA: Function Application

Function

Argument

...

Γ ` f : A→ B

...

Γ ` t : A

B
ImpElim

Consequent
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Type Theory

Modus Ponens - AKA: Function Application

Function

Argument

...

Γ ` f : A→ B

...

Γ ` t : A

Γ ` f t : B
ImpElim

Application
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Type Theory

Proof

We arrange proof as a tree with every step justified by rules.

Some rules can be terminal

· · · Γ1,m ` t1,m : A1,m

Γ1 ` t1 : A1
Rulei · · ·

· · · Γ1,l ` t1,l : A1,l

Γn ` tn : An
Rulej

Γ ` t : A
Rulek
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Type Theory

Infinite Proof

Might we want infinite proofs?

Infinite streams for instance...

` 1 : N
` 2 : N

...

` map (1+) nats : [N]
Scons

` nats : [N]
Scons
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Type Theory

Infinite Proof with a Finite Presentation

Infinite, or potentially infinite proofs are not unusual.

Functional programs with recursion make use of such proofs implicitly.

The finite presentation is usually achieved by way of a recursive type
rule.

f : A, Γ ` Body(f ) : A

Γ ` f : A
FunRule
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Type Theory

Recursive Function Rule

Two big problems here

You can get unsound proofs easily.

e.g. Body(ω) = ω

ω : A ` ω : A

ω : A, Γ ` Body(ω) : A

Γ ` ω : A
FunRule

You are stuck with the recursive form given by your recursive
functions.

This will restrict how we can transform proofs (programs!)
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Type Theory

Cyclic Proofs

Solution?

Cyclic Proof!

Gives finite presentations of infinite proofs.

Doesn’t privilege a particular recursive structure.

By some coincidence it looks just the result of a supercompiler.

We can transform the proof, retaining bisimilarity with our original
proof and introducing our own cycles where we like.*

*Provided we are careful to put in a condition which ensure
soundness.
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Type Theory

Cyclic Proofs

n : N ` n : N m : N ` m : N

case n′ of
0⇒ m
| S n′′ ⇒ S (plus n′′ m)

: N

n′ : N,m : N ` plus n′ m : N
n′ : N,m : N ` S (plus n′ m) : N

n : N,m : N ` case n of
0⇒ m
| S n′ ⇒ S (plus n′ m)

: N
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Type Theory

Cyclic Proofs

n : N ` n : N m : N ` m : N

case n′ of
0⇒ m
| S n′′ ⇒ S (plus n′′ m)

: N

n′ : N,m : N ` plus n′ m : N
n′ : N,m : N ` S (plus n′ m) : N

n : N,m : N ` case n of
0⇒ m
| S n′ ⇒ S (plus n′ m)

: N

θ := {(n′, n)}
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Type Theory

(Co)-Termination Requirements

Ultimately we want to know that our cyclic proofs do not allow
computations with no behaviour. (e.g. ω).

In order to avoid this with cyclic proof the proof formation rules are
not sufficient.

Something needs to be decreasing for every inductive cycle.

Some behaviour needs to be ensured for every coinductive cycle.

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 18 / 36



Type Theory

(Co)-Termination Requirements

Ultimately we want to know that our cyclic proofs do not allow
computations with no behaviour. (e.g. ω).

In order to avoid this with cyclic proof the proof formation rules are
not sufficient.

Something needs to be decreasing for every inductive cycle.

Some behaviour needs to be ensured for every coinductive cycle.

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 18 / 36



Type Theory

(Co)-Termination Requirements

Ultimately we want to know that our cyclic proofs do not allow
computations with no behaviour. (e.g. ω).

In order to avoid this with cyclic proof the proof formation rules are
not sufficient.

Something needs to be decreasing for every inductive cycle.

Some behaviour needs to be ensured for every coinductive cycle.

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 18 / 36



Type Theory

(Co)-Termination Requirements

Ultimately we want to know that our cyclic proofs do not allow
computations with no behaviour. (e.g. ω).

In order to avoid this with cyclic proof the proof formation rules are
not sufficient.

Something needs to be decreasing for every inductive cycle.

Some behaviour needs to be ensured for every coinductive cycle.

Gavin Mendel-Gleason Geoff Hamilton (2012) Development of the Productive Forces July, 2012 18 / 36



Type Theory

Inductive Requirements

Every cycle must have a structurally smaller term.

Every cycle returning to the same node must have the same
structrally smaller term.

Γ′ ` r : B
...

Γ′′ ` s : C
...

Γ ` t : A
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Type Theory

Coinductive Requirements

The path in every coinductive cycle is constrained.

By a path we mean which antecedents we choose to obtain a sequent
starting at some root.

The following path: AndIntro2, OrIntroL1, chooses the 2nd, and 1st
antecedents respectively.

C

A

(A ∨ B)
OrIntroL

C ∧ (A ∨ B)
AndIntro

A restriction on the form of paths ensures that we can not have
non-productive computation. That is, all terms will produce some
constructor eventually.
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Type Theory

Coinductive Requirements

The restriction is made up of two parts, accessible paths, and guarded
paths.

Definition (Admissible). A path is called admissible if the first
element c of the path p = c , p is one of the rule-index-pairs
OrIntroL1, OrIntroR1, AndIntro1, AndIntro2, AllIntro1, αIntro1,
ImpIntro1, OrElim2, OrElim3, AndElim2, AllElim1, Delta1 and p is an
admissible path.

Definition (Guardedness). A path is called guarded if it terminates at
a Pointer rule, with the sequent having a coinductive type and the
path can be partitioned such that p = p, [c], p where c is one of the
rule-index-pairs OrIntroL1, OrIntroR1, AndIntro1, AndIntro2, νIntro1,
ImpIntro1 which we will call guards and p and p are admissible paths.
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Program Transformation

Program Transformation and Cyclic Proof

Program transformations such as Deforestation and Supercompilation
exist naturally in the setting of cyclic proof.

I Decending into term structure is simply applying transformation
techniques to anticedents.

I Evaluation steps are always justified.

We should deem any transformation as appropriate if the resulting
term is bisimilar to the original proof.

I Information propagation.
I Simplification rules:

case case t of
x ⇒ r
| y ⇒ s

of

w ⇒ t
| v ⇒ u

∼ case t of
x ⇒ case r of

w ⇒ t
| v ⇒ u

| y ⇒ case s of
w ⇒ t
| v ⇒ u
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Program Transformation

Program Transformation and Cyclic Proof

Critically, bisimilar program transformation does not care about
non-termination, but it respects it!

We will neither eliminate nor introduce non-termination.

This is important because we want to establish that our programs
(co)-terminate later, after transformation.
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Program Transformation

Program Transformation

The program transformer is multi-result - we have a stream of
transformed programs.

The stream is filtered by the constraint on the syntax.

Since the stream is lazy we prune branches which will not meet our
syntactic restrictions as they are constructed.

The streams are implemented with the ω-Monad, a monad which
handles the book-keeping of manipulating (potentially) infinite
streams.
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Program Transformation

Success

mutual
sumlen sc : CoList CoNat → CoNat
sumlen sc [ ] = czero
sumlen sc (x :: xs) = csucc (aux x xs)

aux : CoNat → CoList CoNat → CoNat
aux czero xs = sumlen sc xs
aux (csucc x) xs = csucc (aux x xs)

Success!
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Program Transformation

Success?

Definition exist (xs : Stream A) (P : A -> Sierp) : Sierp :=

match xs with

| Cons x xs’ => join (P x) (exist xs’ P)

end.

FAIL!

Why? Need a result about the associativity of join.

But supercompilation can do this! Need to use the right
generalisation and supercompilation on args.

Justifiable only if the type theory internally supports bisimulation.
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Program Transformation

Future Work

A framework for manipulating a more practical programming language
(such as Haskell or Agda).

Extension to a type theory with explicit substition for bisimilar terms.

A system for the programmers to interactively transform productive
terms into syntactically productive terms by using substitution.
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Program Transformation

The End

The End
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Program Transformation

Bisimulation

To use program transformation with type theory we need justifications
that our program transformations are correct.

Bisimulations allow us to show equivalences even when we might have
infinite behaviours.

Relies on a coinductive relation between terms.

We can generate them in the process of program transformation.

If two terms s and t are bisimilar we write s ∼ t
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Program Transformation

Coinduction

With induction we want to describe a property over each constructor
assuming the sub-case.

e.g. the integers, prove P 0 ∧ P n→ P(n + 1), to get P n

With coinduction we want to describe a property over each destructor
assuming the super-case.

e.g. streams, prove P l → P (head l) ∧ P (tail l) to get P l
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Program Transformation

Parks’ Principle

Useful example of a coinductively defined relation

When are two infinite streams the same?

When every element is the
same...

l R l ′

if head l = head l ′

and tail l R tail l ′ assuming l R l ′
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Program Transformation

Simulation

Bisimulation is formed from two coinductively defined simulation relations:

s . t

∧ t . s

s . t says that whenever s
a−→ s ′ then t

a−→ t ′ and s ′ . t ′
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Program Transformation

Example Bisimulation

u
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Program Transformation

Term Transition Systems

Can we use this for a transition system for terms?

Yes!
We can look at Parks’ principle again, with l a stream of As, l : [A]

l l ′

h h′

t t ′

head head

tail tail
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Program Transformation

Term Transition Systems

How do we know which transition we need?

Use a structural operational semantics to define transitions.
Each transition corresponds with an experiment which we obtain from
the term language and evaluation relation.
Experiments consist of terms which will lead to a reduction.
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Use a structural operational semantics to define transitions.
Each transition corresponds with an experiment which we obtain from
the term language and evaluation relation.
Experiments consist of terms which will lead to a reduction.

Application [ ] c
Type Application [ ] A
Case Elimination case[ ] of { nil ⇒ t | (x : xs)⇒ s}
Pair Elimination split[ ] as (x , y) in s
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Program Transformation

Term Transition Systems

What about function terms?

Yes!

If f : A→ B

f ∼ g?

This approach retains extensionality. That is two functions are the
same if they are the same when called with the same arguments.
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