
Development of the Productive Forces

Gavin E. Mendel-Gleason1 and Geoff W. Hamilton2

1 School of Computing, Dublin City University ggleason@computing.dcu.ie
2 School of Computing, Dublin City University hamiltion@computing.dcu.ie

Abstract. Proofs involving infinite structures can use corecursive func-
tions as inhabitants of a corecursive type. Admissibility of such functions
in theorem provers such as Coq or Agda, requires that these functions are
productive. Typically this is proved by showing satisfaction of a guarded-
ness condition. The guardedness condition however is extremely restric-
tive and many programs which are in fact productive and therefore will
not compromise soundness are nonetheless rejected. Supercompilation
is a family of program transformations which retain program equiva-
lence. Using supercompilation we can take programs whose productivity
is suspected and transform them into programs for which guardedness is
syntactically apparent.

1 Introduction

The Curry-Howard correspondence lets us take advantage of a close correspon-
dence between programs and proofs. The idea is that inhabitation of a type
is given by demonstration of a type correct program having that type. In the
traditional Curry-Howard regime type inhabitation is given with terminating
programs. This requirement avoids the difficulty that non-terminating programs
might allow unsound propositions to be proved.

This was extended by Coquand [6] to include potentially infinite structures.
The notions of co-induction and co-recursion allow infinite structures and infinite
proofs to be introduced without loss of soundness.

In the Agda and Coq theorem provers, the guardedness condition is the con-
dition checked to ensure admissibility of coinductive programs. This condition
ensures that the function is productive in the sense that it will always produce
a new constructor finitely. The guardedness condition has the advantage of only
requiring a syntactic check on the form of the program and is a sufficient condi-
tion for productivity. However, it suffers from being highly restrictive and rejects
many programs which are in fact productive. Requiring guards is a rather rigid
approach to ensuring productivity.

The purpose of this paper is to suggest that theorem provers can use a notion
of pre-proofs[4], proofs for which the side conditions which ensure soundness
have not been demonstrated, which can be transformed into a genuine proof
using equational reasoning. The main idea is that, if a program is type-correct
after program transformation using equational reasoning, it was correct prior to

Development of the Productive Forces 185

transformation. This was the main idea behind the paper by Danielsson et al.
[7].

The approach has a number of advantages over the traditional syntactic
check or ad-hoc methods of extending the guardedness condition to some larger
class. The number of programs which might be accepted automatically can be
increased simply by using automated program transformers. All but one of the
examples given in this paper were found by way of the supercompilation program
transformation algorithm. The approach also allows one to keep the chain of
equational reasoning present, allowing an audit trail of correctness.

This paper is structured as follows. First we will present a number of moti-
vating examples. We will give a bird’s-eye view of supercompilation followed by a
description of cyclic proof and transformations in this framework. We will give a
demonstration of how one of the motivating examples can be transformed in this
framework. Finally we will end with some possibilities for future development.

2 Examples

In order to motivate program transformation as a means for showing type in-
habitation, we present a number of examples in the language Agda. First, we
would like to work with the natural numbers which include the point at infinity.
This we write as the codata declaration with the familiar constructors of the
Peano numbers. We also define the analogous codata for lists, allowing infinite
streams.

module Productive where

codata N∞ : Set where
czero : N∞
csucc : N∞ → N∞

codata CoList (A : Set) : Set where
[] : CoList A

:: :A→ CoList A→ CoList A

infixr 40 +
+ :N∞ → N∞ → N∞

czero+ y = y
(csucc x) + y = csucc (x + y)

sumlen : CoList N∞ → N∞
sumlen [] = czero
sumlen (x ::xs) = csucc (x + (sumlen xs))

When attempting to enter this program into a theorem prover, such as Coq
or Agda, the type checker will point out that this program does not meet the
guardedness condition. This is due to the fact that there is an intermediate ap-
plication (of +) which might consume any constructors which sumlen produces.
However, the program is in fact productive and no such problem occurs in prac-
tice. This becomes evident after supercompiling the above term, where we arrive
at the following transformed term:

186 G. E. Mendel-Gleason, G. W. Hamilton

mutual
sumlen sc : CoList N∞ → N∞
sumlen sc [] = czero
sumlen sc (x ::xs) = csucc (aux x xs)

aux : N∞ → CoList N∞ → N∞
aux czero xs = sumlen sc xs
aux (csucc x) xs = csucc (aux x xs)

This term will now be accepted by Agda’s type checker. We see that we have
basically unrolled the intermediate implication eliminations. We will look more
closely at this later in Section 4.

In the above example we managed to remove some intermediate applications
for two functions which were both productive. We can also find similar results
however by unrolling intermediate inductive steps. The following example, given
by Komendaskaya and Bertot [3], relies on this always eventually type behaviour.
That is, behaviour that will always be productive, eventually after some finite
process. Here the finite process is guaranteed by the inductive character of the
natural numbers.

data Bool : Set where
true :Bool
false :Bool

data N : Set where
zero : N
succ : N→ N

infix 5 if then else
if then else : {A : Set} → Bool→

A→ A→ A
if true then x else y = x
if false then x else y = y
infixr 40 ::
codata Stream (A : Set) : Set where

:: :A→ Stream A→ Stream A
le : N→ N→ Bool
le zero = true
le zero = false
le (succ x) (succ y) = le x y

pred : N→ N
pred zero = zero
pred (succ x) = x

f : Stream N→ Stream N
f (x ::y ::xs) = if (le x y)

then (x ::(f (y ::xs)))
else (f ((pred x)::y ::xs))

Development of the Productive Forces 187

Again we have the problem that the type checker is unable to accept f as
being productive as the else clause makes an unguarded call to f though the
function is productive as we structurally descend on the argument x which is
inductively defined. However, after supercompilation we arrive at the following
program.

mutual
f sc : Stream N→ Stream N
f sc (zero::y ::xs) = zero::(f sc (y ::xs))
f sc (succ x ::zero::xs) = g x xs
f sc (succ x ::succ y ::xs) with le x y
... | true = (succ x)::(f sc ((succ y)::xs))
... | false = h x y xs

g : N→ Stream N→ Stream N
g zero xs = zero::(f sc (zero::xs))
g (succ x) xs = g x xs

h : N→ N→ Stream N→ Stream N
h zero y xs = zero::(f sc ((succ y)::xs))
h (succ x) y xs with le x y
... | true = (succ x)::(f sc ((succ y)::xs))
... | false = h x y xs

Now we have a program which passes Agda’s type checker. The intermediate
computations have been turned into inductive loops and the coinductive function
now exhibits a guarded call.

With these motivating examples in hand, we would like to look a bit at the
method of program transformation which is used to produce these final programs
which are now acceptable by our type checker.

3 Language

The language we present is a functional programming language, which we will
call ΛF with a type system based on System F with recursive types. The use of
System F typing allows us to ensure that transitions can be found for any term.
Our term language will follow closely on the one used by Abel [2].

In Figure 3 we describe the syntax of the language. The set TyCtx describes
type variable contexts which holds the free type variables in a context. The set
Ctx describes variable contexts which holds information about free term vari-
ables, and what type they have. The empty context is denoted ·, and we extend
contexts with variables of a type, or a type variable using ∪. The contexts are
assumed to be sets.

The unit type is denoted 1 and is established as the type of the unit term
(). Functions types, which are the result of a term λx :A. t where t has type
B are given using A → B. The type of a type abstraction ΛX. t is given with
the syntax ∀X. A in which the type variable X may be present in the type A

188 G. E. Mendel-Gleason, G. W. Hamilton

Variables

Var 3 x, y, z Variables
TyVar 3 X,Y, Z Type Variables
Fun 3 f, g, h Function Symbols

Contexts

Ctx 3 Γ ::= · | Γ ∪ {x :A}
TyCtx 3 ∆ ::= · | ∆ ∪ {X}

Types

Ty 3 A,B,C ::= 1 | X | A→ B | ∀X.A | A+B | A×B | νX̂. A | µX̂. A

Terms

Tr 3 r, s, t ::= x | f | () | λx :A. t | ΛX. t | r s | r[A] | (t, s)
| left(t, A+B) | right(t, A+B)
| inν(t, A) | outν(t, A) | inµ(t, A) | outµ(t, A)
| case r of {x1 ⇒ s | x2 ⇒ t} | split r as (x1, x2) in s

Universal Type Variables

UV (∆ ∪ {X̂}) := UV (∆)
UV (∆ ∪ {X}) := {X} ∪UV (∆)

Type Formation

UV (∆) ` A type ∆ ` B type

∆ ` A→ B type

∆ ∪ {X̂} ` A type α ∈ {ν, µ}
∆ ` αX̂. A type

∆ ` A type ∆ ` B type ◦ ∈ {+, ×}
∆ ` A ◦B type ∆ ` 1 type

∆ ∪ {X̂} TyCtx

∆ ∪ {X̂} ` X̂ type

∆ ∪ {X} TyCtx

∆ ∪ {X} ` X type

∆ ∪ {X} ` A type

∆ ` ∀X. A type

Context Formation

· TyCtx
∆ TyCtx X 6∈ ∆
∆ ∪ {X} TyCtx

∆ ` · Ctx
∆ ` Γ Ctx x 6∈ dom(Γ) ∆ ` T type

∆ ` Γ ∪ {x :T} Ctx

Fig. 1. Language

Development of the Productive Forces 189

and the term t. Sum types allow a term of one of two types, A and B, to be
injected into a third type A+B. We can inject into this sum for terms of type A
using the left injection: left(t, A+B) or for terms of type B on the right using
right(s,A+B). The pair type A × B is introduced with a pairing term (s, t)
where s has type A and t has type B. We introduce inductive types µX̂. A
with the term inµ(t, µX̂. A). Similarly for coinductive types νX̂. A we introduce

the term inν(t, νX̂. A). Similarly each type (save for unit) is equiped with an
elimination term, whose meaning will be clear from the dynamic semantics.

Types are introduced by way of type formation rules such that a type A is
well formed if we can derive ∆ ` A type. These rules ensure that only types
which are strictly positive in µ and ν type variables are allowed, while universally
quanitifed variables are unrestricted. This is achieved by segregating the type
variables introduced using ν and µ using a hat above the type variable, X̂.

Term Substitution

x[x := t] ≡ t
x[y := t] ≡ x if x 6= y
f[x := t] ≡ f

(r s)[x := t] ≡ (r[x := t]) (s[x := t])
(λy :A. r)[x := t] ≡ λy :A. r[x := t]

Provided that λy :A. r is α-converted to use
a fresh variable if y ∈ {x} ∪ FV (t).

(ΛX. r)[x := t] ≡ ΛX. r[x := t]
inα(s,A)[x := t] ≡ inα(s[x := t], A)
outα(s,A)[x := t] ≡ outα(s[x := t], A)
()[x := t] ≡ ()
right(s,A)[x := t] ≡ right(s[x := t], A)
left(s,A)[x := t] ≡ left(s[x := t], A)
(s, u)[x := t] ≡ (s[x := t], u[x := t])
case r of {y ⇒ s | z ⇒ u}[x := t] ≡ case r[x := t] of {y ⇒ s[x := t] | z ⇒ u[x := t]}

Provided that λy :A. s or λz :A. u
are α-converted to use a fresh variable
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

split r as (y, z) in u[x := t] ≡ split r[x := t] as (y, z) in u[x := t]
Provided that λy :A. λz :A. u is
α-converted to use a fresh variable for y or z
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

Fig. 2. Term Substitution

We describe substitutions which use a function FV (t) to obtain the free type
and term variables from a term. We also choose free variables to be fresh, meaning
they are chosen from some denumerable set such that they are not present in a
given set of variables. A variable chosen in this way we will write as x = fresh(S)

190 G. E. Mendel-Gleason, G. W. Hamilton

Type Substitution on Terms

x[X := A] ≡ x
f[X := A] ≡ f

()[X := A] ≡ ()
(r s)[X := A] ≡ (r[X := A]) (s[X := A])
(r[A])[X := A] ≡ (r[X := A]) (A[X := A])
(λx :A. r[X := A] ≡ λx :A[X := A]. r[X := A]
inα(s,B)[X := A] ≡ inα(s[X := A], B[X := A])
outα(s,B)[X := A] ≡ outα(s[X := A], B[X := A])
right(s,B)[X := A] ≡ right(s[X := A], B[X := A])
left(s,B)[X := A] ≡ left(s[X := A], B[X := A])
(s, u)[X := A] ≡ (s[X := A], u[X := A])
(case r of {y ⇒ s | z ⇒ u})[X := A] ≡ case r[X := A] of

{ y ⇒ s[X := A]
| z ⇒ u[X := A]

(split r as (y, z) in u)[X := A] ≡ split r[X := A] as (y, z) in u[X := A]

Type Substitution on Types

X[X := A] ≡ A
X[Y := A] ≡ X if X 6= Y
1[X := A] ≡ 1

B + C[X := A] ≡ B[X := A] + C[X := A]
B × C[X := A] ≡ B[X := A]× C[X := A]
(B → C)[X := A] ≡ B[X := A]→ C[X := A]
(∀Y. B)[X := A] ≡ ∀Y. B[X := A]

Provided that (∀Y. B) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(ΛY. r)[X := A] ≡ ΛY. r[X := A]
Provided that (ΛY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(αY. r)[X := A] ≡ αY. r[X := A], α ∈ {ν, µ}
Provided that (αY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

Fig. 3. Type Substitution

Development of the Productive Forces 191

if it is fresh with respect to the set S. Substitutions of a single variable will be
written [X := A] or [x := t] for type and term variables respectively. The full
operational meaning of substitutions is given in Figure 2 and Figure 3.

Reduction Rules

(λx : A.r) s 1 r[x := s] (ΛX.r) A 1 r[X := A]

outα(inα(r, U), U) 1 r f δ Ω(f)

case left(r, A+B) of {x⇒ s | y ⇒ t} 1 s[x := r]

case right(r, A+B) of {x⇒ s | y ⇒ t} 1 t[y := r]

split (r, s) as (x, y) in t 1 t[x := r][y := s]

Structural Rules

r R r′

r Rs r′
r Rs r′

r s Rs r′ s
r Rs r′

r A Rs r′ A
r Rs r′

outα(r, U) Rs outα(r′, U)

r Rs r′
case r of {x⇒ s | y ⇒ t} Rs case r′ of {x⇒ s | y ⇒ t}

r Rs r′
split r as (x, y) in t Rs split r′ as (x, y) in t

Evaluation Relations

r n s ::= r s
1 s

r s ::= r s
δ s ∨ r n s

r R+ s ::= r R s ∨ (∃r′.r R r′ ∧ r′ R+ s)
r R∗ s ::= r = s ∨ r R+ s

Fig. 4. Evaluation

We define the evaluation relation in Figure 4. This relation is the usual
normal order evaluation relation. It is deterministic and so there is always a
unique redex. We take the transitive closure of the relation to be ∗.

We introduce recursive terms by way of function constants. Although it is
possible to encoded these directly in System F, it simplifies the presentation
to provide them explicitly. Function constants are drawn from a set Fun. We
couple our terms with a function Ω which associates a function constant f with
a term t, Ω(f) = t, where t may itself contain any function constants in the
domain of Ω. We make use of this function in the relation which allows us to
unfold recursively defined functions.

For a term t with type A in a context ∆;Γ we write ∆ ;Γ ` t : A. A type
derivation must be given using the rules given in Figure 5.

192 G. E. Mendel-Gleason, G. W. Hamilton

∆ ` Γ ∪ {x :A} Ctx
IVar

∆ ;Γ ∪ {x :A} ` x : A
I1

∆ ;Γ ` () : 1

∆ ∪ {X} ;Γ ` t : A
I∀

∆ ;Γ ` (ΛX. t) : ∀X. A
∆ ;Γ ` t : ∀X. A ∆ ` B type

E∀
∆ ;Γ ` t[B] : A[X := B]

∆ ;Γ ∪ {x :A} ` t : B
I→

∆ ;Γ ` (λx :A. t) : A→ B

∆ ;Γ ` r : A→ B ∆ ;Γ ` s : A
E→

∆ ;Γ ` (r s) : B

Γ ` Ω(f) : A
Iδ∆ ;Γ ` f : A

∆ ;Γ ` r : A ∆ ;Γ ` s : B
I×

∆ ;Γ ` (r, s) : (A×B)

∆ ;Γ ` t : A ∆ ` B type
I+L∆ ;Γ ` left(t, A+B) : (A+B)

∆ ;Γ ` t : B ∆ ` A type
I+R∆ ;Γ ` right(t, A+B) : (A+B)

∆ ;Γ ` t : αX̂. A α ∈ {µ, ν}
Eα

∆ ;Γ ` outα(t, αX̂. A) : A[X̂ := αX̂. A]

∆ ;Γ ` t : A[X̂ := αX̂. A] α ∈ {µ, ν}
Iα

∆ ;Γ ` inα(t, αX̂. A) : αX̂. A

∆ ;Γ ` r : A+B ∆ ;Γ ∪ {x :A} ` t : C ∆ ;Γ ∪ {y :B} ` s : C
E+

∆ ;Γ ` (case r of {x⇒ t | y ⇒ s}) : C

∆ ;Γ ` s : A×B ∆ ;Γ ∪ {x :A} ∪ {y :B} ` t : C
E×

∆ ;Γ ` (split s as (x, y) in t) : C

Fig. 5. System F Proof Rules

Development of the Productive Forces 193

Without further restrictions, this type system is unsound. First, the Delta
rule for function constants clearly allows non-termination given Ω(f) = f :
T . We will deal with this potentiality later when we describe cyclic proof in
Section 4.

In addition, we will need a concept of a one-hole context. This allows us to
describe terms which are embedded in a surrounding term. We write this as C[t]
when we wish to say that the term t has a surrounding context.

4 Cyclic Proof

Typically, in functional programming languages, type checking for defined func-
tions is done by use of a typing rule that assumes the type of the function and
proceeds to check the body. This is the familiar rule from programming lan-
guages such as Haskell [10] [15] [13]. An example of such a typing rule is as
follows:

∆ ;Γ ∪ {f :A→ B} ` Ω(f) : A→ B
FunRec

∆ ;Γ ` f : A→ B

Coupled with guardedness or structural recursion and positivity restrictions
on the form of recursive types to ensure (co)termination, this rule will be sound.
However, it is also opaque. Any transformation of this proof tree will be rigidly
expressed in terms of the original function declarations.

In order to allow more fluidity in the structure of our proof trees we introduce
a notion of a cyclic proof. Cyclicity can be introduced simply by allowing the
type rules to be a coinductive type (in the meta-logic) rather than an inductive
one. However, for us to produce the cycles we are interested in, we need to
add an additional term and typing rule which allows explicit substitutions, and
one derived rule which makes use of the fact that we identify all proofs under
the reduction relation as being equivalent. The explicit substitutions will
also require an additional evaluation rule which transforms them into computed
substitutions. Explicit substitutions can also be introduced at the level of type
substitutions, but these are not necessary for our examples.

The Conv, EΩ and the Iθ follow from theorems about the calculus which
can be established in the meta-logic and in fact we have a formal proof of these
theorems for the given calculus in Coq.

We will not prove general soundness conditions, but rely on prior work show-
ing that structural induction and the guardedness are sufficient conditions [9].
Once these conditions have been satisfied, we can assume the correctness of the
proof.

Definition 1 (Structural Ordering). A term t is said to be less in the struc-
tural ordering than a term s, or t <s s using the relation <s given by the
inductive definition in Figure 6.

Definition 2 (Structural Recursion). A derivation is said to be structurally
recursive if for every sequent used in a Iθ rule, there exists a privileged variable

194 G. E. Mendel-Gleason, G. W. Hamilton

Explicit Substitutions

t 〈x := s〉

Typing Rules

∆ ;Γ ∪ Γ ′ ` u : B ∆ ;Γ ∪ {x :B} ` t : A
Iθ

∆ ;Γ ∪ Γ ′ ` t 〈x := u〉 : A

∆ ;Γ ` t : A t ∗ s
Conv

∆ ;Γ ` s : A

∆ ;Γ ` C[Ω(f)] : A
EΩ

∆ ;Γ ` C[f] : A

Extended Evaluation

t 〈x := u〉 t[x := u]
t t′

t 〈x := u〉 t′ 〈x := u〉
Structural Ordering

case r of {x⇒ s | y ⇒ t}
x S r

case r of {x⇒ s | y ⇒ t}
y S r

split r as (x, y) in t

x S r
split r as (x, y) in t

y S r

outα(t, αX̂. A)

outα(t, αX̂. A) S t
<s:= S∗ Transitive closure of S

Fig. 6. Explicit Substitution and Structural Ordering

Development of the Productive Forces 195

x such that for all Iθ rules, with substitution σi, using that sequent we have that
x ∈ dom(σi) and σ(x) <s x.

It should be mentioned that there is nothing in particular needed for this
definition aside from some guarantee that we are well founded. As such this
represents a particular implementation strategy and we could very well have
used a more liberal approach. One such approach is size-change termination as
described by Neil Jones et al. in [11].

Similarly, we must produce a rule for coinductive types which ensures that all
terms of coinductive type are productive. We here develop a guardedness condi-
tion specific to our type theory of cyclic proofs. Essentially this condition ensures
we encounter an introduction of a constructor which can not be eliminated on
all coinductive cyclic paths. The only intermediate terms must reduce finitely
through eliminations of finite or inductively defined terms, ensuring that we will
not compute indefinitely prior to producing a constructor.

While structural recursion is focused on determining whether the arguments
of a recursive term are subterms of some previously destructured term, the dual
problem is of determining if a recursive term’s context ensures that the term
grows. This means we need ways of describing the surrounding context of a
term. However, the contexts we have developed thus far are structured in terms
of experiments. With coinductive terms we need exactly the opposite variety of
contexts, those surrounding terms which are not experiments.

The key important features of the contexts we are interested in turns out to
be whether or not they introduce constructors, and whether they are guaranteed
not to remove them. These properties are necessary in the construction of our
proof that guardedness leads to productivity.

We can describe the relevant features of the context by describing a path. This
path is a series of constructors that allows us to demonstrate which directions to
take down a proof tree to arive at a recurrence.

Definition 3 (Path). A path is a finite sequence of pairs of a proof rule from
Figure 5 and an index denoting which antecedent it decends from. This pair is
described as a rule-index-pair.

An example of such a path would be the following:

OrIntroL1,AndIntro2,ImpIntro1

This denotes the context:

left((λx : B.−, s), A)

With some unknown (and for the purpose of proving productivity, inconse-
quential) variable x, term s and types A and B.

With this in hand we can establish conditions for guardedness with recursive
definitions based on constraints on paths.

196 G. E. Mendel-Gleason, G. W. Hamilton

Definition 4 (Admissible). A path is called admissible if the first element c of
the path p = c, p′ is one of the rule-index-pairs OrIntroL1, OrIntroR1, AndIntro1,
AndIntro2, AllIntro1, αIntro1, ImpIntro1, OrElim2, OrElim3, AndElim2, AllElim1,
Delta1 and p′ is an admissible path.

Definition 5 (Guardedness). A path is called guarded if it terminates at a
Pointer rule, with the sequent having a coinductive type and the path can be par-
titioned such that p = p′, [c], p′′ where c is one of the rule-index-pairs OrIntroL1,
OrIntroR1, AndIntro1, AndIntro2, νIntro1, ImpIntro1 which we will call guards
and p′ and p′′ are admissible paths.

The idea behind the guardedness condition is that we have to be assured that
as we take a cyclic path we produce an Intro rule which will never be removed by
the reduction relation. The left hand-side of an elimination rule will never cause
the elimination of such an introduction and so is safe. However, the right hand
side of an elimination rule may in fact cause the removal of the introduction rule
when we use the evaluation relation.

5 Program Transformation

Supercompilation is a family of program transformation techniques. It essentially
consists of driving, information propagation, generalisation and folding.

Driving is simply the unfolding and elimination of cuts. Cut-elimination in-
volves the removal of all intermediate datastructures. This includes anything
that would be normalised by evaluation in a language like Coq or Agda, includ-
ing beta-elimination, case elimination or pair selection. Driving, as it removes
cuts from infinite proof objects, generates potentially infinite computations.

Information propagation is the use of meta-logical information about elimina-
tions such as case branches. For example, when a meta-variable is destructed in
a case branch, the particular de-structuring may be propagated into sub-terms.
This is achieved by an inversion on the typing derivation.

Folding is the search for recurrences in the driven program. A recurrence will
be an expression which is a variable renaming of a former expression. Essentially,
if a recurrence is found we can create a new recursive function having the same
body as the driven expression with a recursive call at the recurrence.

Generalisation may be used in order to find opportunities for folding. We
can abstract away arguments which would cause further driving and would not
allow us to fold.

Our notion of equivalence of proofs must be quite strict if it is to preserve
the operational behaviour of the program. The notion of equivalence we use here
is contextual equivalence.

Definition 6 (Contextual Equivalence). For all terms s, t and types A and
type derivations · ` s : A and · ` t : A, and given any experiment e such that
x : A ` e : B then we have that e[x := s] ⇓ and e[x := t] ⇓ then s v t. If s v t
and t v s then s is contextually equivalent to t or s ∼= t.

Development of the Productive Forces 197

In the examples, the relation between the original and transformed proofs
is simply either a compatible relation with the formation rules, or the term is
related up to beta-equivalence. In the case of unfolding, it’s clear that no real
change has taken place since the unfolded pre-proof just extends the prefix of
the potentially infinite pre-proof, and is identical by definition. The finite prefix
is merely a short hand for the infinite unfolding of the pre-proof.

Dealing with reduction under the evaluation relation is more subtle. In order
to establish equivalence here we need to show that if the term reduces, it reduces
to an outer-most term which will itself reduce when an experiment is applied.
This is essentially a head normal form, that is, a term whose outermost step will
not reduce in any context. This idea is essential to defining productivity, since
it is precisely the fact that we have done something irrevocable which gives us
productivity.

Folding is also somewhat complex as, in our case, we will require the use
of generalisation, which is essentially running the evaluation relation backwards
in order to find terms which will be equivalent under reduction, and cycles in
the proof which can lead to potential unsoundess. The key insight of this paper
is that in fact, unsoundess can not be introduced if the cycles themselves are
productive or inductive for coinduction and induction respectively.

Generally the program transformation technique itself is controlled by using
some additional termination method such as a depth bound or more popularly
the homeomorphic embedding. This however does not influence the correctness
of the outcome. If an algorithm in the supercompilation family terminates, the
final program is a faithful bisimulation of the original.

Since all of the examples given in this paper clearly follow the fold/unfold
generalise paradigm, and all examples are inductive/productive, the correctness
can be assumed. In a future work we hope to present the algorithm that was
used to find these examples in more detail, and to show that it will in general
produce contextually equivalent programs. We will see how these elements are
applied in practice by using these techniques to work with cyclic proofs.

5.1 Reduction

Previously we gave a bird’s-eye view of supercompilation as being a family of
program transformations composed of driving, generalisation and folding. Cyclic
proofs give us the tools necessary to justify folding in the context of types and
driving is simply the unfolding of a cyclic pre-proof.

In order to perform folding however, we need to be able to arrive at nodes
which are α-renamings of former nodes. In order to do this in general we need
to be able to generalise terms. We can, using generalisation, regenerate proofs
which simply make reference to recursive functions, by generalising to reproduce
α-renamings of the function bodies and folding. This ensures that we can produce
at least the proofs possible already using the original term.

For higher order functional languages, there are a potentially infinite num-
ber of generalisations of two terms, and the least general generalisation may
itself consist of many incomparable terms [14]. For this reason, some heuristic

198 G. E. Mendel-Gleason, G. W. Hamilton

approach needs to be applied in order to find appropriate generalisations. We
will not be concerned about the particular heuristic approach used to determine
generalisations as this is quite a complex subject, but only that it meet the con-
dition that the generalisation can be represented as an elimination rule in the
proof tree and that will regenerate the original proof tree under evaluation.

6 Example Revisited

With the notion of cyclic proof, we now have at our disposal the tools necessary
to transform pre-proofs into proofs. We will revisit the sumlen example given
as motivation for the present work and see how we can represent the transfor-
mations.

We take again an example using the co-natural numbers N∞ ≡ νX.1 + X
and potentially infinite lists [A] ≡ ΛA.νX.1 + (A × X). Here we take Ω to be
defined as:

Ω(zero) := in(left((),N))
Ω(plus) := λ x y : N .

case (out(x,N)) of

| z ⇒ ys
| n ⇒
fold(right(plus n y),N)

Ω(sumlen) := λ xs : [N] .

case (out(xs,[N])) of

| nil ⇒ zero

| p ⇒
split p as (n,xs′)
in in(right(plus n (sumlen xs′)),N)

We can now produce the type derivation by performing the successive steps
given explicitly in Figure . Here in the final step we have driven the proof tree
to the point that we can now reference two previous nodes. One of those is
labelled with a †, the other with a ∗. This final pre-proof is now a proof because
it satisfies the guardedness condition. We have taken the liberty of introducing

a an additional derived rule ConsJNK. It is merely a shorthand for the use of I+R
and Iν , together with a proof that these types admissible under the formation
rules.

We can then produce a residual program from the cyclic proof. This is simply
a mutually recursive (or letrec) function definition which makes any cycle into a
recursive call. The residual term will be essentially the one given in agda above.

7 Related Work

The present work uses a program transformation in the supercompilation family.
This was first described by Turchin [17] and later popularised by Sørensen, Glück

Development of the Productive Forces 199

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N · ; {x :N, xs : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N
· ; {x :N, xs : JNK} ` x+ (sumlen xs′) : N

ConsJNK
· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N

E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

· ;xs : JNK ` xs : JNK · ; ... ` czero : N

· ; {x :N, xs′ : JNK} ` case x of {czero⇒ sumlen xs′ | csucc x⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {x :N, xs′ : JNK} ` x+ (sumlen xs′) : N
ConsJNK

· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of {[]⇒ czero | x :: xs′ ⇒ csucc (x+ (sumlen xs′))} : N
IΩ

· ; {xs : JNK} ` sumlen xs : N

⇓

D :=
· ; {xs′ : JNK} ` xs′ : JNK

†
· ; {xs : JNK} ` sumlen xs : N

Iθ· ; {xs′ : JNK} ` sumlen xs 〈xs := xs′〉 : N
sumlen xs 〈xs := xs′〉 ∗

sumlen xs′
Conv· ; {xs′ : JNK} ` sumlen xs′ : N

E :=
· ; {xs′ : JNK} ` xs′ : N

∗
· ; {x :N, xs : JNK} ` csucc (x+ (sumlen xs))) : N

Iθ· ; {x :N, xs′ : JNK} ` (csucc (x+ (sumlen xs))) 〈xs := xs′〉 : N
(csucc (x+ (sumlen xs))) 〈xs := xs′〉 ∗

csucc (x+ (sumlen xs′))
Conv· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N

· ;xs : JNK ` xs : JNK · ; ... ` czero : N

· ; {x :N} ` x : N D E
E+

· ; {x :N, xs′ : JNK} ` case x of
{ czero⇒ sumlen xs′

| csucc x⇒ csucc (x+ (sumlen xs′))

: N

IΩ

· ; {x :N, xs′ : JNK} ` x+ (sumlen xs′) : N
ConsJNK ∗· ; {x :N, xs′ : JNK} ` csucc (x+ (sumlen xs′)) : N
E+

· ; {xs : JNK} ` case xs of
{ []⇒ czero
| x :: xs′ ⇒ csucc (x+ (sumlen xs′))

: N

IΩ †
· ; {xs : JNK} ` sumlen xs : N

Fig. 7. Sumlen Cyclic Proof

200 G. E. Mendel-Gleason, G. W. Hamilton

and Jones [16]. We essentially use the same algorithms with the addition of the
use of type information to guide folding.

The use of cylic proofs was developed by Brotherston [4]. We extend this work
by dealing also with coinductive types and make use of it in a Curry-Howard
settings.

The correspondence between cyclic proof and functional programs has pre-
viously been described by Robin Cockett [5]. His work also makes a distinction
between inductive and coinductive types. Our work differs in using super com-
pilation as a means of proving type inhabitation.

Various approaches to proving type inhabitation for coinductive types have
appeared in the literature. Bertot and Komendanskaya give a method in [3]. A
method is also given using sized types is given by Abel in [1]. The approach
in this paper differs in that we use transformation of the program rather than
reasoning about the side conditions.

8 Conclusion and Future Work

The use of program transformation techniques for proofs of type inhabitation
is attractive for a number of reasons. It gives us the ability to mix programs
which may or may not be type correct to arrive at programs which are provably
terminating. We can keep an audit trail of the reasoning by which the programs
were transformed. And we can admit a larger number of programs by transfor-
mation to a form which is syntactically correct, obviating the need for complex
arguments about termination behaviour. For these reasons we feel that this work
could be of value to theorem provers in the future.

To the best of the authors knowledge, no examples of a supercompilation al-
gorithm have yet been given for a dependently typed language. The authors hope
to extend the theory to dependent types in the future such that the algorithm
might be of assistance to theorem provers.

Currently work is being done on a complete automated proof of correctness
of a supercompilation algorithm for the term language described in this paper
in the proof assistant Coq. The cyclic proofs are represented using a coinductive
data-type, rather than the usual inductive description.

The technique as presented works well for many examples, however there are
some examples in which direct supercompilation is insufficient. The following
program tries to capture the notion of a semi-decidable existential functional
which takes a semi-decidable predicate over the type A. The usual way to write
this in a functional language is to use the Sierpinski type [8], the type of one
constructor. Here truth is represented with termination, and non-termination
gives rise to falsehood.

data S : Set where
T : S

However since languages such as Coq and Agda will not allow us to directly
represent non-termination, we will embed the Sierpinski type in the delay monad.

Development of the Productive Forces 201

codata Delay (A : Set) : Set where
now : A→ Delay A
later :Delay A→ Delay A

The clever reader might notice that this is in fact isomorphic to the co-
natural numbers and that join is simply the minimum of two potentially infinite
numbers.

join :Delay S → Delay S → Delay S
join (now T) x = now T
join x (now T) = now T
join (later x) (later y) = later (join x y)

ex : {A : Set} → (A→ Delay S)→
Stream A→ Delay S

ex p (x ::xs) = join (p x) (ex p xs)

By unfolding join and ex we eventually arrive at a term:

-- join x’ (join (p x) (ex p xs))

This term is a repetition of the original body of ex, with p x abstracted, pro-
vided that join is associative. Unfortunately, using direct supercompilation, we
are unable to derive a type correct term automatically. However, using ideas pre-
sented by Klyutchnikov and Romanenko [12], the technique might be extended
in such a way to provide an automated solution for this example as well. Using
the fact that the recurrence is contextually equivalent, we can fold the proof to
obtain the following program, which is productive, and admissible into Agda.

mutual
ex trans : {A : Set} →

(A→ Delay S)→ Stream A→
Delay S

ex trans p (x ::xs) = later (j (p x) p xs)

j : {A : Set} →
Delay S → (A→ Delay S)→
Stream A→ Delay S

j (now T) p = now T
j (later n) p (x ::xs) = later (j (join n (p x)) p xs)

References

1. Andreas Abel. Termination checking with types. Technical report, Institut fr
Informatik, Ludwigs-Maximilians-Universitt Mnchen, 2002.

2. Andreas Abel. Typed Applicative Structures and Normalization by Evaluation for
System Fω. In Erich Grdel and Reinhard Kahle, editors, CSL, volume 5771 of
Lecture Notes in Computer Science, pages 40–54. Springer, 2009.

202 G. E. Mendel-Gleason, G. W. Hamilton

3. Yves Bertot and Ekaterina Komendantskaya. Inductive and Coinductive Com-
ponents of Corecursive Functions in Coq. Electron. Notes Theor. Comput. Sci.,
203(5):25–47, 2008.

4. James Brotherston. Cyclic Proofs for First-Order Logic with Inductive Definitions.
In B. Beckert, editor, Automated Reasoning with Analytic Tableaux and Related
Methods: Proceedings of TABLEAUX 2005, volume 3702 of LNAI, pages 78–92.
Springer-Verlag, 2005.

5. J. Robin B. Cockett. Deforestation, program transformation, and cut-elimination.
Electr. Notes Theor. Comput. Sci., 44(1), 2001.

6. Thierry Coquand. Infinite objects in type theory. In TYPES 93: Proceedings of the
international workshop on Types for proofs and programs, pages 62–78, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

7. Nils A. Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Fast and
loose reasoning is morally correct. In POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
volume 41, pages 206–217, New York, NY, USA, January 2006. ACM.

8. M. H. Escardo. Synthetic topology of data types and classical spaces. ENTCS,
Elsevier, 87:21–156, 2004.

9. Eduardo Gimnez. Structural Recursive Definitions in Type Theory. In ICALP
98: Proceedings of the 25th International Colloquium on Automata, Languages and
Programming, pages 397–408, London, UK, 1998. Springer-Verlag.

10. Andrew D. Gordon. Bisimilarity as a theory of functional programming. Theor.
Comput. Sci., 228(1-2):5–47, 1999.

11. Neil D. Jones. Program termination analysis by size-change graphs (abstract). In
IJCAR, pages 1–4, 2001.

12. Ilya Klyuchnikov and Sergei Romanenko. Proving the Equivalence of Higher-Order
Terms by Means of Supercompilation. In Perspectives of Systems Informatics,
volume 5947, pages 193–205. Springer, 2009.

13. Simon L. Peyton Jones and David R. Lester. Implementing functional languages.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

14. Frank Pfenning. Unification and anti-unification in the calculus of constructions .
In Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science
(LICS 1991), pages 74–85. IEEE Computer Society Press, July 1991.

15. Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

16. Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A Positive Supercom-
piler. Journal of Functional Programming, 6(6):811–838, 1996.

17. Valentin F. Turchin. The concept of a supercompiler. ACM Trans. Program. Lang.
Syst., 8(3):292–325, 1986.

	Introduction
	Examples
	Language
	Cyclic Proof
	Program Transformation
	Reduction

	Example Revisited
	Related Work
	Conclusion and Future Work

