A Metacomputation Toolkit for a Subset of F#
and Its Application To Software Testing
Towards Metacomputation for the Masses

Dimitur Krustev
IGE+XAO Balkan

IGE}XAO

6 July 2012 / META 2012

Dimitur Krustev F# Metacomputation Toolkit

Driving and Tabulation inside Visual Studio®

g ey

File Edit View Project Build Debug Tools Window Help
el S a | # L

O b ar

¢ =) B E\Dev\FSharp\FsPrree\FsPrTree\bin\Debug\FsPrires.exe
let sample_BinTree () =
begin
[~] let e = <@ fun t —>

3.Node <__6 . Enptylree, Enptylre
let size = treeSize t — pty pty

let height = treeHeight t
let bl = natlE size (NSucc(NSucc(NSucc(NZero))))
b2 = natLE height (NSucc(NSucc(NZero)))
if boolAnd bl b2 then Some (size, height) else None @:
initialConf (expr2closed e)
//|> ptTabulateDF 650 1000000
|> ptTabulateID l@e 1000080
|> seq.filter (fun ((*_,*) subst, ce) -»
match ce with
| CECon(c, _) when c = str2cname "Some" -> true
| _ -> false)
|> Seq.truncate 108
//|> seq.map (fun (i, s, ce) -» (s, ce))
|> tabastap
|> fun x -> printfn "%a" x

(TupleZ <NSucc {NSucc <NZero>>,NSucc ¢

t_BA. Node <{__3,EmptyTree,EmptyTree)>
(Tuple2 {NZero.NZero>>. [map [{(t_@. Enm

Dimitur Krustev F# Metacomputation Tool

Outline

@ Introduction
@ Supercompilation C Metacomputation
@ Making Metacomputation (More) Practical
@ Sample Application — Equivalence-partitioning Tests

e Program Tabulation for a HO FL
@ F# — Subset, Code Quotations
@ Driving, Optimizations
@ Program Tabulation
@ Tabulation Limitations

e Application to Testing, Possible Extensions
@ Equivalence Partitioning by Program Tabulation
@ Partition Testing — Another Example
@ Possible Extensions

Dimitur Krustev F# Metacomputation Toolkit

Introduction Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Supercompilation C Metacomputation

@ Supercompilation — currently most popular
metacomputation technique

@ Other powerful techniques exist (neighborhood analysis,
neighborhood testing, program tabulation, program
inversion)

@ ...but not so well-known = no practical applications
developed

Dimitur Krustev F# Metacomputation Toolkit

Introduction Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Supercompilation C Metacomputation

@ Supercompilation — currently most popular
metacomputatlon technique

ftp:/ftp.botik.ru/pt proj TSG
2 http://botik.ru/pub/local/scp/refal5/refal5.html Refal
3. htips haskell.org/r Haskell subset
4. X haskell isprime Haskell subset
5. http://hackage.haskell.org/package/supero Haskell subset
6. htip: dsic.u Curry
7 - ecs.soton.ac »_Download/ Prolog
8. http://web.archive.org/web/20050819015639/http://www.dina.kvl.dk/ jesper/CASE/ Haskell subset
9. http://www.evil-wire.org/jacobian/supercompiler.igz Prolog

Java subset
Haskell subset
Haskell subset
Haskell subset
Haskell subset
Haskell subset
)030102.zip 0 FP subset

10. http:/www.supercompilers.ru/
11. https: //glthub com/batterseapower/chsc
12. ¥ ib.

13. https://github.comyilya-klyuchnikov/sc-mini
14. https://github.com/jasonreich/FliterSC

15, hitpsy/github.comispsc

16. ites.google.

@ Other powerful techniques exist (neighborhood analysis,
neighborhood testing, program tabulation, program
inversion)

1. ftpi//ftp.botik.rt appnd; TSG
2. http Jwww.botik. ruf xsg/
3.

XS
ta-haskell Haskell subset

_but not so well-known = no practical applications
developed

imitur Krustev F# Metacomputation Toolkit

Intr ion) _
troductio Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Making Metacomputation (More) Practical

@ Existing metacomputation implementations
e small special languages
e no tool support (IDE, debugger)
e Why F#?
e Simple functional core (language in the ML family)
o Relatively Popular
@ created/supported by Microsoft (.NET language)
@ open-source (runs on Mono as well)
e Good Tools (Visual Studio, SharpDevelop, ...)
e Built-in support for writing meta-programs
@ code quotations
@ parsing, type inference, de-sugaring — handled by the F#
compiler

Dimitur Krustev F# Metacomputation Toolkit

Intr ion) _
troductio Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Equivalence-partitioning Tests

@ Equivalence partitioning:
e define an equivalence relation on the input domain
@ ...which partitions the domain into a (finite) number of
equivalence classes
e select just one test from each equivalence class
@ Motivation:
o if partitioning is chosen well
e then the program under test will behave “in the same way
for all data points in a given equivalence class
e hence it suffices to test on a single data point from each
class

Dimitur Krustev F# Metacomputation Toolkit

Intr ion) _
troductio Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Example — Tests for Binary Trees

type BinTree<'T> =
| EmptyTree | Node of 'T * BinTree<'T> * BinTree<’'T>
[<ReflectedDefinition>]
let rec treeSize t = match t with
| EmptyTree -> NZero
| Node(_, 1, r) ->
NSucc (natAdd (treeSize 1) (treeSize r))

<@ fun t ->
let size = treeSize t
let height = treeHeight t
let bl = natLE size (NSucc(NSucc(NSucc(NZero))))
let b2 = natLE height (NSucc(NSucc(NZero)))
if boolAnd bl b2 then Some (size, height) else None @>

Dimitur Krustev F# Metacomputation Toolkit

Intr ion) _
troductio Supercompilation C Metacomputation

Making Metacomputation (More) Practical
Sample Application — Equivalence-partitioning Tests

Example — Results

[(Some (Tuple2 (NSucc (NSucc (NSucc (NZero))),
NSucc (NSucc (NZero)))),
[map [(t_0, Node (__3,Node (__6,EmptyTree,EmptyTree),
Node (__9,EmptyTree,EmptyTree)))11);

(Some (Tuple2 (NSucc (NSucc (NZero)),
NSucc (NSucc (NZero))))
[map [(t_0, Node (__3,
Node (__6,EmptyTree,EmptyTree),EmptyTree))];
map [(t_0, Node (__3,EmptyTree,
Node (__6,EmptyTree,EmptyTree)))11);
-]

’

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation
Tabulation Limitations

F# Code Quotations

@ Similar in spirit to MetaML and Template Haskell
@ Give access to ASTs of selected code fragments

o [<ReflectedDefinition>] makes the AST of a
top-level definition accessible (the definition is still compiled
as well)

@ <@ ... @ returns the AST of the enclosed (syntactically
complete) code fragment, instead of evaluating it

@ AST can be processed like a normal algebraic data type

match e with

| Var(var) -> ..

| Appllcatlon(el e2) -> ...
| Lambda(v, el) -> ...

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation

Tabulation Limitations

F# Subset

type Exp =
| EVar of VName
| EApp of Exp * Exp
| ELam of BindPattern x Exp
| ELet of VName x Exp * Exp
| ELetRec of (VName * Exp) list * Exp
| ECon of CName x Exp list
| ECase of Exp * (Pattern x Exp) list

@ higher-order!

@ tuples, union types, records (de-sugared to tuples)

@ full support for let- and letrec-expressions

@ NO: destructive updates, OOP (classes, inheritance, ...)

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation

Tabulation Limitations

Driving Step Results

@ DSDone — no more driving possible — make a leaf in the
process tree

@ DSTransient of ’'Conf — deterministic static reduction
performed

@ DSBranch of ’ContrHead * (’Contr x 'Conf) list
— match-expression scrutinizing a variable — leads to a
branching node in the tree

@ DSDecompose of 'Conf list x (’Conf list->’'Conf)
— “decomposition” node — several sub-cases possible:

e non-nullary constructor

e lambda-expression (fun x -> ...)

o f xy ..., where fis afree variable

e match f XYy ... with ... where fis a free variable

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation
Tabulation Limitations

Configuration Representation — Closures

@ Configurations: context + closure-based expression
representation (explicit environments)
e easier, transparent treatment of let-expressions
e easier, transparent treatment of letrec-expressions!!
e less worries about variable capture/freshness

type ClosedExp =
| CEVar of VName x Env<ClosedExp>
| CEClosure of BindPattern x Exp * Env<ClosedExp>
| CEApp of ClosedExp * ClosedExp
| CECon of CName * ClosedExp list
| CECase of Exp x CaseAlts * Env<ClosedExp>

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Configuration Representation — Optimizations

@ Need to optimize to achieve acceptable (memory-related)
performance
e delay conversion between closure-based and standard
expression representations whenever possible (hoping that
some conversions may cancel each other)
@ accept both kinds of expression representations in closure
environments
e limited form of environment pruning (when making a
closure from a variable, skip environment bindings until one
for this variable found)

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Program Tabulation — Definition

@ Key initial step in the URA technique for program inversion
@ Reconstruct the input-output relation of the program
@ on a subset of the data domain D;; € D
as a possibly infinite table (D)),), (D?) &), ...
where D,.(,’;) form a partition of Dj,
and f; are expressions representing functions Df,’,') —D

Also: computation on each d € Df,? must take the same
path in the perfect process tree of the program

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Program Tabulation — Classic Approach

@ Algorithm outline:
e build and traverse a (perfect) process tree of the program
e when passing through a branch node, collect contractions
in each branch
e when reaching a leaf, its configuration is f;, and the
composition of contractions along the way is an encoding of
Dy
@ No transient or decomposition nodes considered
@ Transient nodes: easy — just skip them

@ Decomposition nodes?

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Decomposition Node Treatment

@ Classic approach: breadth-first process tree traversal —
complete, BUT:

e memory-hungry
e not clear how to treat decomposition nodes

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation

Tabulation Limitations

Decomposition Node Treatment

@ Classic approach: breadth-first process tree traversal —
complete, BUT:
e memory-hungry
e not clear how to treat decomposition nodes

@ lterative deepening — less memory-hungry alternative,
easier to treat decomposition nodes:

o tabulate each subtree of decomposition node, resulting in a
table tab; (finite, because traversal is depth-limited!)
@ construct the Cartesian product of all tab;

o from each product element (D), £,),..., (D" £,)) build

in > in >
table entry for decomposition node:

(D ... D) C(fy,. .. f))

n >

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Tabulation Restrictions — HO Results

@ Decomposition nodes:

e non-nullary constructors — OK!
e lambda-expressions — ?
e calls to unknown function (free variable) — ?

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Tabulation Restrictions — HO Results

@ Decomposition nodes:

e non-nullary constructors — OK!
e lambda-expressions — ?
e calls to unknown function (free variable) — ?

@ HO functions in result

<@ fun b ->
if b then (b, fun x -> boolNot x)
else (boolNot b, fun x -> x) @

e We must recover a finite, closed function body from a
(potentially infinite) process tree (we need a supercompiler)
@ interesting use cases?

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Tabulation Restrictions — HO Inputs

@ HO functions in inputs

<@ fun p xs -> listFilter p (listFilter p xs) @

o Tabulation must deal with match p x with ..., where
p is free

@ some sort of higher-order unification needed?

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Tabulation Restrictions — HO Inputs

@ HO functions in inputs

<@ fun p xs -> listFilter p (listFilter p xs) @

o Tabulation must deal with match p x with ..., where
p is free

@ some sort of higher-order unification needed?
@ instead of adding higher-order unification to tabulation . ..

@ ...we can make a meta-system transition:

e higher-order input = first-order function encoding
e calls to HO parameter = calls to an encoding interpreter

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations

Program Tabulation
Tabulation Limitations

Avoiding Restrictions — Example

module NatToXRepr =
type Stream<’a> = | SCons of ’'a * Lazy<Stream<’a>>
[<ReflectedDefinition>]
let rec streamNth n (SCons(x, xsl)) =
match n with
| NZero -> x
| NSucc(nl) -> streamNth nl (xsl.Force())
[<ReflectedDefinition>]
let eval tbl n = streamNth n tbl

<@ fun p_tbl xs ->
let p = NatToXRepr.eval p_tbl
listFilter p (listFilter p xs) @

Dimitur Krustev F# Metacomputation Toolkit

F# — Subset, Code Quotations
Program Tabulation for a HO FL Driving, Optimizations
Program Tabulation

Tabulation Limitations

Avoiding Restrictions — Result

map
[(Cons (NSucc (NZero),Empty),
[map
[(p_tbl1_0, SCons (__6,SCons (True,__7)));
(xs_1, Cons (NSucc (NZero),Empty))11);
(Cons (NZero,Empty),
[map [(p_tbl_0, SCons (True,__4));
(xs_1, Cons (NZero,Empty))11);
.1

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions Possible Extensions

Using Tabulation for Equivalence Partitioning

@ Recall main idea of equivalence partitioning — build a finite
partition of the input domain: Dy U D> U ---U D, = D,
Din Dj =0
@ We can specify such a partition by a function f: D — X
where X = {xq, X2, ..., Xp} is finite (with small number of
elements):
(4] D/::{d€D| f(d):Xi}
@ If fis coded in our F# subset, we can use program
tabulation on f to build the partition:
e Tab(f,D) = (D;,f), (D5, f), ...

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions Possible Extensions

Using Tabulation for Equivalence Partitioning (cont.)

@ Assume f is “reasonably” defined:
e all f; are constant functions (f;(d) = x; for some j)
e there is a finite prefix of the table (of length n), such that
{fi(dy), b(ab), ..., fa(dn)} = X (where d; € D; are arbitrary)
@ We can then obtain our partition of the input domain:
o Di =Dy | f(dk) = xi,dk € D,k € {1,...,n}}
@ When partition is defined, selecting actual tests from each
equivalence class is (usually) a simple task (fill arbitrary
well-typed values in place of free variables)

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Application to Testing, Possible Extensions Partlt.lon ESEI = AEHie? (SENHE
Possible Extensions

Another Example: Well-typed STLC Terms

type Ty = Tiota | Tarr of Ty * Ty
type Exp = V of Nat | A of Exp x Exp | L of Ty x Exp
[<ReflectedDefinition>]
let rec typeOf (tenv: Ty list) (e: Exp)
match e with
| V.n -> listNth n tenv
| A(el, e2) ->
match typeOf tenv el, typeOf tenv e2 with
| Some (Tarr(tll, t12)), Some t2
when tyEq t1l t2 -> Some t12
| -, - -> None
| L(ty, el) ->
match typeOf (ty::tenv) el with
| Some tyl -> Some (Tarr(ty, tyl))
| None -> None

: Ty option =

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions Possible Extensions

Well-typed STLC Terms — Tabulation Query

<@ fun tenv e ->

let condl = natEq (LCSample.lamCount e) NZero

let appc = LCSample.appCount e

let cond2 natLE (NSucc(NSucc(NZero))) appc

let cond3 natLE appc (NSucc(NSucc(NSucc(NZero))))

if boolAnd condl (boolAnd cond2 cond3) then
match LCSample.typeOf tenv e with
| None -> false
| = -> true

else false @>

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions Possible Extensions

Well-typed STLC Terms — Results

[(e_1, A (V (NZero),A (V (NZero),V (NSucc (NZero)))));
(tenv_0, Cons (Tarr (Tiota,Tiota),Cons (Tiota,__14)))]
[(e_1, A (V (NSucc (NZero)),
A (V (NSucc (NZero)),V (NZero))));
(tenv_0, Cons (Tiota,Cons (Tarr (Tiota,Tiota),__12)))]
[(e_1, A (A (V (NSucc (NZero)),V (NZero)),V (NZero)));
(tenv_0, Cons (Tiota,
Cons (Tarr (Tiota,Tarr (Tiota,__16)),_-12)))]
[(e_1, A (V (NZero),A (V (NZero),
A (V (NZero),V (NSucc (NZero))))));
(tenv_0, Cons (Tarr (Tiota,Tiota),Cons (Tiota,__17)))]

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions e Y e o

Toolkit Improvements

@ Make the toolkit even more user-friendly
e extend toolkit library of standard types and operations
(binary-arithmetic integers, maps, sets, ...)
e extend built-in conversions from/to standard F# types
(especially int)
@ Make the toolkit faster (current space usage reasonably
good already)
e speed up driving?
@ byte-code-based driving?
@ parallelization?
@ prune process tree branches?
o faster treatment of decomposition nodes?

Dimitur Krustev F# Metacomputation Toolkit

Equivalence Partitioning by Program Tabulation
Partition Testing — Another Example

Application to Testing, Possible Extensions e Y e o

Toolkit Extensions

@ Add a supercompiler
e many potential practical applications (property verification,

o full treatment of higher-order functions inside tabulation
results
@ Neighborhood analyzer
@ Neighborhood testing
e Potentially very useful in practice!

@ property-based test generation
]

e Possible problem: performance
@ neighborhood testing requires 2 levels of interpretation

Dimitur Krustev F# Metacomputation Toolkit

Summary

Summary

@ A practical implementation of metacomputation techniques
for a large subset of F#

o first implementation of program tabulation for a HO FL
@ With a practical application: generating
equivalence-partitioning tests

@ Interesting optimization tricks (especially w.r.t. space
usage)

@ Outlook
e Make toolkit even more easier to use (e.g. special support
for numbers)

e Further optimizations (especially time of driving, tabulation)
e Implement other practically useful metacomputation
techniques (neighborhood testing?)

Dimitur Krustev F# Metacomputation Toolkit

	Introduction
	Supercompilation Metacomputation
	Making Metacomputation (More) Practical
	Sample Application – Equivalence-partitioning Tests

	Program Tabulation for a HO FL
	F# – Subset, Code Quotations
	Driving, Optimizations
	Program Tabulation
	Tabulation Limitations

	Application to Testing, Possible Extensions
	Equivalence Partitioning by Program Tabulation
	Partition Testing – Another Example
	Possible Extensions

