
Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

A Metacomputation Toolkit for a Subset of F#
and Its Application To Software Testing

Towards Metacomputation for the Masses

Dimitur Krustev

IGE+XAO Balkan

6 July 2012 / META 2012

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Driving and Tabulation inside Visual Studio R©

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Outline

1 Introduction
Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

2 Program Tabulation for a HO FL
F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

3 Application to Testing, Possible Extensions
Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Supercompilation (Metacomputation

Supercompilation – currently most popular
metacomputation technique

1. ftp://ftp.botik.ru/pub/local/Sergei.Abramov/Scp-project TSG
2. http://botik.ru/pub/local/scp/refal5/refal5.html Refal
3. http://community.haskell.org/˜ndm/supero/ Haskell subset
4. http://hackage.haskell.org/package/optimusprime Haskell subset
5. http://hackage.haskell.org/package/supero Haskell subset
6. http://users.dsic.upv.es/grupos/elp/peval/ Curry
7. http://users.ecs.soton.ac.uk/mal/systems/ecce_Download/ Prolog
8. http://web.archive.org/web/20050819015639/http://www.dina.kvl.dk/˜jesper/CASE/ Haskell subset
9. http://www.evil-wire.org/˜jacobian/supercompiler.tgz Prolog

10. http://www.supercompilers.ru/ Java subset
11. https://github.com/batterseapower/chsc Haskell subset
12. https://github.com/ilya-klyuchnikov/hosc Haskell subset
13. https://github.com/ilya-klyuchnikov/sc-mini Haskell subset
14. https://github.com/jasonreich/FliterSC Haskell subset
15. https://github.com/spsc Haskell subset
16. https://sites.google.com/site/dkrustev/Home/publications/fpsc20030102.zip?attredirects=0 FP subset

Other powerful techniques exist (neighborhood analysis,
neighborhood testing, program tabulation, program
inversion)

1. ftp://ftp.botik.ru/pub/local/Sergei.Abramov/book.appndx TSG
2. http://www.botik.ru/˜xsg/ XSG
3. https://github.com/ilya-klyuchnikov/sll-meta-haskell Haskell subset

. . . but not so well-known⇒ no practical applications
developed

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Supercompilation (Metacomputation

Supercompilation – currently most popular
metacomputation technique

1. ftp://ftp.botik.ru/pub/local/Sergei.Abramov/Scp-project TSG
2. http://botik.ru/pub/local/scp/refal5/refal5.html Refal
3. http://community.haskell.org/˜ndm/supero/ Haskell subset
4. http://hackage.haskell.org/package/optimusprime Haskell subset
5. http://hackage.haskell.org/package/supero Haskell subset
6. http://users.dsic.upv.es/grupos/elp/peval/ Curry
7. http://users.ecs.soton.ac.uk/mal/systems/ecce_Download/ Prolog
8. http://web.archive.org/web/20050819015639/http://www.dina.kvl.dk/˜jesper/CASE/ Haskell subset
9. http://www.evil-wire.org/˜jacobian/supercompiler.tgz Prolog

10. http://www.supercompilers.ru/ Java subset
11. https://github.com/batterseapower/chsc Haskell subset
12. https://github.com/ilya-klyuchnikov/hosc Haskell subset
13. https://github.com/ilya-klyuchnikov/sc-mini Haskell subset
14. https://github.com/jasonreich/FliterSC Haskell subset
15. https://github.com/spsc Haskell subset
16. https://sites.google.com/site/dkrustev/Home/publications/fpsc20030102.zip?attredirects=0 FP subset

Other powerful techniques exist (neighborhood analysis,
neighborhood testing, program tabulation, program
inversion)

1. ftp://ftp.botik.ru/pub/local/Sergei.Abramov/book.appndx TSG
2. http://www.botik.ru/˜xsg/ XSG
3. https://github.com/ilya-klyuchnikov/sll-meta-haskell Haskell subset

. . . but not so well-known⇒ no practical applications
developed

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Making Metacomputation (More) Practical

Existing metacomputation implementations
small special languages
no tool support (IDE, debugger)

Why F#?
Simple functional core (language in the ML family)
Relatively Popular

created/supported by Microsoft (.NET language)
open-source (runs on Mono as well)

Good Tools (Visual Studio, SharpDevelop, . . .)
Built-in support for writing meta-programs

code quotations
parsing, type inference, de-sugaring – handled by the F#
compiler

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Equivalence-partitioning Tests

Equivalence partitioning:
define an equivalence relation on the input domain
. . . which partitions the domain into a (finite) number of
equivalence classes
select just one test from each equivalence class

Motivation:
if partitioning is chosen well
then the program under test will behave “in the same way”
for all data points in a given equivalence class
hence it suffices to test on a single data point from each
class

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Example – Tests for Binary Trees

type BinTree<’T> =
| EmptyTree | Node of ’T * BinTree<’T> * BinTree<’T>

[<ReflectedDefinition>]
let rec treeSize t = match t with
| EmptyTree -> NZero
| Node(_, l, r) ->

NSucc (natAdd (treeSize l) (treeSize r))

<@ fun t ->
let size = treeSize t
let height = treeHeight t
let b1 = natLE size (NSucc(NSucc(NSucc(NZero))))
let b2 = natLE height (NSucc(NSucc(NZero)))
if boolAnd b1 b2 then Some (size, height) else None @>

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Supercompilation (Metacomputation
Making Metacomputation (More) Practical
Sample Application – Equivalence-partitioning Tests

Example – Results

[(Some (Tuple2 (NSucc (NSucc (NSucc (NZero))),
NSucc (NSucc (NZero)))),
[map [(t_0, Node (__3,Node (__6,EmptyTree,EmptyTree),
Node (__9,EmptyTree,EmptyTree)))]]);

(Some (Tuple2 (NSucc (NSucc (NZero)),
NSucc (NSucc (NZero)))),
[map [(t_0, Node (__3,
Node (__6,EmptyTree,EmptyTree),EmptyTree))];
map [(t_0, Node (__3,EmptyTree,
Node (__6,EmptyTree,EmptyTree)))]]);

...]

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

F# Code Quotations

Similar in spirit to MetaML and Template Haskell
Give access to ASTs of selected code fragments

[<ReflectedDefinition>] makes the AST of a
top-level definition accessible (the definition is still compiled
as well)
<@ ... @> returns the AST of the enclosed (syntactically
complete) code fragment, instead of evaluating it
AST can be processed like a normal algebraic data type

match e with
| Var(var) -> ...
| Application(e1, e2) -> ...
| Lambda(v, e1) -> ...
...

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

F# Subset

type Exp =
| EVar of VName
| EApp of Exp * Exp
| ELam of BindPattern * Exp
| ELet of VName * Exp * Exp
| ELetRec of (VName * Exp) list * Exp
| ECon of CName * Exp list
| ECase of Exp * (Pattern * Exp) list

higher-order!
tuples, union types, records (de-sugared to tuples)
full support for let- and letrec-expressions
NO: destructive updates, OOP (classes, inheritance, . . .)

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Driving Step Results

DSDone – no more driving possible – make a leaf in the
process tree
DSTransient of ’Conf – deterministic static reduction
performed
DSBranch of ’ContrHead * (’Contr * ’Conf) list
– match-expression scrutinizing a variable – leads to a
branching node in the tree
DSDecompose of ’Conf list * (’Conf list->’Conf)
– “decomposition” node – several sub-cases possible:

non-nullary constructor
lambda-expression (fun x -> ...)
f x y ..., where f is a free variable
match f x y ... with ..., where f is a free variable

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Configuration Representation – Closures

Configurations: context + closure-based expression
representation (explicit environments)

easier, transparent treatment of let-expressions
easier, transparent treatment of letrec-expressions!!
less worries about variable capture/freshness

type ClosedExp =
| CEVar of VName * Env<ClosedExp>
| CEClosure of BindPattern * Exp * Env<ClosedExp>
| CEApp of ClosedExp * ClosedExp
| CECon of CName * ClosedExp list
| CECase of Exp * CaseAlts * Env<ClosedExp>

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Configuration Representation – Optimizations

Need to optimize to achieve acceptable (memory-related)
performance

delay conversion between closure-based and standard
expression representations whenever possible (hoping that
some conversions may cancel each other)

accept both kinds of expression representations in closure
environments

limited form of environment pruning (when making a
closure from a variable, skip environment bindings until one
for this variable found)

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Program Tabulation – Definition

Key initial step in the URA technique for program inversion
Reconstruct the input-output relation of the program

on a subset of the data domain Din ⊆ D
as a possibly infinite table (D(1)

in , f1), (D
(2)
in , f2), . . .

where D(i)
in form a partition of Din

and fi are expressions representing functions D(i)
in → D

Also: computation on each d ∈ D(i)
in must take the same

path in the perfect process tree of the program

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Program Tabulation – Classic Approach

Algorithm outline:
build and traverse a (perfect) process tree of the program
when passing through a branch node, collect contractions
in each branch
when reaching a leaf, its configuration is fi , and the
composition of contractions along the way is an encoding of
D(i)

in

No transient or decomposition nodes considered
Transient nodes: easy – just skip them
Decomposition nodes?

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Decomposition Node Treatment

Classic approach: breadth-first process tree traversal –
complete, BUT:

memory-hungry
not clear how to treat decomposition nodes

Iterative deepening – less memory-hungry alternative,
easier to treat decomposition nodes:

tabulate each subtree of decomposition node, resulting in a
table tabi (finite, because traversal is depth-limited!)
construct the Cartesian product of all tabi

from each product element ((D(i1)
in , fi1), . . . , (D

(in)
in , fin)) build

table entry for decomposition node:
(D(i1)

in ∩ · · · ∩ D(in)
in ,C(fi1 , . . . , fin))

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Decomposition Node Treatment

Classic approach: breadth-first process tree traversal –
complete, BUT:

memory-hungry
not clear how to treat decomposition nodes

Iterative deepening – less memory-hungry alternative,
easier to treat decomposition nodes:

tabulate each subtree of decomposition node, resulting in a
table tabi (finite, because traversal is depth-limited!)
construct the Cartesian product of all tabi

from each product element ((D(i1)
in , fi1), . . . , (D

(in)
in , fin)) build

table entry for decomposition node:
(D(i1)

in ∩ · · · ∩ D(in)
in ,C(fi1 , . . . , fin))

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Tabulation Restrictions – HO Results

Decomposition nodes:
non-nullary constructors – OK!
lambda-expressions – ?
calls to unknown function (free variable) – ?

HO functions in result

<@ fun b ->
if b then (b, fun x -> boolNot x)
else (boolNot b, fun x -> x) @>

We must recover a finite, closed function body from a
(potentially infinite) process tree (we need a supercompiler)
interesting use cases?

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Tabulation Restrictions – HO Results

Decomposition nodes:
non-nullary constructors – OK!
lambda-expressions – ?
calls to unknown function (free variable) – ?

HO functions in result

<@ fun b ->
if b then (b, fun x -> boolNot x)
else (boolNot b, fun x -> x) @>

We must recover a finite, closed function body from a
(potentially infinite) process tree (we need a supercompiler)
interesting use cases?

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Tabulation Restrictions – HO Inputs

HO functions in inputs

<@ fun p xs -> listFilter p (listFilter p xs) @>

Tabulation must deal with match p x with ..., where
p is free

some sort of higher-order unification needed?

instead of adding higher-order unification to tabulation . . .
. . . we can make a meta-system transition:

higher-order input⇒ first-order function encoding
calls to HO parameter⇒ calls to an encoding interpreter

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Tabulation Restrictions – HO Inputs

HO functions in inputs

<@ fun p xs -> listFilter p (listFilter p xs) @>

Tabulation must deal with match p x with ..., where
p is free

some sort of higher-order unification needed?

instead of adding higher-order unification to tabulation . . .
. . . we can make a meta-system transition:

higher-order input⇒ first-order function encoding
calls to HO parameter⇒ calls to an encoding interpreter

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Avoiding Restrictions – Example

module NatToXRepr =
type Stream<’a> = | SCons of ’a * Lazy<Stream<’a>>
[<ReflectedDefinition>]
let rec streamNth n (SCons(x, xs1)) =
match n with
| NZero -> x
| NSucc(n1) -> streamNth n1 (xs1.Force())

[<ReflectedDefinition>]
let eval tbl n = streamNth n tbl

<@ fun p_tbl xs ->
let p = NatToXRepr.eval p_tbl
listFilter p (listFilter p xs) @>

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

F# – Subset, Code Quotations
Driving, Optimizations
Program Tabulation
Tabulation Limitations

Avoiding Restrictions – Result

map
[(Cons (NSucc (NZero),Empty),
[map

[(p_tbl_0, SCons (__6,SCons (True,__7)));
(xs_1, Cons (NSucc (NZero),Empty))]]);

(Cons (NZero,Empty),
[map [(p_tbl_0, SCons (True,__4));

(xs_1, Cons (NZero,Empty))]]);
...]

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Using Tabulation for Equivalence Partitioning

Recall main idea of equivalence partitioning – build a finite
partition of the input domain: D1 ∪ D2 ∪ · · · ∪ Dn = D,
Di ∩ Dj = ∅
We can specify such a partition by a function f : D → X
where X = {x1, x2, . . . , xn} is finite (with small number of
elements):

Di := {d ∈ D | f (d) = xi}
If f is coded in our F# subset, we can use program
tabulation on f to build the partition:

Tab(f ,D) = (D′
1, f1), (D

′
2, f2), . . .

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Using Tabulation for Equivalence Partitioning (cont.)

Assume f is “reasonably” defined:
all fi are constant functions (fi(d) = xj for some j)
there is a finite prefix of the table (of length n), such that
{f1(d1), f2(d2), . . . , fn(dn)} = X (where di ∈ D′

i are arbitrary)
We can then obtain our partition of the input domain:

Di :=
⋃
{D′

k | fk (dk) = xi ,dk ∈ D′
k , k ∈ {1, . . . ,n}}

When partition is defined, selecting actual tests from each
equivalence class is (usually) a simple task (fill arbitrary
well-typed values in place of free variables)

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Another Example: Well-typed STLC Terms

type Ty = Tiota | Tarr of Ty * Ty
type Exp = V of Nat | A of Exp * Exp | L of Ty * Exp
[<ReflectedDefinition>]
let rec typeOf (tenv: Ty list) (e: Exp) : Ty option =
match e with
| V n -> listNth n tenv
| A(e1, e2) ->
match typeOf tenv e1, typeOf tenv e2 with
| Some (Tarr(t11, t12)), Some t2

when tyEq t11 t2 -> Some t12
| _, _ -> None

| L(ty, e1) ->
match typeOf (ty::tenv) e1 with
| Some ty1 -> Some (Tarr(ty, ty1))
| None -> None

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Well-typed STLC Terms – Tabulation Query

<@ fun tenv e ->
let cond1 = natEq (LCSample.lamCount e) NZero
let appc = LCSample.appCount e
let cond2 = natLE (NSucc(NSucc(NZero))) appc
let cond3 = natLE appc (NSucc(NSucc(NSucc(NZero))))
if boolAnd cond1 (boolAnd cond2 cond3) then
match LCSample.typeOf tenv e with
| None -> false
| _ -> true

else false @>

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Well-typed STLC Terms – Results

[(e_1, A (V (NZero),A (V (NZero),V (NSucc (NZero)))));
(tenv_0, Cons (Tarr (Tiota,Tiota),Cons (Tiota,__14)))]
[(e_1, A (V (NSucc (NZero)),

A (V (NSucc (NZero)),V (NZero))));
(tenv_0, Cons (Tiota,Cons (Tarr (Tiota,Tiota),__12)))]
[(e_1, A (A (V (NSucc (NZero)),V (NZero)),V (NZero)));
(tenv_0, Cons (Tiota,
Cons (Tarr (Tiota,Tarr (Tiota,__16)),__12)))]

...
[(e_1, A (V (NZero),A (V (NZero),

A (V (NZero),V (NSucc (NZero))))));
(tenv_0, Cons (Tarr (Tiota,Tiota),Cons (Tiota,__17)))]
...

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Toolkit Improvements

Make the toolkit even more user-friendly
extend toolkit library of standard types and operations
(binary-arithmetic integers, maps, sets, . . .)
extend built-in conversions from/to standard F# types
(especially int)

Make the toolkit faster (current space usage reasonably
good already)

speed up driving?
byte-code-based driving?
parallelization?

prune process tree branches?
faster treatment of decomposition nodes?

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Equivalence Partitioning by Program Tabulation
Partition Testing – Another Example
Possible Extensions

Toolkit Extensions

Add a supercompiler
many potential practical applications (property verification,
. . .)
full treatment of higher-order functions inside tabulation
results

Neighborhood analyzer
Neighborhood testing

Potentially very useful in practice!
property-based test generation
. . .

Possible problem: performance
neighborhood testing requires 2 levels of interpretation

Dimitur Krustev F# Metacomputation Toolkit

Introduction
Program Tabulation for a HO FL

Application to Testing, Possible Extensions
Summary

Summary

A practical implementation of metacomputation techniques
for a large subset of F#

first implementation of program tabulation for a HO FL

With a practical application: generating
equivalence-partitioning tests
Interesting optimization tricks (especially w.r.t. space
usage)

Outlook
Make toolkit even more easier to use (e.g. special support
for numbers)
Further optimizations (especially time of driving, tabulation)
Implement other practically useful metacomputation
techniques (neighborhood testing?)

Dimitur Krustev F# Metacomputation Toolkit

	Introduction
	Supercompilation Metacomputation
	Making Metacomputation (More) Practical
	Sample Application – Equivalence-partitioning Tests

	Program Tabulation for a HO FL
	F# – Subset, Code Quotations
	Driving, Optimizations
	Program Tabulation
	Tabulation Limitations

	Application to Testing, Possible Extensions
	Equivalence Partitioning by Program Tabulation
	Partition Testing – Another Example
	Possible Extensions

