A Metacomputation Toolkit for a Subset of F#
and Its Application To Software Testing
Towards Metacomputation for the Masses

Dimitur Krustev

IGE+XAO Balkan

6 July 2012 / META 2012
Driving and Tabulation inside Visual Studio®

```
let sample_BinTree () =
  begin
    let e = @ fun t ->
      let size = treeSize t
      let height = treeHeight t
      let b1 = natLE size (NSucc(NSucc(NSucc(NZero)))))
      let b2 = natLE height (NSucc(NSucc(NZero)))
      if boolAnd b1 b2 then Some (size, height) else None @
    initialConf (expr2closed e)
  end
```

```
map [Some (Tuple2 (NSucc (NSucc (NSucc (NZero))))
  map [t_0, Node <_3, Node <_6, EmptyTree, EmptyTree]]),
  map [t_0, Node <_3, EmptyTree, Node <_6, EmptyTree]),
  map [t_0, Node <_3, EmptyTree, Node <_6, EmptyTree])]
```

```
E:\Dev\FSharp\FsPrTree\FsPrTree\bin\Debug\FsPrTree.exe
```
Outline

1. Introduction
 - Supercompilation ⊆ Metacomputation
 - Making Metacomputation (More) Practical
 - Sample Application – Equivalence-partitioning Tests

2. Program Tabulation for a HO FL
 - F# – Subset, Code Quotations
 - Driving, Optimizations
 - Program Tabulation
 - Tabulation Limitations

3. Application to Testing, Possible Extensions
 - Equivalence Partitioning by Program Tabulation
 - Partition Testing – Another Example
 - Possible Extensions
Supercompilation ⊊ Metacomputation

Supercompilation – currently most popular metacomputation technique

7. http://users.ecs.soton.ac.uk/mal/systems/ecce_Download/ Prolog
11. https://github.com/batterseapower/chsc Haskell subset
15. https://github.com/spsc Haskell subset

Other powerful techniques exist (neighborhood analysis, neighborhood testing, program tabulation, program inversion)

…but not so well-known ⇒ no practical applications developed
Supercompilation – currently most popular metacomputation technique

7. http://users.ecs.soton.ac.uk/ml/systems/ecce_Download/
15. https://github.com/spsc

 Other powerful techniques exist (neighborhood analysis, neighborhood testing, program tabulation, program inversion)

 ...but not so well-known ⇒ no practical applications developed
Making Metacomputation (More) Practical

- Existing metacomputation implementations
 - small special languages
 - no tool support (IDE, debugger)

- Why F#?
 - Simple functional core (language in the ML family)
 - Relatively Popular
 - created/supported by Microsoft (.NET language)
 - open-source (runs on Mono as well)
 - Good Tools (Visual Studio, SharpDevelop, . . .)
 - Built-in support for writing meta-programs
 - code quotations
 - parsing, type inference, de-sugaring – handled by the F# compiler
Equivalence-partitioning Tests

- **Equivalence partitioning:**
 - define an equivalence relation on the input domain
 - ... which partitions the domain into a (finite) number of equivalence classes
 - select just one test from each equivalence class

- **Motivation:**
 - if partitioning is chosen well
 - then the program under test will behave “in the same way” for all data points in a given equivalence class
 - hence it suffices to test on a single data point from each class
Example – Tests for Binary Trees

```
type BinTree<'T> =
    | EmptyTree | Node of 'T * BinTree<'T> * BinTree<'T>
[[<ReflectedDefinition>]]
let rec treeSize t = match t with
    | EmptyTree -> NZero
    | Node(_, l, r) ->
        NSucc (natAdd (treeSize l) (treeSize r))
```

```
<@ fun t ->
    let size = treeSize t
    let height = treeHeight t
    let b1 = natLE size (NSucc(NSucc(NSucc(NZero)))))
    let b2 = natLE height (NSucc(NSucc(NZero)))
    if boolAnd b1 b2 then Some (size, height) else None @>
```
Example – Results

```
[(Some (Tuple2 (NSucc (NSucc (NSucc (NZero)))),
   NSucc (NSucc (NZero)))),
  map [((t_0, Node (__3,Node (__6,EmptyTree,EmptyTree),
     Node (__9,EmptyTree,EmptyTree)))])]];

(Some (Tuple2 (NSucc (NSucc (NZero)));
   NSucc (NSucc (NZero))));
  map [((t_0, Node (__3,
     Node (__6,EmptyTree,EmptyTree),EmptyTree))]);
  map [((t_0, Node (__3,EmptyTree,
     Node (__6,EmptyTree,EmptyTree)))])];
...
```

Dimitur Krustev

F# Metacomputation Toolkit
F# Code Quotations

- Similar in spirit to MetaML and Template Haskell
- Give access to ASTs of selected code fragments
 - `[@<ReflectedDefinition>]` makes the AST of a top-level definition accessible (the definition is still compiled as well)
 - `<@ ... @>` returns the AST of the enclosed (syntactically complete) code fragment, instead of evaluating it
 - AST can be processed like a normal algebraic data type

```
match e with
| Var(var)  -> ...
| Application(e1, e2)  -> ...
| Lambda(v, e1)  -> ...
```

F# Subset

```fsharp
type Exp =
    | EVar of VName
    | EApp of Exp * Exp
    | ELam of BindPattern * Exp
    | ELet of VName * Exp * Exp
    | ELetRec of (VName * Exp) list * Exp
    | ECon of CName * Exp list
    | ECase of Exp * (Pattern * Exp) list
```

- higher-order!
- tuples, union types, records (de-sugared to tuples)
- full support for let- and letrec-expressions
- NO: destructive updates, OOP (classes, inheritance, ...)

Dimitur Krustev

F# Metacomputation Toolkit
Driving Step Results

- **DSDone** – no more driving possible – make a leaf in the process tree
- **DSTransient of ’Conf** – deterministic static reduction performed
- **DSBranch of ’ContrHead * (’Contr * ’Conf) list** – match-expression scrutinizing a variable – leads to a branching node in the tree
- **DSDecompose of ’Conf list * (’Conf list->’Conf)** – “decomposition” node – several sub-cases possible:
 - non-nullary constructor
 - lambda-expression *(fun x -> ...)*
 - f x y ..., where f is a free variable
 - match f x y ... with ..., where f is a free variable
Configuration Representation – Closures

- Configurations: context + closure-based expression representation (explicit environments)
 - easier, transparent treatment of let-expressions
 - easier, transparent treatment of letrec-expressions!!
 - less worries about variable capture/freshness

```fsharp
type ClosedExp =
| CEVar of VName * Env<ClosedExp>
| CEClosure of BindPattern * Exp * Env<ClosedExp>
| CEApp of ClosedExp * ClosedExp
| CECon of CName * ClosedExp list
| CECase of Exp * CaseAlts * Env<ClosedExp>
```
Configuration Representation – Optimizations

- Need to optimize to achieve acceptable (memory-related) performance
 - delay conversion between closure-based and standard expression representations whenever possible (hoping that some conversions may cancel each other)
 - accept both kinds of expression representations in closure environments
 - limited form of environment pruning (when making a closure from a variable, skip environment bindings until one for this variable found)
Program Tabulation – Definition

- Key initial step in the URA technique for program inversion
- Reconstruct the input-output relation of the program on a subset of the data domain $D_{in} \subseteq D$
 - as a possibly infinite table $(D_{in}^{(1)}, f_1), (D_{in}^{(2)}, f_2), \ldots$
 - where $D_{in}^{(i)}$ form a partition of D_{in}
 - and f_i are expressions representing functions $D_{in}^{(i)} \rightarrow D$
- Also: computation on each $d \in D_{in}^{(i)}$ must take the same path in the perfect process tree of the program
Program Tabulation – Classic Approach

- Algorithm outline:
 - build and traverse a (perfect) process tree of the program
 - when passing through a branch node, collect contractions in each branch
 - when reaching a leaf, its configuration is \(f_i \), and the composition of contractions along the way is an encoding of \(D_{in}^{(i)} \)
 - No transient or decomposition nodes considered
 - Transient nodes: easy – just skip them
 - Decomposition nodes?

Dimitur Krustev
F# Metacomputation Toolkit
Decomposition Node Treatment

- Classic approach: breadth-first process tree traversal – complete, BUT:
 - memory-hungry
 - not clear how to treat decomposition nodes

- Iterative deepening – less memory-hungry alternative, easier to treat decomposition nodes:
 - tabulate each subtree of decomposition node, resulting in a table \(\text{tab}_i \) (finite, because traversal is depth-limited!)
 - construct the Cartesian product of all \(\text{tab}_i \)
 - from each product element \(((D_{in}^{(i_1)}, f_{i_1}), \ldots, (D_{in}^{(i_n)}, f_{i_n})) \) build table entry for decomposition node:
 \[
 (D_{in}^{(i_1)} \cap \cdots \cap D_{in}^{(i_n)}, C(f_{i_1}, \ldots, f_{i_n}))
 \]
Decomposition Node Treatment

- Classic approach: breadth-first process tree traversal – complete, BUT:
 - memory-hungry
 - not clear how to treat decomposition nodes
- Iterative deepening – less memory-hungry alternative, easier to treat decomposition nodes:
 - tabulate each subtree of decomposition node, resulting in a table tab_i (finite, because traversal is depth-limited!)
 - construct the Cartesian product of all tab_i
 - from each product element $((D_{in}^{(i_1)}, f_{i_1}), \ldots, (D_{in}^{(i_n)}, f_{i_n}))$ build table entry for decomposition node:
 $$(D_{in}^{(i_1)} \cap \cdots \cap D_{in}^{(i_n)}, C(f_{i_1}, \ldots, f_{i_n}))$$
Tabulation Restrictions – HO Results

- Decomposition nodes:
 - non-nullary constructors – OK!
 - lambda-expressions – ?
 - calls to unknown function (free variable) – ?

- HO functions in result

```fsharp
<@ fun b ->
  if b then (b, fun x -> boolNot x)
  else (boolNot b, fun x -> x) @>
```

- We must recover a finite, closed function body from a (potentially infinite) process tree (we need a supercompiler)
- interesting use cases?
Tabulation Restrictions – HO Results

- Decomposition nodes:
 - non-nullary constructors – OK!
 - lambda-expressions – ?
 - calls to unknown function (free variable) – ?

- HO functions in result

```
<@ fun b ->
    if b then (b, fun x -> boolNot x)
    else (boolNot b, fun x -> x) @>
```

- We must recover a finite, closed function body from a (potentially infinite) process tree (we need a supercompiler)
- interesting use cases?
Tabulation Restrictions – HO Inputs

- HO functions in inputs

```fsharp
<@ fun p xs -> listFilter p (listFilter p xs) @>
```

- Tabulation must deal with `match p x with ...`, where `p` is free
 - some sort of higher-order unification needed?

- instead of adding higher-order unification to tabulation ...
- ... we can make a meta-system transition:
 - higher-order input ⇒ first-order function encoding
 - calls to HO parameter ⇒ calls to an encoding interpreter
Tabulation Restrictions – HO Inputs

- HO functions in inputs

```fsharp
<@ fun p xs -> listFilter p (listFilter p xs) @>
```

- Tabulation must deal with `match p x with ...`, where `p` is free
 - some sort of higher-order unification needed?

- instead of adding higher-order unification to tabulation ...
- ...we can make a meta-system transition:
 - higher-order input ⇒ first-order function encoding
 - calls to HO parameter ⇒ calls to an encoding interpreter
Avoiding Restrictions – Example

```fsharp
module NatToXRepr =
    type Stream<'a> = | SCons of 'a * Lazy<Stream<'a>>
    let rec streamNth n (SCons(x, xs1)) =
        match n with
        | NZero -> x
        | NSucc(n1) -> streamNth n1 (xs1.Force())

    let eval tbl n = streamNth n tbl

    let fun p_tbl xs ->
        let p = NatToXRepr.eval p_tbl
        listFilter p (listFilter p xs)
```
Avoiding Restrictions – Result

map

[(Cons (NSucc (NZero),Empty),
 [map
 [(p_tbl_0, SCons (__6,SCons (True,__7)));
 (xs_1, Cons (NSucc (NZero),Empty))]]);
(Cons (NZero,Empty),
 [map [(p_tbl_0, SCons (True,__4));
 (xs_1, Cons (NZero,Empty))]]);
...
]
Recall main idea of equivalence partitioning – build a finite partition of the input domain: $D_1 \cup D_2 \cup \cdots \cup D_n = D$, $D_i \cap D_j = \emptyset$

We can specify such a partition by a function $f : D \rightarrow X$ where $X = \{x_1, x_2, \ldots, x_n\}$ is finite (with small number of elements):

- $D_i := \{d \in D \mid f(d) = x_i\}$

If f is coded in our F# subset, we can use program tabulation on f to build the partition:

- $\text{Tab}(f, D) = (D'_1, f_1), (D'_2, f_2), \ldots$
Assume f is “reasonably” defined:
- all f_i are constant functions ($f_i(d) = x_j$ for some j)
- there is a finite prefix of the table (of length n), such that
 \[\{ f_1(d_1), f_2(d_2), \ldots, f_n(d_n) \} = X \] (where $d_i \in D_i'$ are arbitrary)

We can then obtain our partition of the input domain:
- $D_i := \bigcup \{ D_k' \mid f_k(d_k) = x_i, d_k \in D_k', k \in \{1, \ldots, n\} \}$

When partition is defined, selecting actual tests from each equivalence class is (usually) a simple task (fill arbitrary well-typed values in place of free variables)
Another Example: Well-typed STLC Terms

```
type Ty = Tiota | Tarr of Ty * Ty
type Exp = V of Nat | A of Exp * Exp | L of Ty * Exp

[<ReflectedDefinition>]
let rec typeOf (tenv: Ty list) (e: Exp) : Ty option =
  match e with
  | V n -> listNth n tenv
  | A(e1, e2) ->
    match typeOf tenv e1, typeOf tenv e2 with
    | Some (Tarr(t11, t12)), Some t2 when tyEq t11 t2 -> Some t12
    | _, _ -> None
  | L(ty, e1) ->
    match typeOf (ty::tenv) e1 with
    | Some ty1 -> Some (Tarr(ty, ty1))
    | None -> None
```
<@ fun tenv e ->
let cond1 = natEq (LCSample.lamCount e) NZero
let appc = LCSample.appCount e
let cond2 = natLE (NSucc(NSucc(NZero))) appc
let cond3 = natLE appc (NSucc(NSucc(NSucc(NZero))))
if boolAnd cond1 (boolAnd cond2 cond3) then
 match LCSample.typeOf tenv e with
 | None -> false
 | _ -> true
else false @>
Well-typed STLC Terms – Results

[((e_1, A (V (NZero), A (V (NZero), V (NSucc (NZero)))))),
 (tenv_0, Cons (Tarr (Tiota, Tiota), Cons (Tiota, __14)))]
[((e_1, A (V (NSucc (NZero)),
 A (V (NSucc (NZero)), V (NZero)))),
 (tenv_0, Cons (Tiota, Cons (Tarr (Tiota, Tiota), __12)))]
[((e_1, A (A (V (NSucc (NZero)), V (NZero)), V (NZero)))),
 (tenv_0, Cons (Tiota,
 Cons (Tarr (Tiota, Tarr (Tiota, __16)), __12)))]
...
[((e_1, A (V (NZero), A (V (NZero),
 A (V (NZero), V (NSucc (NZero)))))),
 (tenv_0, Cons (Tarr (Tiota, Tiota), Cons (Tiota, __17)))]
...
Toolkit Improvements

- Make the toolkit even more user-friendly
 - extend toolkit library of standard types and operations (binary-arithmetic integers, maps, sets, ...)
 - extend built-in conversions from/to standard F# types (especially int)
- Make the toolkit faster (current space usage reasonably good already)
 - speed up driving?
 - byte-code-based driving?
 - parallelization?
 - prune process tree branches?
 - faster treatment of decomposition nodes?
Toolkit Extensions

- Add a supercompiler
 - many potential practical applications (property verification, …)
 - full treatment of higher-order functions inside tabulation results
- Neighborhood analyzer
- Neighborhood testing
 - Potentially very useful in practice!
 - property-based test generation
 - …
 - Possible problem: performance
 - neighborhood testing requires 2 levels of interpretation
A practical implementation of metacomputation techniques for a large subset of F#
- first implementation of program tabulation for a HO FL

With a practical application: generating equivalence-partitioning tests

Interesting optimization tricks (especially w.r.t. space usage)

Outlook
- Make toolkit even more easier to use (e.g. special support for numbers)
- Further optimizations (especially time of driving, tabulation)
- Implement other practically useful metacomputation techniques (neighborhood testing?)