A Metacomputation Toolkit for a Subset of Ff
and Its Application to Software Testing

Towards Metacomputation for the Masses

Dimitur Krustev

IGE+XAO Balkan, Bulgaria
dkrustev@ige-xao.com

Abstract. We present an on-going experiment to develop a practical
metacomputation toolkit for F#. There are — apart from the better
known supercompilation — other mature and potentially useful meth-
ods stemming from metacomputation theory: program inversion and
tabulation, neighborhood analysis. Although implementations of these
methods have existed since many years, they are typically experimen-
tal tools, treating specifically designed small languages. We investigate
if such methods can be made more readily available for practical use,
by re-developing them for a reasonably large subset of a mainstream
programming language. Practical technical challenges — together with
possible solutions — are discussed. We also hint at a potential practical
application — automatic generation of software test sets based on user
specifications of “interesting” input partitioning.

1 Introduction

The metacomputation theory, developed originally by Turchin, gives rise to sev-
eral interesting techniques. The best known is supercompilation [26], but there
are others as well — such as neighborhood analysis, neighborhood testing, pro-
gram tabulation and inversion [4]. While many supercompiler implementations
already exist, some of them for large subsets of popular programming languages,
the situation is different for other metacomputation techniques like neighbor-
hood analysis or program tabulation/inversion. Apart from the pioneering work
done in the context of Refal, there are few (publicly available) experimental im-
plementations [4UTI2ITH], treating specially designed small languages (S-Graph,
TSG, XSG, SLL). While these implementations work well, and can perform
impressive tasks, they are hardly usable by someone without extensive knowl-
edge in metacomputation theory. For one thing, they require learning a new
language, specific to the tool, typically first-order functional, often even flat
(without nested function calls). While parsers and pretty-printers often exist,
other tools like IDEs or even debuggers are not available. The main motivation
for the current work is to try to transfer existing metacomputation techniques
in the context of a larger and more popular programming language. We chose to
work with a subset of F#, as F# has a clean and relatively simple functional core

166 D. Krustev

(stemming from its ((O)Ca)ML heritage), together with some facilities greatly
simplifying the creation of meta-programs, while at the same time it runs on a
very popular platform, and is well supported by several powerful IDEs (Visual
Studio, SharpDevelop, MonoDevelop E[)

In line with the overall pragmatic orientation of this experiment, we also
wanted an interesting and useful practical application to serve as a use case
for the metacomputation machinery. While a very sophisticated testing method
based on metacomputation already exists — neighborhood testing [4] — we guessed
that it would pose more technical challenges to implement fully, and settled at
first on a simpler (and less powerful) method for test generation. In particular,
we are interested in ways to apply the equivalence partitioning method for black-
box testing [B]. Given a partitioning specification, encoded in the subset of F#
that our tool supports, we can apply program tabulation (a key first step in
the URA-technique for program inversion) to generate test skeletons for each
equivalence class of the chosen data partition. Afterward it would be easy to fill
the skeleton holes with arbitrary values of the appropriate type.

To take a really simple example, consider a program (or a set of programs)
dealing with binary trees. Important quantitative characteristics of trees are their
size and height, so we may consider a partitioning based on the pair (size, height).
We can easily create (Fig. (1)), in F#, a description of the data domain, and the
partitioning specification If we then make a program tabulation request for
the expression shown in Fig. [2] we obtain the table shown in Fig. |3} We group
input trees EI by the result they produce, and we have filtered out those with
result None.

type BinTree<'T> =
| EmptyTree
| Node of 'T % BinTree<'T> % BinTree<'T>

[<ReflectedDefinition >]
let rec treeSize t =
match t with
| EmptyTree —> NZero
| Node(-, 1, r) —> NSucc (natAdd (treeSize 1) (treeSize r))

[<ReflectedDefinition >]
let rec treeHeight t =
match t with
| EmptyTree —> NZero
| Node(-, 1, r) —> NSucc (natMax (treeHeight 1) (treeHeight r))

Fig. 1. Binary tree with size, height

1 All product names mentioned in the article are trademarks of their respective owners.

2 We assume some familiarity with the syntax of F#, or other languages in the ML
family.

3 Actually expressions representing sets of input trees.

A Metacomputation Toolkit for a Subset of Ff 167

<@ fun t —>
let size = treeSize t
let height = treeHeight t
let bl = natLE size (NSucc(NSucc(NSucc(NZero))))
let b2 = natLE height (NSucc(NSucc(NZero)))
if boolAnd bl b2 then Some (size, height) else None @>

Fig. 2. Binary tree tabulation request by (size, height)

[(Some (Tuple2 (NSucc (NSucc (NSucc (NZero))),
NSucc (NSucc (NZero)))),
[map [(t-0, Node (--3 ,Node (--6,EmptyTree, EmptyTree),
Node (--9 ,EmptyTree,EmptyTree)))]]);
(Some (Tuple2 (NSucc (NSucc (NZero)), NSucc (NSucc (NZero)))),
[map [(t-0, Node (--3,
Node (--6 ,EmptyTree,EmptyTree),EmptyTree))];
map [(t-0, Node (--3,EmptyTree,
Node (--6 ,EmptyTree,EmptyTree)))]]);
(Some (Tuple2 (NSucc (NZero),NSucc (NZero))),
[map [(t-0, Node (--3 ,EmptyTree,EmptyTree))]]);
(Some (Tuple2 (NZero,NZero)), [map [(t-0, EmptyTree)]])]

Fig. 3. Binary tree tabulation result

A couple of things to note: we have restricted both the size and the height
of the trees we consider, in order to reduce the search space and to get a small
number of tests. Each entry in the resulting table represents an equivalence class
— a set of input values giving a particular output. The set is represented as a list
of maps, each map specifying possible values for all parameters of the tabulated
function. Further, the input expressions in the table contain free variables (__3,
__6, ...), for places in the input trees, that bear no influence on the expression
value. We could, however, instantiate those variables with suitable constants
(based on the type) and get concrete tests as a final result. For example, the
table entry (Some (Tuple2 (NZero, NZero)), [map [(t_O, EmptyTree)l])
shows, that only the empty tree has both size and height 0.

We shall see a couple of more realistic examples of partitioning-based testing
in Sect. bl Before that, we discuss how F+# features like code quotations facili-
tate the creation of “embedded” meta-programs operating on other parts of the
F# program (Sect. . We also motivate the choice of the particular F# sub-
set covered. Next we outline the implementation of the basic metacomputation
algorithms — driving and process-tree creation (Sect. . We mostly follow an ap-
proach similar to existing implementations, but also discuss practical challenges
and implementation tricks. The treatment of program tabulation and inversion
(Sect. [4]) is based on the classical approach used in URA [4I12], but the fact that
we deal with a non-flat, higher-order functional language poses some unexpected
obstacles. In fact, the current implementation is — as far as we know — the first
that lifts URA-like methods to a higher-order language.

168 D. Krustev

2 “Decompiling” F# quotations

While typical meta-program implementations require re-implementing some phases
of a standard compiler front-end (like lexing, parsing, de-sugaring, type-checking),
with F# we can take a shortcut by using its built-it facilities for meta-programming
— called “code quotations”. In brief, F# quotations permit to instruct the com-
piler to store a high-level, abstract-syntax-tree (AST) representations of parts
of the program, alongside (or instead of) the compiled low-level byte-code [24].
There are basically 2 ways to achieve this:

— by placing [<ReflectedDefinition>] in front of a top-level function (or
method) definition (producing both a normal compiled definition and an
AST representation);

— by enclosing any (syntactically complete) expression in <@ ... @> (which
returns only the AST representation of the expression).

The use of both methods was already demonstrated in the introductory exam-
ple. There are special facilities (the MethodWithReflectedDefinition active
pattern, for example) for retrieving the AST corresponding to a reflected top-
level function. The design of F# quotations resembles similar designs in MetaML
and Template Haskell. There is no need to explicitly require reflecting type def-
initions — it is done by default in languages sitting on top the .NET run-time.

While in principle it would be possible to base driving and further metacom-
putation algorithms directly on the internal AST representation of quotations,
we take a two-step approach: we first translate quotation ASTs (if possible) to
another representation (Fig. [4]) on which driving is then performed. The advan-
tages of this approach are:

— we can precisely specify the subset of F# we treat;
— we can use a language representation more suitable for driving.

type BindPattern = PVar of VName | PWildcard
type Pattern = PCon of CName * BindPattern list
type Exp =

| EVar of VName

| EApp of Exp x Exp

| ELam of BindPattern x Exp

| ELet of VName * Exp % Exp

| ELetRec of (VName % Exp) list * Exp

| ECon of CName * Exp list

| ECase of Exp * (Pattern * Exp) list

Fig. 4. F# subset definition

One can see immediately that we retain most typical features of modern
functional languages (higher-order functions, let- and letrec-expressions, alge-
braic data types with pattern matching). Readers well familiar with F# can
already deduce what is left out:

A Metacomputation Toolkit for a Subset of Ff 169

— all features related to object-oriented programming, and ensuring interoper-
ability with other .NET languages (classes, structs, methods, etc.);
— all features related to mutable data structures, and side-effects in general

The inclusion of wild-card patterns adds some complexity to the metacomputa-
tion algorithms, but it greatly simplifies the conversion from the reflected AST
representation.

Typing deserves a special note. Our intermediate language is untyped. On
the other hand we rely on the fact, that F# quotations are type-checked by the
compiler ﬁ This fact gives 2 advantages:

— during driving (and other metacomputation algorithms) we can take fewer
precautions if we can rely on an initially type-checked input;

— driving and other transformations preserve typing implicitly, so at the end
we can recover a typed expression relatively easily, if needed.

As already hinted by the first example, the F# subset we accept features a
rich type system, including tuples, records (with immutable fields) EL unions,
parametric polymorphism.

One more important restriction of our subset is the lack of access to the F#
standard libraries. There are two main reasons for this decision:

— standard-library code is already compiled without reflection, and there is no
easy way to make it reflected without modifying the library sources (where
available) and recompiling a customized version of the standard libraries;

— metacomputation algorithms like driving are traditionally designed for al-
gebraic data types. Adding support for some primitive data types (like int
or float) would probably require the use of external constraint solver, and
would in general complicate the implementation by at least an order of mag-
nitude. Besides, many standard-library data types, such as arrays, are es-
sentially mutable. Support for mutability is also deemed too complicated to
contemplate at this point.

Still, we support some of the basic built-it types — like bool, option, list —
because they can be treated as algebraic. The lack of standard-library support is
compensated by a “reflected prelude” containing definitions of some useful data
types and functions. (natAdd and natMax in the introductory example come from
this prelude.)

The conversion from code quotation representation to our Exp type is mostly
straightforward, as the F# compiler has already done its parsing, type infer-
ence, pattern-matching compilation and other de-sugaring, before emitting the
quotation AST. Actually the amount of de-sugaring is more than we need here:
F# match-expressions are converted to a combination of more primitive oper-
ations (if-expressions, predicates for testing for a particular head constructor,
tuple projections). Our conversion maps those primitive operations back to spe-
cial kinds of match-expressions, but without any non-local optimizations. The

4 Unless built by direct calls to AST constructors, but we ignore that possibility here.
5 Records are de-sugared into tuples, and do not appear explicitly in Fig.

170 D. Krustev

net result can be seen in Fig. o] which shows the conversion of the treeSize
function (pretty-printed as F# code). The program in this form clearly contains
redundancies, but driving is able to remove exactly this kind of redundancies
well, so we do not need to perform any special optimizations at the level of our
Exp representation.

let rec treeSize = (fun t —>
match (match t with
| EmptyTree —> False

| Node (-,-,-) —> True) with
| True —>
(let r = match t with
| Node (-,-,x) —> x in

(let 1 = match t with
| Node (-,x,-) —> x in
NSucc ((ReflectedPrelude.natAdd (treeSize 1)) (treeSize r))))
| False —> NZero)

Fig. 5. F# quotation of the treeSize function

3 Process-tree Construction

We assume readers are familiar with the basic notions of driving, and do not re-
iterate them here [f] but instead focus on some of the implementation technical
details. We follow the standard approach [4I23] and base our metacomputation
toolkit on the notion of a process tree. While some implementations of super-
compilation omit the explicit construction of process trees (e.g. [I8IT2I6120]),
we feel it is a useful concept, unifying different metacomputation techniques and
making their implementation more modular.

3.1 Driving and Process Trees

Our representation of process trees is quite standard, very similar to [23/13[15].
We separate the implementation of individual driving steps in a stand-alone
function, and then the main driving function simply unfolds the results of driv-
ing steps into a tree (Fig. @ FEach driving step takes a “configuration”, encoding
the current state of the driving process, and produces one of 4 kinds of results,
corresponding to the 4 kinds of process tree nodes described below. As the pro-
cess tree is often infinite and F# is a strict language, we need to explicitly make
the process-tree data type lazy enough. (We use the Lazy<’X> data type from
the F# standard libraries for this purpose.)
We distinguish 4 kinds of process-tree nodes:

— leaves — used when driving cannot proceed further at all (because we reach
an atomic value or a free variable);

6 Good introductions can be found, for example in [23/4].

A Metacomputation Toolkit for a Subset of Ff 171

type DriveStep <’Conf, ’'ContrHead, ’Contr> =
| DSDone
| DSTransient of ’Conf
| DSDecompose of ’'Conf list x (’Conf list —> ’Conf)
| DSBranch of ’ContrHead * (’Contr x ’*Conf) list
let driveStep (conf : DriveConf)
DriveStep<DriveConf, VName, Pattern> =
type PrTree<’Conf, ’ContrHead, ’'Contr> =
PTDone of ’Conf
| PTTransient of 'Conf % Lazy<PrTree<’Conf, ’'ContrHead, ’Contr>>
| PTDecompose of (’Conf *x Lazy<PrTree<’Conf, ’ContrHead, ’Contr>>)
list % (’Conf list —> ’Conf)
| PTBranch of ’ContrHead * (’Contr % ’Conf
* Lazy<PrTree<’Conf, ’ContrHead, ’Contr>>) list
let rec drive (conf : DriveConf)
PrTree<DriveConf, VName, Pattern> =

Fig. 6. Driving and process trees

branches — used when driving gets blocked by a match-expression scrutinizing

a free variable. The edges to the sub-trees of such a node are labeled with

“contractions”, which encode the conditions for selecting one of the sub-

trees. It turns useful to factor out the common part of all contractions in the

branch node itself — represented as ’ContrHead in Fig. [6}

— transient nodes — when the driving step amounts to (deterministic) weak
reduction;

— decomposition nodes — used in different cases:

e when driving reaches a constructor of non-0 arity, we can continue driving
the constructor arguments in parallel;

e when we need to perform generalization during supercompilation, in or-
der to obtain a finite (but imperfect) process tree;

e when driving get stuck at an expression with sub-expressions, and none
of the above cases applies.

In the current setting, the last subcase amounts to reaching an expression of the
form match frizs...x, with ..., where f is a free variable of a function type,
and n > 0. In the ideal case, we should create a branch node, but that would
mean using a more complicated representation of contractions, and some form of
higher-order unification. As in other supercompilers for higher-order languages,
we take a simpler route by decomposing such expressions and continuing to drive
their sub-expressions in parallel.

3.2 Driving Configurations

A technical subtlety arises with the choice of configuration representation: our
F+# subset preserves the possibility of the full language to have arbitrary nested
let(rec) expressions. Direct treatment of let-, and especially letrec-, expressions
can complicate substantially the definition of driving, so it is common to assume,
that at least recursive definitions are lambda-lifted to the top level [I8[20/17].

172 D. Krustev

But first, we make an important decision — to stick to call-by-name (CBN) driv-
ing, even if our object language is call-by-value (CBV). This approach is classic
— taken already by the original work on driving for Refal. In the absence of side
effects, the semantic difference between CBN and CBV is mostly of theoretical
interest. More important pragmatically is the potential loss of sharing, compared
with call-by-need driving methods [I8/T76]. We argue, however, that this loss
of sharing is critical mostly in the context of supercompilers used as a part of
optimizing compilers. As we are interested in other applications of metacompu-
tation techniques, the simplicity and the potential for more reductions offered
by call-by-name driving is deemed more important.

Sticking to call-by-name enables us to introduce yet another intermediate
representation of expressions, based on closures (Fig. , inspired by [7]]. Tt is,
obviously, easy to convert between the Exp and ClosedExp representations. The
new encoding brings the following advantages:

— no need to deal explicitly with let-expressions or substitutions during driving;
— an especially unobtrusive treatment of recursion;
— no worries about variable capture, at least in the context of weak reductions.

type CaseAlts = (Pattern * Exp) list
type EnvEntry <’V> =
| EEVarBind of VName * 'V
| EERecDefs of (VName * Exp) list
type Env<’V> = EnvEntry<’V> list
type ClosedExp =
| CEVar of VName * Env<ClosedExp>
| CEClosure of BindPattern % Exp x Env<ClosedExp>
| CEApp of ClosedExp * ClosedExp
| CECon of CName % ClosedExp list
| CECase of Exp * CaseAlts * Env<ClosedExp>

Fig. 7. Closure-based expression representation

To keep track of the context of the current redex we use a stack of evaluation
contexts, similar to [6]. We also need a counter for generating fresh variables
when reduction descends under a binder. The final representation of driving
configurations is shown on Fig. [§|

type DriveContextEntry =

| DCEApp of ClosedExp

| DCECase of CaseAlts % Env<ExpOrClosed>
type DriveContext = DriveContextEntry list
type DriveConf = int % ClosedExp * DriveContext

Fig. 8. Driving configurations

A Metacomputation Toolkit for a Subset of Ff 173

3.3 Optimizations of the Driving Implementation

While the closure-based representation of expressions has many advantages, it
comes at a cost: we have to constantly switch between the 2 representations (Exp
and ClosedExp) during driving and further metacomputation algorithms (when
we look up a variable binding inside an environment; when driving reaches a
(weak) redex, whose head expression has a binder; when we need to perform
driving under a binder; when we propagate a contraction inside the sub-trees
of a branch node). The repeated re-traversals and re-creations of parts of the
driven expression incur a high cost both in terms of processor time and memory
consumption. We found 2 measures, that helped reduce significantly this cost.

Firstly, the closure-based representation can be modified slightly, as shown
on Fig. @ At certain key places (simple environment bindings, and the scruti-
nee of a match-expression) we permit both representations. The advantage of
this flexibility is that we can delay in many situations the conversion from Exp
to ClosedExp or vice-versa. Further, when the same sub-expression undergoes a
sequence of conversions from one form to the other, adjacent pairs of such conver-
sions can now cancel each other. We have to force the conversion typically only
when driving reaches a variable reference, whose binding in the corresponding
environment is not in the form needed.

The second measure involves performing a limited form of environment prun-
ing (currently — only when converting an EVar into a CEVar). The limited form
we have chosen is inexpensive both in terms of time and memory allocations,
while permitting in many cases to seriously reduce the size of environments
stored in closures. As these environments may need to be converted back to
let(rec)-expressions at a certain point, the saving can be substantial.

type ClosedExp =

| CEVar of VName * Env<ExpOrClosed>

| CEClosure of BindPattern % Exp x Env<ExpOrClosed>

| CEApp of ClosedExp * ClosedExp

| CECon of CName % ClosedExp list

| CECase of ExpOrClosed * CaseAlts x Env<ExpOrClosed>
and ExpOrClosed =

| EOCExp of Exp

| EOCClosed of ClosedExp

Fig. 9. Optimized closure-based representation

4 Process-tree Based Program Tabulation and Inversion

Let’s briefly recall the idea of program tabulation, which was historically de-
veloped as a key initial step in the URA method for program inversion [4/T].
Assuming a programming language L, a data domain D, and evaluation func-
tion [] : L — D — D, the tabulation of a program p € L can be defined in

174 D. Krustev

general as producing — from a program and a subset of the data domain — a
sequence of pairs:

Tab(p, Din) = (D), f1), (DY, fo), ...

where:

mn
fi:DY 5 Di=12, ..
vivd € DY) (f:(d) = [p] d)

Din, DY) € D; D) DY) =0 fori # j; U, DY) = Din;

and with the further requirement that, given any i, for each d € DE:L) the com-
putation of [p] d takes the same path in the branches of the process tree.

We follow the established approach for performing tabulation ([4I112]): first
build the process tree, then traverse it in breath-first order (to ensure complete-
ness), collecting contractions from branch nodes along the way. Each time we

reach a leaf in the tree, we can produce a new input-output pair in the table: each
DY s the composition of contractions along the path from the root applied to

wm
Dy, (all DE:L) take thus the form of first-order substitutions); and f; = e, where
e is the expression extracted from the leaf configuration. Note that both DZ(-;)
and e can contain free variables; binding them to different values gives different
elements in the set DZ(-;), and substituting these values in e gives the ground
result associated with the corresponding input.

The algorithm outlined above considers only process trees containing leaves
and branch nodes. Indeed, the original implementations of URA [4l[1] dealt with
first-order flat functional languages (S-Graph, TSG), Extensions were later de-
veloped for non-flat, but still first-order languages [2[15]. Still, it appears that
those extensions either do not produce transient/decomposition nodes, or ignore
the possibility of such nodes during tabulation. Transient nodes are easy — we
can simply skip them during tabulation. As for decomposition nodes, recall that

in the current setting they can be of 3 kinds:

1. corresponding to a constructor of non-0 arity;

2. corresponding to a A-expression, which will appear in the program result;

3. corresponding to an expression of the form match fzizs...x, with ..., with
n > 0 and f a free variable of a function type

We decided to ignore the latter 2 kinds during tabulation, with one exception:
nodes of the second kind immediately below the root of the process tree. Such
nodes correspond to the program arguments, and we simply traverse them col-
lecting the set of free variables, to build D;,. As for other non-constructor de-
composition nodes appearing inside the tree, they seem not so important for the
practical applications we currently have in mind, as their presence would imply
at least one of the following:

— first-class functions embedded inside the result of the tabulated function;

A Metacomputation Toolkit for a Subset of Ff 175

— first-class functions appearing as (sub-values of) arguments of the tabulated
function.

Our current strategy is to skip processing the corresponding sub-tree, which
renders the method incomplete, but at least allows us to find other existing
solutions, even if the tabulation request violates the above assumptions. Note
also that this restriction in no way prevents many typical uses of higher-order
functions — for example in conjunction with list functions such as map or filter.
(See the examples in the next section.) We should only avoid higher-order func-
tions used as data — nested inside input or output values. Thus our restriction
is very similar to existing restrictions in most higher-order functional languages
on performing input/output with values embedding higher-order functions.

This still leaves us with the problem of how to handle constructor decompo-
sition nodes during tabulation. In fact, we have not yet found a suitable solution
for the tabulation algorithm based on breadth-first search. BFS in itself proved
to be a practical problem, as it can be very memory-consuming (because of
the need to keep a queue with all nodes of the level of the tree currently be-
ing scanned). There is a well-known alternative to BFS, which trades a small
constant-factor increase in time complexity for big asymptotic improvement in
memory consumption — iterative deepening [21]. While we have not implemented
yet a version of tabulation that performs full iterative-deepening search, we have
one based on depth-limited search, which is the key component of iterative deep-
ening. To further optimize memory consumption, we do not build the process
tree explicitly before tabulation, but use directly driveStep (Fig. @, producing
a “virtual” version of the process tree for traversal.

This version of depth-limited tabulation also enables an easy (even if some-
what brute-force) solution to the problem of inner constructor nodes. The basic
idea is as follows:

— build all input-output tables — tab; (i = 1..n) — corresponding to the n
subtrees of the constructor node; as we are using depth-limited search, each
tab; is guaranteed to be finite;

— construct the Cartesian product of all tab;:

ep=A{((s1,€1), s (Sn,€n))| Vi(s;, €;) € tab;}

— foreach ((s1,€1), .., (Sn,€n)) € cp, if mergeManySubsts [s1;...;8,]1 = Some
s, we can yield a new table entry for the constructor node: (s,C/(ey, ..., e,)),
where C' is the corresponding constructor.

The function mergeManySubsts simply combines several first-order substa-
tions, ensuring that if the same variable is bound in several substitutions, the
corresponding most general unifier exists, and the variable is bound to the uni-
fication result.

5 Black-box Tests Based on Partitioning Specifications

We return to the discussion of one potential application of our F# metacompu-
tation toolkit — generation of partition-based black-box tests. Black-box testing

176 D. Krustev

requires creation of “interesting” test sets for programs p € L, whose internal
structure is unknown. One well-proven heuristics for building such tests is the
method of “equivalence partitioning” [5]. The idea is to devise a partition (typ-
ically — finite) of the data domain: D = |J, D; (i # j — D; N D; = (); each
such partition defines an equivalence relation over D. The intuition behind the
method is that if we define a suitable partition, the data points in each of the
corresponding equivalence classes will be treated in a similar manner by the
program under test, and so it will be sufficient to take only one or a few tests
from each equivalence class. One way to specify such a partition is by a function
f: D — X, where X = {z1,22,....,2,} C D is some finite data type. Then
take D; := {d € D | f(d) = x;}. If we also assume that the specification is
complete, in the sense that Vidd € D : f(d) = x;, we can use the program
tabulation method described in the previous section to generate representatives
of the equivalence classes. It suffices to tabulate f, and to group entries in the
resulting table by output value (z;). Then, for each z;, we can select one or
several input tests from the corresponding Dg;).

Let’s look at a few more examples illustrating this idea. First, consider a
program dealing with a very simple imperative language, containing assignments,
sequences and while-loops (Fig. . We leave unspecified the data types for
variables and expressions. Two simple quantitative measures on programs are
introduced — statement count, and loop-nesting depth, and we use them to define
partitioning of the space of programs — the expression used in the tabulation
request is shown on Fig. (Note that we limit the search to programs of
nesting < 2 and statement count < 3.) The result of tabulation appears in Fig.
we can see 6 equivalence classes, and by instantiating the free variables with
some suitable values we can obtain test inputs for each class.

type Stmt<’V, 'E> =
| Assign of 'V x 'E
| Seq of Stmt<’V, ’E> % Stmt<’V, ’'E>
| While of E % Stmt<’V, 'E>

[<ReflectedDefinition >]
let rec stmtCount (s: Stmt<’V, ’E>) : Nat = ...

[<ReflectedDefinition >]
let rec loopNesting (s: Stmt<’V, 'E>) : Nat = ...

Fig. 10. Simple imperative language

The next example is from a different domain (a scaled-down version of a real-
world use case): programs dealing with electrical diagrams often have wire-lists
as inputs. Wire connections usually form an acyclic graph, with each connected
component representing an equipotential. We can thus represent wire-lists as
forests, with each tree being a set of electrically connected wires and pins (Fig.
. A possible tabulation request — defining a partition by (equipotential-count,

A Metacomputation Toolkit for a Subset of Ff 177

<@ fun s —>
let sCnt = WhileL.stmtCount s
let nestCnt = WhileL.loopNesting s
if boolAnd (natLE nestCnt (NSucc(NSucc(NZero))))
(natLE sCnt (NSucc(NSucc(NSucc(NZero)))))
then Some (nestCnt, sCnt) else None

(€=

Fig. 11. Tabulation request for imperative language programs

[(Some (Tuple2 (NSucc (NSucc (NZero)),NSucc (NSucc (NSucc (NZero))))),

[map [(s-0, While (--2,While (--4,Assign (--6,--5))))1]);
(Some (Tuple2 (NSucc (NZero),NSucc (NSucc (NSucc (NZero))))),
[map [(s While (--2,Seq (Assign (--6,--5),Assign (--8,--7))))];
map [(s- O Seq (While (--4,Assign (--8,_-7)),Assign (--6,_--5)))];
map [(s-0, Seq (Assign (--4,-.3),While (-_6, A551gn (=<8, -27))N1);
(Some (Tup1e2 (NSucc (NZero),NSucc (NSucc (NZero)))) s
[map [(s While (--2,Assign (--4,-.3)))]]);
(Some (T uple2 (NZero, NSucc (NSucc (NSucc (NZero))))),
[ma
I[J(s-0, Seq (Seq (Assign (--6,_--5),Assign (--8,_.7)),Assign (--10,-.9))
map

[(s-0, Seq (Assign (--4,--3),Seq (Assign (--8,_-.7),Assign (--10,-.9)))
(Some (Tuple2 (NZero,NSucc (NSucc (NZero)))),
[map [(5.0, Seq (Assign (.4, 3), Assign (-6, 5)))]]);
(Some (Tuple2 (NZero,NSucc (NZero))), [map [(s-0, Assign (--2,_--1))]])]

Fig. 12. Imperative language tabulation result

wire-count) — is shown in Fig. The list of results is too long to include, but
the number of different entries in each equivalence class (after taking only the
first 30 non-None results, with a depth limit of 25) is summarized in Table

Table 1. Wire-list tabulation results

Equipotential count|Wire count|Number of entries
2 3 12
2 2 5
2 1 2
2 0 1
1 3 5
1 2 2
1 1 1
1 0 1
0 0 1

What is remarkable in this example is, that the partition specification re-
quires some slightly more involved processing than the previous ones. We can see,
though, that the familiar use of higher-order library functions (like 1istFoldl,
listNubBy) keeps the code succinct. We could no doubt code the same functions

178 D. Krustev

type RoseTree<’N, 'E> = RTNode of 'N % (’E % RoseTree<’'N, ’'E>) list
type PinData<’EQ> = {pinTag: Nat; eqTag: 'EQ}

type WireData<'WCG = {wireColor: 'WC}

type Equipotential <’EQ, WG = RoseTree<PinData <’EQ>, WireData <'WC>

[<ReflectedDefinition >|
let rec equipotStats (ep: Equipotential <’EQ, "WC>) : Nat * 'EQ list =
match ep with
| RTNode(pd, wds_ts) —>
let ts = listMap (fun (., x) —>x) wds_ts
let wcountl = listLength wds_ts
let (wcount2, eqs) = listFoldl (fun (wc, egs) t —>
let (wcl, eqsl) = equipotStats t
(natAdd wecl wc, listAppend eqgsl eqs)) (NZero, []) ts
(natAdd wcountl wcount2, pd.eqTag::eqs)

[<ReflectedDefinition >]
let equipotsStats (eqTagEq: 'EQ —> 'EQ —> bool)
(eps: Equipotential <’EQ, "WC> list) : Nat * Nat * 'EQ list =
let (wc, eqs) = listFoldl (fun (wcl, egsl) ep —>
let (wc2, eqs2) = equipotStats ep
(natAdd wc2 wcl, listAppend eqs2 eqsl)) (NZero, []) eps
(listLength eps, wc, listNubBy eqTagEq eqgs)

Fig. 13. Wire-list as a forest, with simple statistics functions

<@ fun eps —>
let (epCnt, wireCnt, eqs) = WList.equipotsStats boolEq eps
if boolAnd (natLE epCnt (NSucc(NSucc(NZero))))
(natLE wireCnt (NSucc(NSucc(NSucc(NZero)))))
then Some (epCnt, wireCnt) else None

(€4

Fig. 14. A tabulation request for wire-list test generation

A Metacomputation Toolkit for a Subset of Ff 179

in a first-order language, but some code-size increase and loss of modularity
seems inevitable, even in such small cases. We can also note the use of another
trick for controlling the size of the search space: the type for equipment tags
is abstracted as a parameter in the wire-list definition; we instantiate it with
bool in the tabulation request, to limit the number of different equipment tags
appearing in test cases.

We have performed further experiments, which we do not describe in detail
here. Still it is worth noting that we stumbled upon certain restrictions of this
test-generation technique. One of the examples defines a Church-style version
of the simply-typed lambda calculus, together with a type-checker. If we try
to generate directly only well-typed lambda terms for testing, with a reasonably
small depth limit, the method tends to generate mostly trivially well-typed terms
of the form Azxizs...x,.z;. On the other hand, the tabulation technique is also
very flexible — in the same lambda-calculus sample, it is possible to “nudge”
the tabulator towards more interesting well-typed terms, by partially specifying
the shape of types in the typing environment of the type-checker, ensuring that
there are more suitable types for forming applications.

6 Related Work

As already mentioned on several occasions, the pioneering work on metacompu-
tation — both supercompilation and related techniques — was done by Turchin
and his students, using Refal [26]. Later many key methods were re-developed
using simpler languages like S-Graph [9J413]. In recent years, there is renewed
interest and activity in different supercompiler implementation, for example
[I8TAT21TI6120], to cite a few. In comparison, other metacomputation methods
seem neglected, maybe with the exception of [15].

There is extensive literature on software testing, and in particular, on black-
box and equivalence partitioning testing [5]. Another interesting testing method
is based on metacomputation techniques as well — neighborhood testing [4/3].
While a detailed comparison with the technique outlined here is out of scope, we
can note important high-level differences. Neighborhood testing is a white-box
testing method, requiring access to the source of the unit under test (and, if
available, also its executable specification). It can be used — in principle — for
any language, as long as we have an interpreter for that language, written in
the language, for which a neighborhood analyzer exists. We consider neighbor-
hood testing being a “second-order” meta-technique — requiring 2 meta-system
transitions — to be the main difficulty for practical application. These two lev-
els of interpretative overhead will probably make it harder to achieve sufficient
performance in practical implementations. On the other hand, neighborhood
testing is a much more powerful method (in certain formal sense subsuming all
existing test coverage criteria), so its successful practical application remains an
interesting area of study.

Other test-generation methods apply techniques similar to driving — usually
under the umbrella term of “symbolic execution”. A recent variation — dynamic

180 D. Krustev

symbolic execution — is employed in successful test-generation tools like Microsoft
Pex [10]. Again, we omit a detailed comparison between dynamic symbolic ex-
ecution and driving, noting instead some pragmatic differences with Pex. Pex
is heavily geared towards supporting well idiomatic code written in OO .NET
languages like C#. It handles surprisingly well complicated program logic using
a combination of different built-in types. When faced with data types exhibit-
ing deep recursive structure, however, it usually requires help from the user to
generate good tests m The approach we propose here deals well with recursive
algebraic data types, so it can be seen as complementary to tools like Pex.

There are many methods for generating test data with specific structure (for
example grammar-based, or XML-Schema-based [5]). Specialized tools exist for
generating correct test programs in particular programming languages [T619].
A generic technique for test generation, like the one presented here, can hardly
compete in efficiency with such specialized techniques. At the same time, driving-
based exploration is very flexible (as seen in most of our examples) and can
probably be combined with similar techniques to reduce the search space for
test generation (as we hinted for the lambda-calculus example).

We have already noted, that F# code quotations [24] — which helped a lot
in making our toolkit feasible with relatively small effort — are very similar in
design to languages like MetaML, and language extensions like Template Haskell
[25122). Similar facilities are starting to appear for other popular languages. We
can thus imagine a version of our toolkit for such languages, leveraging on the
corresponding meta-programming support.

7 Conclusions and Future Work

We describe an on-going experiment to make more accessible some of the less
well-known metacomputation methods (like program tabulation/inversion or
neighborhood analysis) — by re-implementing them for a large subset of a pop-
ular standard language (F#), which is supported by an efficient run-time and
a rich IDE and other developer tools. The F# support for meta-programming
(code quotations) greatly facilitated this effort.

To the best of our knowledge, this is the first implementation of URA-like
program tabulation for a higher-order functional language. Aside from the spe-
cial challenges posed by higher-order functions, we rely on already established
metacomputation techniques. We described parts of the implementation in more
detail, in the hope that some of the insights, gained in attempting to make driv-
ing and tabulation reasonably efficient, can be useful in similar contexts. An
interesting practical application of program tabulation is also described in some
detail — generating black-box tests from partitioning specifications.

Our system, in its current state, can handle successfully moderately-sized pro-
grams, and generate small-sized partition-based tests (similar in size or slightly

7 1t is perfectly possible that many of the current limitations of Pex will be lifted in
future versions.

A Metacomputation Toolkit for a Subset of Ff 181

larger than the examples in Sect. . Our experiments indicate, that more op-
timization effort is needed to make the test-generation approach practical in a
wider variety of scenarios. It is not clear at this point if modest low-level fine-
tuning will be enough, or we need to more drastically re-think some of the key
algorithms, such as the treatment of decomposition nodes during tabulation.
Another interesting optimization option to try would be to re-use the underly-
ing F# run-time for performing weak reductions, and revert to interpretative
driving for treating reduction under binders, and for information propagation
inside match-expression branches.

There are a lot of possibilities to make the toolkit more “user-friendly”. As
suggested by one of the reviewers, we could automatically convert some primitive
data types (such as int) into suitable replacements from the reflected prelude.
A non-trivial issue is how to select the best replacement in each case. (We could
supply an implementation of arbitrary signed integers in the prelude, but it
would be less efficient during tabulation in cases, where the user actually needs
only natural numbers.) Another improvement, which is in progress, is to fill holes
in generated tests by arbitrary values of the appropriate type and convert back
each test into a normal F+# value.

Apart from the potentially interesting future tasks hinted in the previous
section, we can list a few more interesting ideas for future experiments:

— extend driving to a full supercompiler for the F# subset; check if program
tabulation/inversion can be made more efficient by using the process graphs
generated during supercompilation, instead of the potentially infinite process
trees;

— modify driving to use call-by-need instead of call-by-name, and see what
performance benefits it can bring to metacomputation methods (other than
supercompilation);

— implement neighborhood analysis, and experiment with potential practical
applications (like neighborhood testing).

8 Acknowledgments

The author would like to thank Ilya Klyuchnikov and Neil Mitchell for the helpful
comments and suggestions for improving the presentation in this article.

References

1. Abramov, S., Gliick, R.: The universal resolving algorithm and its correctness:
inverse computation in a functional language. Science of Computer Programming
43(2-3), 193-229 (2002)

2. Abramov, S., Gliick, R., Klimov, Y.: An universal resolving algorithm for inverse
computation of lazy languages. Perspectives of Systems Informatics pp. 27-40
(2007)

182

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Krustev

Abramov, S.M.: Metacomputation and program testing. In: Proceedings of the 1st
International Workshop on Automated and Algorithmic Debugging. pp. 121-135.
Link6ping University, Linkdping, Sweden (1993)

Abramov, S.M.: Metavychisleniya i ih primenenie (Metacomputation and its ap-
plications). Nauka, Moscow (1995)

Ammann, P.; Offutt, J.: Introduction to Software Testing. Cambridge University
Press (2008)

Bolingbroke, M., Peyton Jones, S.: Supercompilation by evaluation. In: Proceedings
of the third ACM Haskell symposium on Haskell. pp. 135-146. ACM (2010)
Clément, D., Despeyroux, T., Kahn, G., Despeyroux, J.: A simple applicative lan-
guage: Mini-ML. In: Proceedings of the 1986 ACM conference on LISP and func-
tional programming. pp. 13-27. ACM (1986)

Coquand, T., Kinoshita, Y., Nordstrom, B., Takeyama, M.: A simple type-theoretic
language: Mini-TT. From Semantics to Computer Science: Essays in Honour of
Gilles Kahn (2009)

Gliick, R., Klimov, A.V.: Occam’s razor in metacomputation: the notion of a per-
fect process tree. In: Cousot, P., Falaschi, M., Filé, G., Rauzy, A. (eds.) Static
Analysis. Proceedings. Lecture Notes in Computer Science, vol. 724, pp. 112-123.
Springer-Verlag (1993)

Godefroid, P., de Halleux, P., Nori, A., Rajamani, S., Schulte, W., Tillmann, N.,
Levin, M.: Automating software testing using program analysis. Software, IEEE
25(5), 30-37 (2008)

Hamilton, G.: Distillation: extracting the essence of programs. In: Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation. pp. 61-70. ACM (2007)

Jonsson, P.A., Nordlander, J.: Positive supercompilation for a higher order call-
by-value language. SIGPLAN Not. 44(1), 277-288 (Jan 2009)

Klyuchnikov, I.: The ideas and methods of supercompilation. Practice of Functional
Programming (7) (2011), in Russian

Klyuchnikov, I., Romanenko, S.: Proving the equivalence of higher-order terms by
means of supercompilation. In: Perspectives of Systems Informatics’09. pp. 193—
205. Springer (2010)

Klyuchnikov, I.: GitHub project: ”Metacomputation and its Applications” -
now for SLL (2011), https://github. com/ilya-klyuchnikov/sll-meta-haskell,
[Online; accessed 13-March-2012]

Koopman, P., Plasmeijer, R.: Systematic synthesis of functions. In: H. Nilsson
(ed.), Selected papers from the Seventh Symposium on Trends in Functional Pro-
gramming (TFP06), Nottingham, United Kingdom, 19-21 April 2006. pp. 35-54.
Bristol: Intellect Books (2006)

Mitchell, N.: Rethinking supercompilation. In: ACM SIGPLAN Notices. vol. 45,
pp. 309-320. ACM (2010)

Mitchell, N.; Runciman, C.: A supercompiler for core Haskell. In: et al., O.C. (ed.)
IFL 2007. LNCS, vol. 5083, pp. 147-164. Springer-Verlag (May 2008)

Reich, J.S., Naylor, M., Runciman, C.: Lazy generation of canonical programs.
In: 23rd Symposium on Implementation and Application of Functional Languages
(2011)

Reich, J., Naylor, M., Runciman, C.: Supercompilation and the Reduceron. In:
Proceedings of the Second International Workshop on Metacomputation in Russia
(2010)

Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall
series in artificial intelligence, Prentice Hall (2003)

https://github.com/ilya-klyuchnikov/sll-meta-haskell

22.

23.

24.

25.

26.

A Metacomputation Toolkit for a Subset of Ff 183

Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN workshop on Haskell. pp. 1-16. ACM (2002)
Sgrensen, M.H., Gliick, R.: Introduction to supercompilation. In: Hatcliff, J., Mo-
gensen, T., Thiemann, P. (eds.) Partial Evaluation: Practice and Theory. Lecture
Notes in Computer Science, vol. 1706, pp. 246-270. Springer-Verlag (1999)

Syme, D.: Leveraging .NET meta-programming components from F#: integrated
queries and interoperable heterogeneous execution. In: Proceedings of the 2006
workshop on ML. pp. 43-54. ACM (2006)

Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theoretical computer science 248(1-2), 211-242 (2000)

Turchin, V.: The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 292-325 (July 1986)

	Introduction
	``Decompiling'' F# quotations
	Process-tree Construction
	Driving and Process Trees
	Driving Configurations
	Optimizations of the Driving Implementation

	Process-tree Based Program Tabulation and Inversion
	Black-box Tests Based on Partitioning Specifications
	Related Work
	Conclusions and Future Work
	Acknowledgments

