Formalizing and Implementing

Multi-Result Supercompilation

Illya G. Klyuchnikov ~ Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

2012-07 / Meta 2012

1/29



@ Different types of supercompilation
@ SC: Deterministic/traditional SC (a function)
o NDSC: Non-deterministic SC (a relation)
@ MRSC: Multi-result SC (a multi-valued function)

2/29



@ Different types of supercompilation
@ SC: Deterministic/traditional SC (a function)
o NDSC: Non-deterministic SC (a relation)
@ MRSC: Multi-result SC (a multi-valued function)

© Nice features of multi-result supercompilation
o Finiteness of trees of completed graphs
@ Decoupling whistle and generalization

2/29



@ Different types of supercompilation
@ SC: Deterministic/traditional SC (a function)
o NDSC: Non-deterministic SC (a relation)
@ MRSC: Multi-result SC (a multi-valued function)

© Nice features of multi-result supercompilation
o Finiteness of trees of completed graphs
@ Decoupling whistle and generalization

© The core of the MRSC Toolkit

@ Two representations for graphs of configurations
@ Operations on S-graphs

2/29



@ Different types of supercompilation
@ SC: Deterministic/traditional SC (a function)
o NDSC: Non-deterministic SC (a relation)
@ MRSC: Multi-result SC (a multi-valued function)

© Nice features of multi-result supercompilation
o Finiteness of trees of completed graphs
@ Decoupling whistle and generalization

© The core of the MRSC Toolkit
@ Two representations for graphs of configurations

@ Operations on S-graphs

@ Conclusions

2/29



@ Different types of supercompilation
@ SC: Deterministic/traditional SC (a function)
@ NDSC: Non-deterministic SC (a relation)
@ MRSC: Multi-result SC (a multi-valued function)

3/29



SC: Deterministic/traditional SC (a function)

Ja : foldable(g, 5, )

Fold

(Fold) g — fold(g, B, a)

(Drive) Ao : foldable(g, 8, o) —dangerous(g, ) cs = driveStep(c)

g — addChildren(g, S, cs)
(Rebuild) Ao : foldable(g, 8, o) dangerous(g, 5) ¢’ = rebuilding(g, ¢)
g — rebuild(g, B, ')

dangerous(g, () appears in (Drive) and (Rebuild)! ]
(Drive) and (Rebuild) are mutually exclusive. J
(Rebuild) is used as a last resort if (Drive) is blocked by dangerous(g, ). .. J

4/29



SC: Deterministic/traditional SC (a function)

A finite sequence of graphs:

5/29



NDSC: Non-deterministic SC (a relation)

Ja : foldable(g, 5, )

Fold
(Fold) g — fold(g, B, a)
) Aa : foldable(g, 8, o) c¢s = driveStep(c)
(Drive) -
g — addChildren(g, S, cs)
(Rebuild) Aa : foldable(g, 3, a) c e re/bui/dings(c)
g — rebuild(g, 8, ¢)

dangerous(g, B) has disappeard from (Drive) and (Rebuild)! ]
(Drive) and (Rebuild) are not mutually exclusive. J
(Drive) is always applicable. J

6/29



NDSC: Non-deterministic SC (a relation)

A (possibly) infinite tree of graphs:

7/29



MRSC: Multi-result SC (a multi-valued function)

Ja : foldable(g, B, «)

Fold
(Fold) g — fold(g, B, a)
(Drive) Ao : foldable(g, 8, o) —dangerous(g, ) cs = driveStep(c)
rive
g — addChildren(g, 53, cs)
(Rebuild) Aa : foldable(g, 3, a) c e re/buildings(c)
g — rebuild(g, 8, ¢’)
dangerous(g, [3) reappears in (Drive), but not in (Rebuild)! J
(Drive) and (Rebuild) are not mutually exclusive. ]
(Drive) is not always applicable.
—dangerous(g, () ensures termination. . . J

8/29



MRSC: Multi-result SC (a multi-valued function)

A (desirably) finite tree of graphs:

>

e O

9/29



© Nice features of multi-result supercompilation
@ Finiteness of trees of completed graphs
@ Decoupling whistle and generalization

10/29



MRSC: Finiteness of trees of completed graphs

Theorem (Finiteness of sets of completed graphs)

If

@ any infinite branch in a graph of configurations is detected by the predicate
dangerous,

@ for any configuration c the set rebuildings(c) is finite,
@ the number of successive rebuildings cannot be infinite (i.e. the chain
1,6, C3, - . ., where cyy1 € rebuildings(cy) is always finite),

then the application of the MRSC-rules produces a finite set of completed graphs
of configurations.

Proof.

Collapse all successive rebuildings into one rebuilding. Everything else follows
from Konig lemma (using arguments similar to those in the Sgrensen’s proof. [

4

| A\

11/29



MRSC: Decoupling whistle and generalization

Ja : foldable(g, B, «)

Fold
(Fold) g — fold(g, B, a)
(Drive) Aa : foldable(g, 8, o) —dangerous(g, 5) cs = driveStep(c)
rive
g — addChildren(g, f3, cs)
(Rebuild) Aa : foldable(g, 8, o) ¢’ € rebuildings(c)
ebui

g — rebuild(g, 8, c)

Observation
dangerous(g, () does not appear in (Rebuild).

The whistle does not have to know anything about rebuilding (generalization).

12/29



© The core of the MRSC Toolkit
@ Two representations for graphs of configurations
@ Operations on S-graphs

13/29



T-representation (= traditional, tree-based)

A T-graph:
root
leaves\(
@ Good for top-down traversal of graphs.

Convenient when transforming a graph into a residual program.

However, when making additions to a T-graph in two different ways, we
have to do some copying.

However, a deterministic supercompiler deals with a single graph! Hence, no
copying is required. . .

14/29



Why T-representation is not good for MRSC?

A problem

@ MRSC is able to produce millions of graphs of configurations.

@ Huge memory consumption, a lot of copying...

A simple solution
Sharing!

A sophisticated solution (Sergei Grechanik)

Hypergraphs, hyperedges.

15/29



S-representation (= based on spaghetti-stacks)

An S-graph:

root

leaves\(d b d b]

@ Good, when making additions to an S-graph in two different ways, as no
copying is required.

@ Convenient for a multi-result supercompiler dealing with large collections of
graph!

16/29



Reuse of nodes in S-graphs

root root

leaves leaves

(a) After adding x. (b) After adding y

@ S-graphs are immutable!
@ “Modifying” an S-graph in different ways we create new S-graphs.

@ The original S-graphs and derived S-graphs share common parts.

17/29



An implementation in Scala: T-graphs

type TPath = List[Int]

case class TNode[C, D](
conf: C, outs: List[TEdge[C, D]],
base: Option[TPath], tPath: TPath)

case class TEdge[C, D](
node: TNode[C, D], driveInfo: D)

case class TGraph[C, D](
root: TNode[C, D], leaves: List[TNode[C, D]1)

@ C is the type of configurations
@ D is the type of edge labels, produced by driving.
@ TPath is the type of paths to nodes.

18/29



An implementation in Scala: S-graphs

type SPath = List[Int]

case class SNode[C, D](
conf: C, in: SEdge[C, D],
base: Option[SPath], sPath: SPath)

case class SEdge[C, D](
node: SNode[C, D], driveInfo: D)

case class SGraph[C, D](
incompletelLeaves: List[SNode[C, D]],
completelLeaves: List[SNode[C, D]],
completeNodes: List[SNode[C, D]]) {

val isComplete = incompleteleaves.isEmpty
val current = if (isComplete) null else incompleteLeaves.head

19/29



Rewrite steps for S-graphs

sealed trait GraphRewriteStep[C, D]

case class CompleteCurrentNodeStep[C, D]
extends GraphRewriteStep[C, D]

case class AddChildNodesStep[C, D](ns: List[(C, D)])
extends GraphRewriteStep[C, D]

case class FoldStep[C, D](to: SPath)
extends GraphRewriteStep[C, D]

case class RebuildStep[C, D](c: Q)
extends GraphRewriteStep[C, D]

These rewriting operations form a “basis” sufficient for building S-graphs during
multi-result supercompilation. (Unlike deterministic supercompiation, there are
no roll-backs!)

20/29



Rewrite steps for S-graphs: Complete

o CompleteCurrentNodeStep — marks the current leaf as a completed one.
Used in driving.

21/29



Rewrite steps for S-graphs: Fold

@ FoldStep — performs a folding.

22/29



Rewrite steps for S-graphs: AddChildNodes

@ AddChildNodesStep — adds child nodes to the current node. Used in
driving.

23/29



Rewrite steps for S-graphs: Rebuild

@ RebuildStep — performs a lower rebuilding of the graph (by replacing the
configuration in the current node).

24/29



MRSC “middleware” for supercompiler construction

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)
extends Iterator[SGraph[C, D]] { ... }

@ A concrete supercompiler is required to provide an implementation for the
method steps.

@ steps does not rewrite graphs: it only generates “commands” to be
executed by the MRSC Toolkit.

@ The main loop of supercompilation is implemented as an iterator that
produces graphs in a lazy way, by demand.

25/29



The MRSC Toolkit: publications

o llya Klyuchnikov and Sergei Romanenko. Multi-Result Supercompilation as
Branching Growth of the Penultimate Level in Metasystem Transitions.
Ershov Informatics Conference 2011. (Revised version is in LNCS 7162, pp.
210—226, 2012).

@ llya Klyuchnikov and Sergei Romanenko. MRSC: a toolkit for building
multi-result supercompilers. Preprint 77. Keldysh Institute of Applied
Mathematics, Moscow. 2011.
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77

@ Andrei V. Klimov, llya G. Klyuchnikov, Sergei A. Romanenko. Automatic
verification of counter systems via domain-specific multi-result
supercompilation. Preprint 19. Keldysh Institute of Applied Mathematics,
Moscow. 2012 http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19

@ Andrei V. Klimov, llya G. Klyuchnikov, Sergei A. Romanenko Implementing
a domain-specific multi-result supercompiler by means of the MRSC toolkit.
Preprint 24. Keldysh Institute of Applied Mathematics, Moscow. 2012.
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24

26/29


http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24

The MRSC Toolkit: a public repository at GitHub

https://github.com/ilya-klyuchnikov/mrsc

There one can find:

The Core of the MRSC Toolkit.
A domain-specific supercompiler for counter systems.
The results of verification of a number of communication protocols.

PFP: a toolkit for implementing multi-result supercompilers for functional
languages.

27/29


https://github.com/ilya-klyuchnikov/mrsc

@ Conclusions

28/29



Conclusions

@ 3 kinds of supercompilation (deterministic, non-deterministic and
multi-result one) can be specified in a uniform way by graph rewriting rules.

@ Under certain conditions, a multi-result supercompiler produces a finite
number of residual programs and terminates.

o Conceptually, multi-result supercompilation is simpler than deterministic,
single-result supercompilation, since the whistle and the generalization
algorithm can be completely decoupled.

@ The use of immutable data-structures (S-graphs) and data sharing in the
implementation of multi-result supercompilation, makes it possible to
generate thousands of graphs, while still keeping memory consumption
within reasonable limits.

29/29



	Different types of supercompilation
	SC: Deterministic/traditional SC (a function)
	NDSC: Non-deterministic SC (a relation)
	MRSC: Multi-result SC (a multi-valued function)

	Nice features of multi-result supercompilation
	Finiteness of trees of completed graphs
	Decoupling whistle and generalization

	The core of the MRSC Toolkit
	Two representations for graphs of configurations
	Operations on S-graphs

	Conclusions

