
Formalizing and Implementing
Multi-Result Supercompilation

Ilya G. Klyuchnikov Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

2012-07 / Meta 2012

1/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

2/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

2/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

2/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

2/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

3/29



SC: Deterministic/traditional SC (a function)

(Fold)
∃𝛼 : foldable(g , 𝛽, 𝛼)

g → fold(g , 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) ¬dangerous(g , 𝛽) cs = driveStep(c)

g → addChildren(g , 𝛽, cs)

(Rebuild)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) dangerous(g , 𝛽) c ′ = rebuilding(g , c)

g → rebuild(g , 𝛽, c ′)

dangerous(g , 𝛽) appears in (Drive) and (Rebuild)!

(Drive) and (Rebuild) are mutually exclusive.

(Rebuild) is used as a last resort if (Drive) is blocked by dangerous(g , 𝛽). . .

4/29



SC: Deterministic/traditional SC (a function)

A finite sequence of graphs:

-

. . .

. . .

-

F

R

D

5/29



NDSC: Non-deterministic SC (a relation)

(Fold)
∃𝛼 : foldable(g , 𝛽, 𝛼)

g → fold(g , 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) cs = driveStep(c)

g → addChildren(g , 𝛽, cs)

(Rebuild)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) c ′ ∈ rebuildings(c)

g → rebuild(g , 𝛽, c ′)

dangerous(g , 𝛽) has disappeard from (Drive) and (Rebuild)!

(Drive) and (Rebuild) are not mutually exclusive.

(Drive) is always applicable.

6/29



NDSC: Non-deterministic SC (a relation)

A (possibly) infinite tree of graphs:

-

. . .

. . .

. . .

D

D

. . .

-

F

R

D

. . .

. . .

. . .

D

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

7/29



MRSC: Multi-result SC (a multi-valued function)

(Fold)
∃𝛼 : foldable(g , 𝛽, 𝛼)

g → fold(g , 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) ¬dangerous(g , 𝛽) cs = driveStep(c)

g → addChildren(g , 𝛽, cs)

(Rebuild)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) c ′ ∈ rebuildings(c)

g → rebuild(g , 𝛽, c ′)

dangerous(g , 𝛽) reappears in (Drive), but not in (Rebuild)!

(Drive) and (Rebuild) are not mutually exclusive.

(Drive) is not always applicable.
¬dangerous(g , 𝛽) ensures termination. . .

8/29



MRSC: Multi-result SC (a multi-valued function)

A (desirably) finite tree of graphs:

-

. . .

!

D

. . .

-

F

R

D

. . .

!

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

9/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

10/29



MRSC: Finiteness of trees of completed graphs

Theorem (Finiteness of sets of completed graphs)

If

1 any infinite branch in a graph of configurations is detected by the predicate
dangerous,

2 for any configuration c the set rebuildings(c) is finite,

3 the number of successive rebuildings cannot be infinite (i.e. the chain
c1, c2, c3, . . ., where ck+1 ∈ rebuildings(ck) is always finite),

then the application of the MRSC-rules produces a finite set of completed graphs
of configurations.

Proof.
Collapse all successive rebuildings into one rebuilding. Everything else follows
from König lemma (using arguments similar to those in the Sørensen’s proof.

11/29



MRSC: Decoupling whistle and generalization

(Fold)
∃𝛼 : foldable(g , 𝛽, 𝛼)

g → fold(g , 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) ¬dangerous(g , 𝛽) cs = driveStep(c)

g → addChildren(g , 𝛽, cs)

(Rebuild)
̸ ∃𝛼 : foldable(g , 𝛽, 𝛼) c ′ ∈ rebuildings(c)

g → rebuild(g , 𝛽, c ′)

Observation

dangerous(g , 𝛽) does not appear in (Rebuild).

Conclusion

The whistle does not have to know anything about rebuilding (generalization).

12/29



Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

13/29



T-representation (= traditional, tree-based)

A T-graph:

leaves

root

Good for top-down traversal of graphs.

Convenient when transforming a graph into a residual program.

However, when making additions to a T-graph in two different ways, we
have to do some copying.

However, a deterministic supercompiler deals with a single graph! Hence, no
copying is required. . .

14/29



Why T-representation is not good for MRSC?

A problem

MRSC is able to produce millions of graphs of configurations.

Huge memory consumption, a lot of copying. . .

A simple solution

Sharing!

A sophisticated solution (Sergei Grechanik)

Hypergraphs, hyperedges.

15/29



S-representation (= based on spaghetti-stacks)

An S-graph:

leaves

root

Good, when making additions to an S-graph in two different ways, as no
copying is required.

Convenient for a multi-result supercompiler dealing with large collections of
graph!

16/29



Reuse of nodes in S-graphs

x y

leaves

root

(a) After adding x.

x y

leaves

root

(b) After adding y

S-graphs are immutable!

“Modifying” an S-graph in different ways we create new S-graphs.

The original S-graphs and derived S-graphs share common parts.

17/29



An implementation in Scala: T-graphs

type TPath = List[Int]

case class TNode[C, D](
conf: C, outs: List[TEdge[C, D]],

base: Option[TPath], tPath: TPath)

case class TEdge[C, D](
node: TNode[C, D], driveInfo: D)

case class TGraph[C, D](
root: TNode[C, D], leaves: List[TNode[C, D]])

C is the type of configurations.

D is the type of edge labels, produced by driving.

TPath is the type of paths to nodes.

18/29



An implementation in Scala: S-graphs

type SPath = List[Int]

case class SNode[C, D](
conf: C, in: SEdge[C, D],

base: Option[SPath], sPath: SPath)

case class SEdge[C, D](
node: SNode[C, D], driveInfo: D)

case class SGraph[C, D](
incompleteLeaves: List[SNode[C, D]],

completeLeaves: List[SNode[C, D]],

completeNodes: List[SNode[C, D]]) {

val isComplete = incompleteLeaves.isEmpty
val current = if (isComplete) null else incompleteLeaves.head

}

19/29



Rewrite steps for S-graphs

sealed trait GraphRewriteStep[C, D]

case class CompleteCurrentNodeStep[C, D]
extends GraphRewriteStep[C, D]

case class AddChildNodesStep[C, D](ns: List[(C, D)])
extends GraphRewriteStep[C, D]

case class FoldStep[C, D](to: SPath)
extends GraphRewriteStep[C, D]

case class RebuildStep[C, D](c: C)
extends GraphRewriteStep[C, D]

These rewriting operations form a “basis” sufficient for building S-graphs during
multi-result supercompilation. (Unlike deterministic supercompiation, there are
no roll-backs!)

20/29



Rewrite steps for S-graphs: Complete

Complete−−−−−→

CompleteCurrentNodeStep — marks the current leaf as a completed one.
Used in driving.

21/29



Rewrite steps for S-graphs: Fold

Fold−−→

FoldStep — performs a folding.

22/29



Rewrite steps for S-graphs: AddChildNodes

AddChildNodes−−−−−−−−−→

AddChildNodesStep — adds child nodes to the current node. Used in
driving.

23/29



Rewrite steps for S-graphs: Rebuild

c1

Rebuild−−−−→

c2

RebuildStep — performs a lower rebuilding of the graph (by replacing the
configuration in the current node).

24/29



MRSC “middleware” for supercompiler construction

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

A concrete supercompiler is required to provide an implementation for the
method steps.

steps does not rewrite graphs: it only generates “commands” to be
executed by the MRSC Toolkit.

The main loop of supercompilation is implemented as an iterator that
produces graphs in a lazy way, by demand.

25/29



The MRSC Toolkit: publications

Ilya Klyuchnikov and Sergei Romanenko. Multi-Result Supercompilation as
Branching Growth of the Penultimate Level in Metasystem Transitions.
Ershov Informatics Conference 2011. (Revised version is in LNCS 7162, pp.
210—226, 2012).

Ilya Klyuchnikov and Sergei Romanenko. MRSC: a toolkit for building
multi-result supercompilers. Preprint 77. Keldysh Institute of Applied
Mathematics, Moscow. 2011.
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko. Automatic
verification of counter systems via domain-specific multi-result
supercompilation. Preprint 19. Keldysh Institute of Applied Mathematics,
Moscow. 2012 http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko Implementing
a domain-specific multi-result supercompiler by means of the MRSC toolkit.
Preprint 24. Keldysh Institute of Applied Mathematics, Moscow. 2012.
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24

26/29

http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24


The MRSC Toolkit: a public repository at GitHub

https://github.com/ilya-klyuchnikov/mrsc

There one can find:

The Core of the MRSC Toolkit.

A domain-specific supercompiler for counter systems.

The results of verification of a number of communication protocols.

PFP: a toolkit for implementing multi-result supercompilers for functional
languages.

. . .

27/29

https://github.com/ilya-klyuchnikov/mrsc


Outline

1 Different types of supercompilation
SC: Deterministic/traditional SC (a function)
NDSC: Non-deterministic SC (a relation)
MRSC: Multi-result SC (a multi-valued function)

2 Nice features of multi-result supercompilation
Finiteness of trees of completed graphs
Decoupling whistle and generalization

3 The core of the MRSC Toolkit
Two representations for graphs of configurations
Operations on S-graphs

4 Conclusions

28/29



Conclusions

3 kinds of supercompilation (deterministic, non-deterministic and
multi-result one) can be specified in a uniform way by graph rewriting rules.

Under certain conditions, a multi-result supercompiler produces a finite
number of residual programs and terminates.

Conceptually, multi-result supercompilation is simpler than deterministic,
single-result supercompilation, since the whistle and the generalization
algorithm can be completely decoupled.

The use of immutable data-structures (S-graphs) and data sharing in the
implementation of multi-result supercompilation, makes it possible to
generate thousands of graphs, while still keeping memory consumption
within reasonable limits.

29/29


	Different types of supercompilation
	SC: Deterministic/traditional SC (a function)
	NDSC: Non-deterministic SC (a relation)
	MRSC: Multi-result SC (a multi-valued function)

	Nice features of multi-result supercompilation
	Finiteness of trees of completed graphs
	Decoupling whistle and generalization

	The core of the MRSC Toolkit
	Two representations for graphs of configurations
	Operations on S-graphs

	Conclusions

