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Abstract. We sum up some current results of the theoretical study of
the reasons of successful application of supercompilers to verification of
monotonic counter systems representing the models of practical protocols
and other parallel systems. Three supercompilation-like algorithms for
forward analysis of counter systems and a procedure interactively invok-
ing a supercompiler to solve the coverability problem are presented. It
always terminates for monotonic counter systems. The algorithms are
considered as an instance of multi-result supercompilation (proposed
by I. Klyuchnikov and S. Romanenko) for special-purpose analysis of
counter systems.

We speculate on the insufficiency of single-result supercompilation for
solving the reachability and coverability problems and the necessity of
multi-result supercompilation. Related work by Gilles Geeraerts et al.
on the algorithmic schema referred to as ‘Expand, Enlarge and Check’
(EEC) is discussed. We regard the work on EEC as a theory of domain-
specific multi-result supercompilation for well-structured transition sys-
tems. The main purpose of the theory is to prune combinatorial search
for suitable residual graphs as much as possible. Based of the EEC the-
ory and our results, several levels of the restrictions of the combinatorial
search dependent on the properties of a subject transition system are
revealed: some minimal restrictions when solving reachability for arbi-
trary transition systems; more efficient search (according to the EEC
schema) in the case of well-structured transitions systems; iterative calls
of a single-result supercompiler with a varying parameter of generaliza-
tion for monotonic counter systems. On the other hand, no reasonable
practical class of transition systems, for which the reachability or cover-
ability is always solvable by a version of single-result supercompilation
is known yet.
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1 Introduction

Supercompilation [27] is a forward analysis and transformation method. For-
ward means that the traces of program execution are elaborated starting from a
set of initial states to a certain depth. Respectively, backward analysis is based
on elaboration of traces backwards from a set of final states. Many other for-
ward and backward analysis techniques have been developed for specific classes
of algorithm systems, and their comparison with supercompilation and cross-
fertilization is a productive research topic.1

Traditionally supercompilation has been developed for programs, while in
this paper we deal with transition systems and solving the reachability problems
(reachability and coverability) for them.

Programs (algorithms) and transition systems differ in some respects:

– (Essential) The result of evaluation of a program is its final state. (In more
detail: the sense of a program is a mapping from a set of initial states to a
set of final states). The outcome of a transition system comprises all states
reachable from a set of initial states and even more up to the set of all
traces. Different outcomes are considered depending on a problem under
consideration. For the reachability problems the set of all reachable states is
used.

– (Inessential) Programs are usually deterministic, while transition systems
nondeterministic. Nondeterministic systems are somewhat technically sim-
pler for supercompilation. (There is no need of propagating negative condi-
tions to else branches.)

The tasks of verification of programs or transition systems allows for easy
and natural comparison of methods: if some method proves more properties
than another one, the former is more “powerful” than the latter. I. Klyuchnikov
and S. Romanenko came to the idea of multi-result supercompilation (MRSC)
[15] while dealing with proving program equivalence by supercompilation: two
programs are equivalent when the respective residual terms coincide. A multi-
result supercompiler, which returns a set of residual programs instead of just one
in case of single-results supercompilation, allows for proving the equivalence of
more programs: two programs are equivalent when the respective sets of residual
programs intersect.

Solving the reachability problem (whether a given set of states is reachable
from a given set of initial states by a program or a transition system) turned
out to be even more sensible to the use of multi-result supercompilation instead
of single-result one.

The goal of this paper is to demonstrate and argue that, and under what con-
ditions, multi-result supercompilation is capable of solving the reachability and
coverability problems for transition systems, while single-result supercompilers
solve the problem only occasionally.

1 “Backward supercompilation” is also a promising topic, as well as “multi-directed”
analysis from arbitrary intermediate program points in both directions. V. Turchin
initiated this research in [25,28], but much work is still required.
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History and Related Work. This paper continues research [12,13,14] into
why and how supercompilers are capable of solving the reachability and cover-
ability problems for counter systems where the set of target states is upward-
closed and the set of initial states has a certain form. The idea of verification
by supercompilation stems from the pioneering work by V. Turchin [26]. The
fact that a supercompiler can solve these problems for a lot of practically in-
teresting counter systems has been experimentally discovered by A. Nemytykh
and A. Lisitsa [19,21] with a Refal supercompiler SCP4 [24] and then the re-
sult has been reproduced with the Java supercompiler JScp [10,11] and other
supercompilers.

In paper [14] two classic versions of the supercompilation algorithm are for-
mulated for counter systems, using the notation close to the works on Petri nets
and transition systems. Another paper [13] contains a simplification of one of
them (namely, with the so-called lower-node generalization) by clearing out the
details that have been found formally unnecessary for solving the coverability
problem. The algorithms are reproduced here.

It has been found that the coverability problem for monotonic counter sys-
tems is solvable by iterative application of a supercompiler varying an integer
parameter l = 0, 1, 2, . . . , that controls termination of driving and generalization
of integers: small non-negative integers less than l are not allowed to be gener-
alized to a variable.2 Papers [13,14] contain a proof that there exists such value
l that the supercompiler solves the problem. (Remarkably, the proof is based on
the existence of a non-computable upper estimate of l.)

In [14] (and here in Algorithms 2 and 3) this rule is used together with the
traditional whistle3 based on a well-quasi-order: the whistle is not allowed to
blow if two configurations under test differ only in integers less than l. In [13]
(and here in Algorithm 1) this rule is used in pure form as an imperative: every
integer greater or equal to l is immediately generalized.

The iterative procedure of application a supercompiler demonstrates useful-
ness of gradual specialization: starting with a trivial result of supercompilation
gradually produce more and more specialized versions until one is obtained that
satisfies the needs. This differs from the traditional design of supercompilers,
which try to produce the most specific residual code at once.

These algorithms may be considered as an instance of multi-result super-
compilation [15]: to solve a problem one varies some of the degrees of freedom
inherent in supercompilation, obtains several residual programs and chooses a
better one w.r.t. his specific goals. They have shown the usefulness of multi-result
supercompilation for proving the equivalence of expressions and in two-level su-
percompilation.

In our work, a problem unsolvable by single-result supercompilation is solv-
able by enumerating a potentially infinite set of supercompilation results param-
eterized by an integer.

2 In terms of Petri net theory this phrase sounds as follows: integer values less than l
are not allowed to be accelerated, i.e., be replaced with a special value ω.

3 In supercompilation jargon, a whistle is a termination rule.
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The decidability of the coverability problem for well-structured transition sys-
tems, which counter systems belong to, is well-known [1]. The iterative procedure
of application of the supercompilers presented below is close to the algorithmic
schema referred to as ‘Expand, Enlarge and Check’ (EEC) [5,6] for solving the
coverability problem of well-structured transition systems (WSTS). We discuss
their relation is Section 4.

Outline. The paper is organized as follows.
In Section 2 we recall some known notions from the theory of transition

systems as well as give specific notions from supercompilation theory used in
the algorithms presented in Section 3.3. The algorithms are reproduced from
[13,14] to illustrate the idea of multi-result supercompilation applied to solving
the coverability problem. (If you are familiar with these papers, you may go
immediately to Section 4 and return back when needed.)

Section 4 contains a new contribution and answers the question in the title: it
takes a more general look at the methods of solving the reachability problems for
transition systems; discusses the related work by G. Geeraerts et al., which we
regard as a theory of multi-result supercompilation for well-structured transition
systems (WSTS); and reveal an hierarchy of properties of transition systems,
which allows for pruning extra enumeration of residual graphs and making multi-
result supercompilation more efficient. Monotonic counter systems turned out to
be the most efficient case in this hierarchy.

In Section 5 we discuss related work and in Section 6 conclude.

2 Basic Notions

2.1 Transition Systems

We use the common notions of transition system, monotonic transition system,
well-structured transition system, counter system and related ones.

A transition system S is a tuple 〈S,⇒〉 such that S is a possibly infinite set
of states, ⇒⊆ S × S a transition relation.

A transition function Post(S, s) is used to denote the set {s′ | s ⇒ s′} of
one-step successors of s.4

Post∗(S, s) denotes the set {s′ | s ∗⇒ s′} of successors of s.
Reach(S, I) denotes the set

⋃
s∈I Post

∗(S, s) of states reachable from a set of
states I.

We say a transition system 〈S,⇒〉 is (quasi-, partially) ordered if some
(quasi-,5 partial6) order 4 is defined on its set of states S.

For a quasi-ordered set X, ↓X denotes {x | ∃y ∈ X : x 4 y}, the downward
closure of X. ↑X denotes {x | ∃y ∈ X : x < y}, the upward closure of X.

4 For effectiveness, we assume the set of one-step successors is finite.
5 A quasi-order (preorder) is a reflexive and transitive relation.
6 A partial order is an antisymmetric quasi-order.
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The covering set of a quasi-ordered transition system S w.r.t. an initial set
I, noted Cover(S, I), is the set ↓Reach(S, I), the downward closure of the set of
states reachable from I.

The coverability problem for a quasi-ordered transition system S, an initial set
of states I and an upward-closed target set of states U asks a question whether
U is reachable from I: ∃s ∈ I, s′ ∈ U : s

∗⇒ s′.7

A quasi-order 4 is a well-quasi-order iff for every infinite sequence {xi} there
are two positions i < j such that xi 4 xj .

A transition system 〈S,⇒〉 equipped with a quasi-order 4 ⊆ S × S is said
to be monotonic if for every s1, s2, s3 ∈ S such that s1 ⇒ s2 and s1 4 s3 there
exists s4 ∈ S such that s3

∗⇒ s4 and s2 4 s4.
A transition system is called well-structured (WSTS) if it is equipped with a

well-quasi-order 4 ⊆ S × S and is monotonic w.r.t. this order.
A k-dimensional counter system S is a transition system 〈S,⇒〉 with states

S = Nk, k-tuples of non-negative integers. It is equipped with the component-
wise partial order 4 on k-tuples of integers:

s1 4 s2 iff ∀i ∈ [1, k] : s1(i) ≤ s2(i),

s1 ≺ s2 iff s1 4 s2 ∧ s1 6= s2.

Proposition 1. The component-wise order 4 of k-tuples of non-negative inte-
gers is a well-quasi order. A counter system equipped with this order is a well-
structured transitions system.

2.2 Configurations

In supercompilation the term configuration denotes a representation of a set of
states, while in Petri net and transition system theories the same term stands
for a ground state. In this paper the supercompilation terminology is used. Our
term configuration is equivalent to ω-configuration and ω-marking in Petri net
theory.

The general rule of construction of the notion of a configuration in a super-
compiler from that of the program state in an interpreter is as follows: add con-
figuration variables to the data domain and allow these to occur anywhere where
a ground value can occur. A configuration represents the set of states that can be
obtained by replacing configuration variables with all possible values. Thus the
notion of a configuration implies a set represented by some constructive means
rather than an arbitrary set.

A state of a counter system is a k-tuple of integers. According to the above
rule, a configuration should be a tuple of integers and configuration variables.
For the purpose of this paper we use a single symbol ω for all occurrences of
variables and consider each occurrence of ω a distinct configuration variable.

7 In other words, the coverability problem asks a question whether such a state r is
reachable from I that ↓{r} ∩ U 6= ∅, where there is no requirement that the target
set U is upward-closed.
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Thus, in supercompilation of k-dimensional counter systems configurations
are k-tuples over N∪{ω}, and we have the set of all configurations C = (N∪{ω})k.

A configuration c ∈ C represents a set of states noted [[c]]:

[[c]] = {〈x1, . . . , xk〉 | xi ∈ N if c(i) = ω, xi = c(i) otherwise, 1 ≤ i ≤ k}.

These notations agree with that used in Petri net and counter system the-
ories. Notice that by using one symbol ω we cannot capture information about
equal unknown values represented by repeated occurrences of a variable. How-
ever, when supercompiling counter systems, repeated variables do not occur in
practice, and such simplified representation satisfies our needs.

We also use an extension of [[·]] to sets of configurations to denote all states
represented by the configurations from a set C: [[C]] =

⋃
c∈C [[c]].

Definition 1 (Coverability set). A coverability set is a finite set of configura-
tions C that represents the covering set in the following way: ↓[[C]] = Cover(S, I).

Notice that if we could find a coverability set, we could solve the coverability
problem by checking its intersection with the target set U .

2.3 Residual Graph, Tree and Set

Definition 2 (Residual graph and residual set). Given a transition system
S = 〈S,⇒〉 along with an initial set I ⊆ S and a set C of configurations, a
residual graph is a tuple T = 〈N,B, n0, C〉, where N is a set of nodes, B ⊆ N×N
a set of edges, n0 ∈ N a root node, C : N → C a labeling function of the nodes
by configurations, and

1. [[I]] ⊆ [[C(n0)]], and for every state s ∈ S reachable from I there exists a node
n ∈ N such that s ∈ [[C(n)]], and

2. for every node n ∈ N and states s, s′ such that s ∈ [[C(n)]] and s⇒ s′ there
exists an edge 〈n, n′〉 ∈ B such that s′ ∈ [[C(n′)]].

We call the set {C(n) | n ∈ N} of all configurations in the graph a residual set.

Notice that a residual set is a representation of an over-approximation of the
set of reachable states: ↓[[{C(n) | n ∈ N}]] ⊇ Reach(S, I).

The term residual is borrowed from the metacomputation terminology, where
the output of a supercompiler is referred to as a residual graph and a residual
program. The literature on transition systems lacks a term for what we call
residual set. They use only the term coverability set, which means a specific
case of a residual set, where it is a precise representation of the covering set
Cover(S, I) = ↓Reach(S, I).

The value of these notions for our purpose is as follows. To solve the cover-
ability problem it is sufficient to find a coverability set among the residual sets:
then we check whether all configurations in the coverability set are disjoint with
the target set or not. Unfortunately, computing a coverability set is undecidable
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for counter systems of our interest. Fortunately, this is not necessary. It is suf-
ficient to build a sequence of residual sets that contains a coverability set. We
may not know which one among the residual sets is a coverability set (this is
incomputable), it is sufficient to know it exists in the sequence. This is the main
idea of our algorithm and the ‘Expand, Enlarge and Check’ (EEC) algorithmic
schema of [6].

Notice that such procedure of solving the coverability problem does not use
the edges of the residual graph, and we can keep in B only those edges that are
needed for the work of our versions of supercompilation algorithms. Hence the
definition of a residual tree:

Definition 3 (Residual tree). A residual tree is a spanning tree of a residual
graph. The root of the tree is the root node n0 of the graph.

2.4 Operations on Configurations

To define a supercompiler we need the transition function Post on states to be
extended to the corresponding function Drive on configurations. It is referred to
as (one-step) driving in supercompilation and must meet the following properties
(where s ∈ S, c ∈ C):

1. Drive(S, s) = Post(S, s) — a configuration with ground values represents a
singleton and its successor configurations are respective singletons;

2. [[Drive(S, c)]] ⊇
⋃
{Post(S, s) | s ∈ [[c]]} — the configurations returned by

Drive over-approximate the set of one-step successors. This is the sound-
ness property of driving. The over-approximation suits well for applications
to program optimization, but for verification the result of Drive must be
more precise. Hence the next property:

3. [[Drive(S, c)]] ⊆ ↓
⋃
{Post(S, s) | s ∈ [[c]]} — for solving the coverability prob-

lem it is sufficient to require that configurations returned by Drive are subsets
of the downward closure of the set of the successors.

For the practical counter systems we experimented with, the transition func-
tion Post is defined in form of a finite set of partial functions taking the coordi-
nates vi of the current state to the coordinates v′i of the next state:

v′i = if Gi(v1, . . . , vk) then Ei(v1, . . . , vk), i ∈ [1, k],

where the ‘guards’ Gi are conjunctions of elementary predicates vj ≥ a and
vj = a, and the arithmetic expressions Ei consist of operations x+ y, x+ a and
x− a, where x and y are variables or expressions, a ∈ N a constant.

The same partial functions define the transition function Drive on configura-
tions, the operations on ground data being generalized to the extended domain
N ∪ {ω}: ∀a ∈ N : a < ω and ω + a = ω − a = ω + ω = ω.
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2.5 Restricted Ordering of Configurations of Counter Systems

To control termination of supercompilers we use a restricted partial order on
integers 4l parameterized by l ∈ N. For a, b ∈ N ∪ {ω}, we have:

a 4l b iff l ≤ a ≤ b < ω.

This partial order makes two integers incompatible when one of them is less
than l. The order is a well-quasi-order.

Then the partial order on states and configurations of counter systems is the
respective component-wise comparison: for c1, c2 ∈ C = (N ∪ {ω})k,

c1 4l c2 iff ∀i ∈ [1, k] : c1(i) 4l c2(i).

This order is also a well-quasi-order. It may be regarded as a specific case
of the homeomorphic embedding of terms used in supercompilation to force
termination. As we will see in the supercompilation algorithms below, when two
configurations c1 and c2 are met on a path such that c1 ≺l c2, ‘a whistle blows’
and generalization of c1 and c2 is performed. Increasing parameter l prohibits
generalization of small non-negative integers and makes ‘whistle’ to ‘blow’ later.
When l = 0, the order is the standard component-wise well-quasi-order on tuples
of integers. When l = 1, value 0 does not compare with other positive integers
and generalization of 0 is prohibited. And so on.

2.6 Generalization

When the set of states represented by a configuration c is a subset of the set
represented by a configuration g, [[c]] ⊆ [[g]], we say the configuration g is more
general than the configuration c, or g is a generalization of c.8 Let v denote a
generalization relation v∈ C × C: c v g iff [[c]] ⊆ [[g]], c @ g iff [[c]] ( [[g]].

For termination of traditional supercompilers generalization must meet the
requirement of the finiteness of the number of possible generalization for each
configuration:

∀c ∈ C : {g ∈ C | c v g} is finite.

In Section 4 we speculate on a possibility to lift this restriction for multi-result
supercompilation.

We use a function Generalize : C × C → C to find a configuration g that is
more general than two given ones. Usually Generalize(c1, c2) returns the least
general configuration, however this is not formally required for the soundness
and termination of supercompilation, as well as for the results of this paper,
although it is usually desirable for obtaining ‘better’ residual programs.

In the case of counter systems and the set of configurations defined above,
function Generalize(c1, c2) sets to ω those coordinates where configurations c1
and c2 differ:

Generalize(c1, c2) = c s.t. ∀i ∈ [1, k] : c(i) = c1(i) if c1(i) = c2(i), ω otherwise.

8 In Petri net and counter system theories generalization is referred to as acceleration.
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Notice that the function Generalize has no parameter l. However in the su-
percompilation algorithms below it is called in cases where c1 ≺l c2. Hence gen-
eralization is not performed when one of the integers is less than l.

In Algorithm 1 a generalization function Generalizel(c) with an integer pa-
rameter l and one configuration argument c is used. It sets to ω those coordinates
that are greater or equal than l:

Generalizel(c) = g s.t. ∀i ∈ [1, k] : g(i) = c(i) if c(i) < l, ω otherwise.

Because of the importance of the parameter l, we write it in a special position:
as the index of the function names that take it as an argument.

3 Supercompilation-Based Algorithms for Solving
Reachabiliy Problems

In this section we present an algorithm to solve the reachability problem for
transition systems. It is applicable to an arbitrary transition system provided
the basic functions Drive, Generalizel and Generalize are properly defined, but
has been proven to terminate only for well-structured transition systems when
solving the coverability problem, provided the basic functions satisfy certain
properties. In the previous section we gave an example of their definition for
counter systems. The theory by G. Geeraerts et al. [5,6] explains how to define
them for well-structured transition systems.

The algorithm consists of the main function Reachable(S, I, U) (Algorithm 0
Approximate) that contains the top level loop, which invokes functions Overl(S, I)
and Underl(S, I) to iteratively compute more and more precise over- and under-
approximations of the set of reachable states, while increasing parameter l.

We give three versions of the definition of the approximation functions. The
simplest one (Algorithm 1) fits the EEC schema. Another two are based on
domain-specific versions for transition systems of classical supercompilation al-
gorithms with lower-node and upper-node generalization (Algorithm 2 ScpL and
Algorithm 3 ScpU respectively).

3.1 Main Function

Main function Reachable(S, I, U) takes a transition system S, an initial con-
figuration I and a target set U and iteratively applies functions Underl(S, I)
and Overl(S, I) with successive values of the parameter of generalization l =
0, 1, 2, . . . When it terminates, it returns an answer whether the set U is reach-
able or not. The algorithm is rather natural.9 Reachability is determined when
some under-approximation returned by Underl(S, I) intersects with U . Unreach-
ability is determined when some over-approximation returned by Overl(S, I) is
disjoint with U .

9 The algorithm is close to but even simpler than analogous Algorithm 4.1 in [5, page
122] and Algorithm 5.2 in [5, page 141].
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Algorithm 0: Reachable(S, I, U): Solving the coverability problem for a
monotonic counter system

Data: S a monotonic counter system
Data: I an initial configuration (representing a set of initial states)
Data: U an upward-closed target set
Result: Is U reachable from I?

Reachable(S, I, U)
for l = 0, 1, 2, . . . do

if [[Underl(S, I)]] ∩ U 6= ∅ then
return ‘Reachable’

if [[Overl(S, I)]] ∩ U = ∅ then
return ‘Unreachable’

We regard this algorithm as a domain-specific multi-result supercompilation
when the approximation functions are implemented by means of single-result
supercompilation.

3.2 Simplest Approximation Function

Function Approximatel(over ,S, I) is invoked by functions Overl(S, I) and
Underl(S, I) with a Boolean parameter over that tells either an over- or under-
approximation is to be computed. The approximation depends on parameter
l.

The set of residual configurations that is a partially evaluated approximation
is collected in variable R starting from the initial configuration I. Untreated
configurations are kept in a set T (‘to treat’). The algorithm terminates when
T = ∅.

At each step an arbitrary untreated configuration c is picked up from T and
driving step is performed: the successors of c are evaluated by function Drive and
each new configuration c′ is processed as follows:

1. The current configuration c′ is checked whether it is covered or not by one
of the configurations collected in R: @c̄ ∈ R : c̄ w c′. If covered (such c̄ exists)
there is no need to proceed c′ further, as its descendants are covered by the
descendants of the existing configuration c̄.

2. In the case of under-approximation, it is checked whether the current config-
uration c′ is not to be generalized by comparing it with g = Generalizel(c

′).
If it is to be generalized, the configuration c′ is not proceeded further. In
such a way, configurations reachable from the initial configuration I without
generalization are collected in R. They form an under-approximation.

3. The (possibly) generalized current configuration g is added to the sets R and
T . Additionally, the configurations from R and T covered by the new one
are deleted from the sets.
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Algorithm 1: Approximatel(over ,S, I), Overl(S, I): Underl(S, I), Building
over- and under-approximations of a set of reachable states of a transition
system

Data: S a transition system
Data: I an initial configuration
Data: l an integer parameter of generalization
Data: over = true an over-approximation, false an under-approximation
Result: R an under- or over-approximation of a set of reachable states

Approximatel(over ,S, I)
R← {I}
T ← {I}
while T 6= ∅ do

select some configuration c ∈ T
T ← T \ {c}
foreach c′ ∈ Drive(S, c) do

g ← Generalizel(c
′)

if @c̄ ∈ R : c̄ w c′ ∧ (over ∨ g = c′) then
R← R ∪ {g} \ {c̄ ∈ R | c̄ @ g}
T ← T ∪ {g} \ {c̄ ∈ T | c̄ @ g}

return R

Overl(S, I) = Approximatel(true,S, I)
Underl(S, I) = Approximatel(false,S, I)

The algorithm Reachable(S, I, U) with this definition of approximation func-
tions and the Drive and Generalizel functions from the previous section does
not always terminate for an arbitrary counter system S but do terminate for a
monotonic counter system and an upward-closed target set U .

3.3 Supercompilation of Transition Systems

In this section we define two classic supercompilation algorithms for well-quasi-
ordered transition systems.

Supercompilation is usually understood as an equivalence transformation of
programs, transition systems, etc., from a source one to a residual one. However,
for the purpose of this paper the supercompilation algorithms presented here re-
turns a part of information sufficient to extract the residual set of configurations
rather than a full representation of a residual transition system.

Two algorithms, Algorithm 2 ScpL and Algorithm 3 ScpU, have very much
in common. They take a transition system S, a quasi-order ≺ on the set of
configurations and an initial configuration I, and return a residual tree, which
represents an over-approximation of the set of states reachable from the initial
configuration I. The order ≺ is a parameter that controls the execution of the
algorithms, their termination and influences resulting residual trees. If the order
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Algorithm 2: ScpL: Supercompilation of a quasi-ordered transition system
with lower-node generalization.

Data: S a transition system
Data: I an initial configuration
Data: ≺ a quasi-order on configurations, a binary whistle
Result: T a residual tree

ScpL(S, I,≺)
T ← 〈N,B, n0, C〉 where N = {n0}, B = ∅, C(n0) = I, n0 a new node
T ← {n0}
while T 6= ∅ do

select some node n ∈ T
T ← T \ {n}
if ∃n̄ ∈ N : C(n̄) w C(n) then — terminate the current path (1)

do nothing
else if ∃n̄ : B+(n̄, n) ∧ C(n̄) ≺ C(n) ∧ C(n̄) 6@ C(n) then

— generalize on whistle (2)
n̄← some node such that B+(n̄, n) ∧ C(n̄) ≺ C(n)
C(n)← Generalize(C(n̄), C(n))
mark n as generalized
T ← T ∪ {n}

else — unfold (drive) otherwise (3)
foreach c ∈ Drive(S, C(n)) do

n′ ← a new node
C(n′)← c
N ← N ∪ {n′}
B ← B ∪ {〈n, n′〉}
T ← T ∪ {n′}

return T

Overl(S, I) = let 〈N,B, n0, C〉 = ScpL(S, I,≺l) in {C(n) | n ∈ N}
Underl(S, I) = let 〈N,B, n0, C〉 = ScpL(S, I,≺l) in {C(n) | n ∈ N ∧

∀n̄ s.t. B∗(n̄, n) : n̄ is not marked as generalized}

is a well-quasi-order the algorithms terminates for sure. Otherwise, in general,
the algorithms sometimes terminate and sometimes do not.

The residual trees are gradually constructed from the root node n0.

The nodes are labeled with configurations by a labeling function C : N → C,
initially C(n0) = I.

Untreated leaves are kept in a set T (‘to treat’) in Algorithm 2 and in a stack
T in Algorithm 3. The first algorithm is non-deterministic and takes leaves from
set T in arbitrary order. The second algorithm is deterministic and takes leaves
from stack T in the FIFO order. The algorithms terminate when T = ∅ and
T = ε (the empty sequence) respectively.

At each step, one of three branches is executed, marked in comments as (1),
(2) and (3). Branches (1) and (3) are almost identical in the two algorithms.
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Algorithm 3: ScpU: Supercompilation of a quasi-ordered transition system
with upper-node generalization.

Data: S a transition system
Data: I an initial configuration
Data: ≺ a quasi-order on configurations, a binary whistle
Result: T a residual tree

ScpU(S, I,≺)
T ← 〈N,B, n0, C〉 where N = [n0], B = ∅, C(n0) = I, n0 a new node
T ← [n0]
while T 6= ε do

n← Last(T )
T ← T \ {n}
if ∃n̄ ∈ N : C(n̄) w C(n) then — terminate the current path (1)

do nothing
else if ∃n̄ : B+(n̄, n) ∧ C(n̄) ≺ C(n) then — generalize on whistle (2)

n̄← the highest node such that B+(n̄, n) ∧ C(n̄) ≺ C(n)
C(n̄)← Generalize(C(n̄), C(n))
mark n̄ as generalized
T ← RemoveSubtreeExceptRoot(n̄, T )
T ← T \ {n | B+(n̄, n)} — drop nodes lower than n̄
T ← Append(T, n̄)

else — unfold (drive) otherwise (3)
foreach c ∈ Drive(S, C(n)) do

n′ ← a new node
C(n′)← c
N ← N ∪ {n′}
B ← B ∪ {〈n, n′〉}
T ← Append(T, n′)

return T

Overl(S, I) = let 〈N,B, n0, C〉 = ScpU(S, I,≺l) in {C(n) | n ∈ N}
Underl(S, I) = let 〈N,B, n0, C〉 = ScpU(S, I,≺l) in {C(n) | n ∈ N ∧

∀n̄ s.t. B∗(n̄, n) : n̄ is not marked as generalized}

– Branches (1): if a configuration C(n̄) more general than the current one C(n)
exists in the already constructed tree, the current path is terminated and
nothing is done.

– Branches (3): if the conditions on branches (1) and (2) do not hold, a driving
step is performed: the successors of the current configuration C(n) are eval-
uated by the function Drive; for each new configuration c a new node n′ is
created; edges from the current node n to the new ones are added to the tree
and the new nodes are added to set (or respectively, stack) T of untreated
nodes.

– Branches (2) check whether on the path to the current node n (call it lower)
there exists a node n̄ (call it upper) with the configuration C(n̄) which is
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less than the current one C(n), generalize the two configurations and assign
the generalized configuration to the lower node in Algorithm 2 ScpL and to
the upper node in Algorithm 3 ScpU. In the latter case the nodes below n̄
are deleted from the residual tree and from stack T of untreated nodes. The
nodes where generalization has been performed are marked as ‘generalized’.
These marks are used in the Algorithm 0.

Over- and under-approximations Overl(S, I) and Underl(S, I) are extracted
from the residual tree. The over-approximation is the set of all configurations in
the residual tree. The under-approximation is comprised of the configurations
developed from the initial configuration without generalization (where all nodes
on the path are not marked as ‘generalized’).

The two supercompilation algorithms always terminate for a quasi-ordered
transition systems with a set of configuration such that every configuration has
finitely many generalizations. The algorithm Reachable(S, I, U) with these def-
initions of approximation functions and the proper definition of the Drive and
Generalizel functions, does not terminate for an arbitrary transition system, even
for an well-structured transition systems. It terminates for so called degener-
ated transition systems (see discussion in Section 4), which strongly monotonic
counter systems belong too, as well as for monotonic counter systems, which
may be not degenerated, but guarantee the termination as well.

4 Why Multi-Result Supercompilation Matters?

In this section we recap the ideas, on which solving the reachability problems
(reachability and coverability) is based, and argue that multi-result supercompi-
lation is powerful enough to solve the reachability problems for transition systems
under certain conditions. The main problem of multi-result supercompilation is
the blow-up of the exhaustive search of a suitable residual graph. An efficient
multi-result supercompiler should prune as much extra search branches as pos-
sible. Possibilities to do so depend on the properties of transition system under
analysis.

Papers [6,7] and the PhD thesis [5] by G. Geeraerts demonstrate that (and
how) a kind of multi-result supercompilation solves the coverability problem
for well-structured transition systems (WSTS) with some combinatorial search.
Also they showed that several classes of monotonic counter systems belong to a
“degenerated” case, which allows for limited enumeration of residual graphs. In
[13,14] we strengthened this result by showing that this is true for all monotonic
counter systems, provided the counter system and the driving function are good
enough ([[Drive(S, c)]] ⊆ ↓Post(S, c)).

Let us discuss when the reachability problem for transition systems can be
solved in principle, when and how multi-result supercompilation can find a so-
lution, how the combinatorial search can be pruned based on the properties
of a transition system, a set of configurations and driving and generalization
functions.
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But first, notice an important difference between single- and multi-result
supercompilation. One of the main properties of a single-result supercompiler
is its termination. The respective property of multi-result supercompilation is
the fairness of enumeration of residual graphs. The notion of fairness depends
on the problem under consideration: a fair multi-result supercompiler should
enumerate either all residual graphs, or at least a subset of them sufficient to
solve the problem.

4.1 Reachability Problem for Transition Systems

To implement a supercompiler for a transition system S one needs a set of con-
figurations C, a driving function Drive, and a generalization function Generalize
that enumerates generalizations of a given configuration. Solving the reachabil-
ity problem by supercompilation (as well as any forward analysis) is based on
two ideas:

1. The supercompiler returns a residual set of configurations R ⊂ C which is a
fixed point of the driving function:

[[I]] ⊆ [[R]] ∧ [[Drive(S, R)]] ⊆ [[R]].

2. To prove that a target set U is unreachable from I we check:

[[R]] ∩ U = ∅.

This is a necessary condition: if such R does not exist, no supercompiler can
solve the reachability problem even if U is unreachable from I indeed.

This observation allows us to see the most essential limitation of the super-
compilation method for solving the reachability problem: if the set of configura-
tions C includes the representations of all such fixed points then we may expect
of multi-result supercompilation to solve the problem when such a solution ex-
ists; if not we cannot expect. Designing such a complete set of configurations
faces a conflict with the requirement that any configuration should have finitely
many generalizations, which is used in traditional single-result supercompilers
to guarantee termination. It is also used in the supercompilation-like algorithms
presented above since they iteratively call the single-result supercompilers. In
multi-result supercompilation, where the finiteness of the whole process is not
expected (as it enumerates infinitely many residual graphs), this restriction of
the finiteness of the number of generalizations could be lifted. However, this
topic is not studied yet.

Thus, multi-result supercompilation could, in principle, solve the reachability
problem when a solution is representable in form of a fixed point of Drive. The
main problem is the exponential blow-up of the search space.

4.2 Pruning Enumeration of Residual Graphs

Do all residual sets are actually needed?
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The first step of pruning the search space is based on the monotonicity of
Drive (as a set function) and is applicable to any forward analysis solving the
reachability problem: It is sufficient for a multi-result supercompiler to return
not all fixed points R such that R ⊇ I, rather for every such fixed point R it
should return at least one fixed point R′ ⊆ R such that R′ ⊇ I.

This allows for a multi-result supercompiler to consider at each step of driving
only the most specific generalizations among suitable ones. Unfortunately, there
are many of them in general case, and fortunately, there is just one in our
algorithms for monotonic counter systems.

This idea is utilized in the ‘Expand, Enlarge and Check’ (EEC) method by
G. Geeraerts et al. The idea suffices to formulate the algorithmic schema and
to prove that it terminates and solves the reachability problem when driving
is perfect and the solution is representable in C. (It is representable indeed for
well-structured transition system.)

4.3 Ordered and Well-Structured Transition Systems

Now let us turn to transition systems with ordered sets of states (at least quasi-
ordered) and to the coverability problem, which implies the target set of states
is upward-closed. Two properties of transition systems may be formulated in
terms of the ordering:

1. the order may be a well-quasi-order;

2. the transition system may be monotonic w.r.t. this order.

How does these properties influence the problem of the completeness of the
set of configurations and the requirements of driving?

The well-quasi ordering of the set of states allows for a finite representation
of all downward-closed sets. This is based on that any upward-closed subset of
a well-quasi-ordered set has a finite number of generators, its minimal elements
that uniquely determine the subset. A downward-closed set is the complement of
some upward-closed set, and hence the generators of the complement determines
it as well. However, such a “negative” representation may be inconvenient in
practice (to implement driving), and G. Geeraerts et al. required that there
exists a set of constructive objects called limits such that any downward closed
set is representable by a finite number of limits. In terms of supercompilation,
the limits are non-ground configurations.

The monotonicity of the transition system allows for using only
downward-closed sets as configurations. That is, for solving the cover-
ability problem, the Drive function may generalize configurations down-
wards at each step: [[Drive(S, c)]] ⊆ ↓Post(S, {c}), rather than be perfect:
[[Drive(S, c)]] = Post(S, {c}).

These are the main ideas the EEC algorithmic schema for solving the cov-
erability problem for WSTS is based upon, except the last one described in the
next subsection.



Why Multi-Result Supercompilation Matters 107

4.4 Coverability Problem for WSTS: EEC Schema of Algorithms

The ‘Expand, Enlarge and Check’ algorithmic schema (EEC) suggests to split
enumeration of residual graphs in two levels. Our algorithm with the Approximate
function fits well the EEC schema and is actually its simplest instance. Refer to
it as an example.

To define an EEC algorithm one selects an expanding sequence of finite sets
of configurations such that Cl ⊆ Cl+1 and C =

⋃
l Cl. For example, for counter

systems Algorithm Approximate uses Cl = {1, . . . , l, ω}k, sets of configurations
with coordinates not greater than l or equal to ω .

An EEC algorithm consists of a top level loop and a multi-result
supercompilation-like algorithm invoked in each iteration with the requirement
that only configurations from Cl are used in construction of the set of residual
graphs. Since Cl is finite, the set of residual graphs is finite as well, hence each
iteration surely terminates.

Thus, the lower level of enumeration of residual graphs is performed in each
iteration, and the upper level of enumeration is organized by the top level loop.

Notice that the other two Algorithms ScpL and ScpU do not fit the EEC
schema exactly, since the sets of configurations are not fixed in advance. But
they also forcedly restrict the sets of possible residual graphs explored in each
iteration by making the set of graphs finite for a given transition system and a
given initial configuration with the use of the well-quasi-order 4l parameterized
by integer l.

It is an open problem for future work to device direct multi-result super-
compilation algorithms that efficiently enumerate residual graphs in one process
rather than in sequential calls of a single-result supercompiler. In [12] an exam-
ple of such a monolithic algorithm obtained by manually fusing the top level
loop with Algorithm Approximate is presented.

4.5 Coverability Problem for Monotonic Counter Systems

We saw that in the general case after each driving step the exploration of all
most specific suitable generalizations is required in order not to loose residual
graphs. However, there may be such a case that the most specific generalization
(represented as a finite set of allowed configurations) is just one. G. Geeraerts
[5,6] calls this case degenerated. This depends on the specifics of a transition
system and the sets of configurations Cl. In [5,6] such sets of configurations are
called perfect and it is proved that for strongly monotonic counter systems sets
of configurations Cl = {1, . . . , l, ω}k are perfect.

Our proofs of termination of the above algorithms [13,14] shows that the re-
quirement of the strong monotonicity can be weaken to the general monotonicity.

Thus, in the degenerated case of monotonic counter systems many residual
graphs are produced due to the top level loop only, while in the loop body the
use of a single-result supercompiler is sufficient.
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5 Related Work

Supercompilation. This research originated from the experimental work by
A. Nemytykh and A. Lisitsa on verification of cache-coherence protocols and
other models by means of the Refal supercompiler SCP4 [18,19,20,21]. It came
as a surprise that all of the considered correct models had been successfully
verified rather than some of the models had been verified while others had not,
as is a common situation with supercompiler applications. It was also unclear
whether the evaluation of the heuristic parameter to control generalization of
integers discovered by A. Nemytykh could be automated. Since then the theo-
retical explanation of these facts was an open problem.

In invited talk [22] A. Lisitsa and A. Nemytykh reported that supercompila-
tion with upper-node generalization and without the restriction of generalization
(i.e., with l = 0) was capable of solving the coverability problem for ordinary
Petri nets, based on the model of supercompilation presented in their paper [21].

In this paper the problem has been solved for a larger class, and the sense
of the generalization parameter has been uncovered. However the problem to
formally characterize some class of non-monotonic counter systems verifiable by
the same algorithm, which the other part of the successful examples belongs to,
remains open.

We regard the iterative invocation of single-result supercompilation with a
varying parameter as a domain-specific instance of multi-result supercompila-
tion suggested by I. Klyuchnikov and S. Romanenko [15]. As they argue and as
this paper demonstrates, multi-result supercompilation is capable of significantly
extending the class of program properties provable by supercompilation.

Partial Deduction. Similar work to establish a link between algorithms in
Petri net theory and program specialization has been done in [8,16,17]. Espe-
cially close is the work [17] where a simplified version of partial deduction is
put into one-to-one correspondence with the Karp&Miller algorithm [9] to com-
pute a coverability tree of a Petri net. Here a Petri net is implemented as a
(non-deterministic) logic program and partial deduction is applied to produce a
specialized program from which a coverability set can be directly obtained.

(Online) partial deduction and supercompilation has many things in com-
mon. The method of [17] can be transferred from partial deduction to super-
compilation, and our work is a step forward in the same direction after [17].

Petri Nets and Transition Systems. Transition systems and their subclass-
es—Petri nets and counter systems—have been under intensive study during last
decades: [1,2,4,5,6,7,9], just to name a few. Supercompilation resembles forward
analysis algorithms proposed in the literature.

A recent achievement is an algorithmic schema referred to as ‘Expand, En-
large and Check’ (EEC). In paper [6] and in the PhD thesis by G. Geeraerts [5] a
proof is given that any algorithm that fits EEC terminates on a well-structured
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transition systems (WSTS) and an upper-closed target set and solves the cover-
ability problem.

The first of the presented algorithm fits the EEC schema, and could be proved
correct by reduction to EEC. Other two Algorithms ScpL and ScpU do not fit
EEC exactly, but are very close.

Algorithm 2 ScpL can be seen as a further development of the classic
Karp&Miller algorithm [9] to compute a coverability set of a Petri net, and
Algorithm 3 ScpU resembles the minimal coverability tree (MCT) algorithm by
A. Finkel [4] (in which an error has been found [7]) and later attempts to fix it
[7,23].10

6 Conclusion

We presented three versions of supercompilation-based algorithms, which solve
the coverability problem for monotonic counter systems. Although the algo-
rithms are rather short they present the main notions of supercompilation: con-
figurations, driving and configuration analysis of two kinds—with lower-node
and upper-node generalization.

The idea of multi-result supercompilation was demonstrated by these algo-
rithms and future work to develop more powerful domain-specific multi-result
supercompilers that would solve the coverability problem for well-structured
transition systems as well as the reachability problem for some specific classes
of non-monotonic transition systems, was discussed. This seems impossible with
single-result supercompilation.
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