
Automatic verification of counter systems
via domain-specific multi-result supercompilation

Andrei V. Klimov Ilya G. Klyuchnikov Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

2012-07 / Meta 2012

1/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

2/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

3/40

SC + filtering/selection =⇒ analysis/verification

Suppose that

sc is a supercompiler such that sc p is semantically equivalent to p.

good is a program checker (a human or an algorithm).
(good p = true means that the program p is “good”.)

Let us construct a “problem solver”.

Problem: let p be such that good p = false.

Supercompilation: sc p = p’.

Checking: good p’ = true. (Thus p’ is “more understandable” than p).

Automation:
let p’ = sc p in if good p’ then Just p’ else Nothing.

Conclusion

SC + filtering/selection =⇒ analysis/verification

4/40

MESI protocol: its model in form of a counter system

Initial states:

(i , 0, 0, 0)

Transitions:

(i , e, s,m) | i ≥ 1 −→ (i − 1, 0, s + e + m + 1, 0)
(i , e, s,m) | e ≥ 1 −→ (i , e − 1, s,m + 1)
(i , e, s,m) | s ≥ 1 −→ (i + e + s + m − 1, 1, 0, 0)
(i , e, s,m) | i ≥ 1 −→ (i + e + s + m − 1, 1, 0, 0)

Unsafe states:

(i , e, s,m) |m ≥ 2
(i , e, s,m) | s ≥ 1 ∧m ≥ 1

5/40

MESI protocol: its model in form of a Refal program (1)

*$MST_FROM_ENTRY;

*$STRATEGY Applicative;

*$LENGTH 0;

$ENTRY Go {e.A (e.I) =

<Loop (e.A) (Invalid e.I)(Modified)(Shared)(Exclusive) >;}

Loop {

() (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Result (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>;

(s.A e.A) (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Loop (e.A)

<RandomAction s.A

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>>;}

Result{

(Invalid e.1)(Modified s.2 e.2)(Shared s.3 e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified s.21 s.22 e.2)(Shared e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) = True;}

...

6/40

MESI protocol: its model in form of a Refal program (2)

...

RandomAction {

* rh Trivial

* rm

A (Invalid s.1 e.1) (Modified e.2) (Shared e.3) (Exclusive e.4) =

(Invalid e.1) (Modified) (Shared s.1 e.2 e.3 e.4) (Exclusive);

* wh1 Trivial

* wh2

B (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive s.4 e.4) =

(Invalid e.1)(Modified s.4 e.2)(Shared e.3)(Exclusive e.4);

* wh3

C (Invalid e.1)(Modified e.2)(Shared s.3 e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified)(Shared)(Exclusive s.3);

* wm

D (Invalid s.1 e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified)(Shared)(Exclusive s.1);

}

7/40

MESI protocol: the residual Refal program (1)

* InputFormat: <Go e.41 >

$ENTRY Go {

(e.101) = True ;

A e.41 (s.103 e.101) = <F24 (e.41) (e.101) s.103 > ;

D e.41 (s.104 e.101) = <F35 (e.41) (e.101) s.104 > ;}

* InputFormat: <F24 (e.109) (e.110) s.111 e.112 >

F24 {

() (e.110) s.111 e.112 = True ;

(A e.109) (s.114 e.110) s.111 e.112 =

<F24 (e.109) (e.110) s.114 s.111 e.112 > ;

(C e.109) (e.110) s.111 e.112 =

<F35 (e.109) (e.110) s.111 e.112 >;

(D e.109) (s.115 e.110) s.111 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.115 > ;}

...

8/40

MESI protocol: the residual Refal program (2)

...

* InputFormat: <F35 (e.109) (e.110) s.111 e.112 >

F35 {

() (e.110) s.111 e.112 = True ;

(A e.109) (e.110) s.111 s.118 e.112 =

<F24 (e.109) (e.112 e.110) s.118 s.111 > ;

(A e.109) (s.119 e.110) s.111 = <F24 (e.109) (e.110) s.119 s.111 >;

(B) (e.110) s.111 e.112 = True ;

(B A e.109) (e.110) s.111 s.125 e.112 =

<F24 (e.109) (e.112 e.110) s.125 s.111 > ;

(B A e.109) (s.126 e.110) s.111 =

<F24 (e.109) (e.110) s.126 s.111> ;

(B D e.109) (e.110) s.111 s.127 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.127 > ;

(B D e.109) (s.128 e.110) s.111 =

<F35 (e.109) (s.111 e.110) s.128> ;

(D e.109) (e.110) s.111 s.120 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.120 > ;

(D e.109) (s.121 e.110) s.111 = <F35 (e.109) (s.111 e.110) s.121 >;}

9/40

MESI protocol: the residual Refal program (3)

Thesis
The residual program is unable to return False.

Justification

(1) The symbol False does not appear in the program.
(2) Refal programs do not produce new symbols dynamically.

Insufficiency of the above justification

Refal is dynamically typed. Thus False can leak in via the input data! This trick
is known as “injection” (and is very popular with hackers).

Zhendong Su and Gary Wassermann. 2006. The essence of command injection
attacks in web applications. In Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL ’06). ACM, New York, NY, USA, 372–382.
http://doi.acm.org/10.1145/1111037.1111070

10/40

http://doi.acm.org/10.1145/1111037.1111070

MESI protocol: the residual Refal program (4)

A solution
Residual programs can be submitted to a data flow analysis algorithm.

Neil D. Jones and Nils Andersen. 2007. Flow analysis of lazy higher-order
functional programs. Theor. Comput. Sci. 375, 1–3 (April 2007), 120–136.
http://dx.doi.org/10.1016/j.tcs.2006.12.030

Is the game worth the candle? Yes, for example, it makes sense under the two
following conditions.

1 We have to consider a lot of residual programs (hundreds or thousands). In
this case the analysis has to be automated.

2 The algorithm good is smart enough to “understand” sc p, but is unable to
“understand” p. Namely, good (sc p) is true, but good p is false.

11/40

http://dx.doi.org/10.1016/j.tcs.2006.12.030

Weaknesses of general-purpose supercompilation

A general-purpose supercompiler cannot be used as a “black-box”.

The representation of data has to conform to subtle details of the internal
machinery of SCP4, rather than comply with the problem domain. (For
example, natural numbers are represented by strings of symbols, and their
addition by string concatenation.)

Input programs have to be supplemented with some directions (in form of
comments) for SCP4, thereby providing SCP4 with certain information
about the problem domain. Thus again the user needs to understand the
internals of SCP4.

The problem of correctness.

To what extent can we trust the results produced by SCP4? The internals of
SCP4 are complicated and the source code is big. Thus the problem of
formally verifying SCP4 seems to be intractable.

12/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

13/40

Domain-specific supercompilation

Abstractly speaking, suppose we have:

A domain-specific language.

A domain-specific supercompilation algorithm.

Hence, we can throw a nice

Slogan

“Domain-specific supercompilation for domain-specific languages!”

Why? What for? What are potential benefits?

14/40

DSSC: advantages

Input tasks can be written in a domain-specific language. Hence, in a more
natural way.

The machinery of supercompilation can be simplified.

The supercompiler is easier to implement.
The correctness is easier to prove.

Exploiting the specifics of the problem domain.

Specific data structures.
Specific operations.
Some mathematical properties of the operations are known in advance.

Some classes of problems can be shown to be solvable by supercompilation.

Here is an example of a simplified supercompiler that was formally verified.

Dimitur Krustev. A simple supercompiler formally verified in Coq. In Second
International Workshop on Metacomputation in Russia, 2010.

15/40

DSSC: counter systems (Klimov)

The supercompilation algorithm can be be simplified in the following ways.

Configurations have the form (a1, . . . , an), where ai is either a natural
number N or the symbol 𝜔 (a wildcard, representing an arbitrary natural
number).

Driving deals only with tests of the form either e = N or e ≥ N, where e is
an arithmetic expression and N a natural number.

Arithmetic expressions can only contain the operators +, −, natural numbers
and the symbol 𝜔.

Thus

There are no nested function calls.

Generalization of configurations is performed by replacing some numbers N
with 𝜔.

Andrei Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In Ershov Informatics Conference, volume 7162 of LNCS,
pages 193–209, 2011.

16/40

MESI protocol: the DSL program

object MESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0)
val rules: List[TransitionRule] = List(
{case List(i, e, s, m) if i>=1 => List(i-1, 0, s+e+m+1, 0)},
{case List(i, e, s, m) if e>=1 => List(i, e-1, s, m+1)},
{case List(i, e, s, m) if s>=1 => List(i+e+s+m-1, 1, 0, 0)},
{case List(i, e, s, m) if i>=1 => List(i+e+s+m-1, 1, 0, 0)})

def unsafe(c: Conf) = c match {
case List(i, e, s, m) if m>=2 => true
case List(i, e, s, m) if s>=1 && m>=1 => true
case _ => false

}

}

Notes.

The DSL program is non-deterministic, and is rather close to the informal
specification of the protocol model.
The DSL is implemented atop of the language Scala by means of “embedding”.
The repetition of case List List(i, e, s, m) could have been eliminated, in
order to make the DSL more “human-friendly”.

17/40

DSL for counter systems: implementation

package object counters {
type Conf = List[Expr]
type TransitionRule = PartialFunction[Conf, Conf]
...

}

sealed trait Expr { ... }

trait Protocol {
val start: Conf
val rules: List[TransitionRule]
def unsafe(c: Conf): Boolean

}

Notes.

A DSL program is a mixture of first-order values (numbers, lists) and
higher-order values (functions). This trick is known as “shallow embedding”.

A transition rule is a partial function, since a rule can be inapplicable to a
configuration.

18/40

Domain-specific residualization

Specifics of���
��XXXXXoptimizing analyzing supercompilation

Input DSL programs are supposed to be analyzed, rather than executed.

The results produced by supercompilation are meant for subsequent analysis,
rather than for execution.

Thus, suppose sc is an���
��XXXXXoptimizing analyzing supercompiler, and p an input

program.

There is no good reason for p and sc p to be written in the same
programming language.

There is no good reason for sc p to be written in a programming language!

It seems to be a good idea to have sc produce scripts for another formal
verification system or a proof assistant (such as Isabelle or Coq).

The supercompiler for counter systems does produce scripts for the
proof-assistant Isabelle!

19/40

MESI protocol: the script for Isabelle (1)

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko Implementing a
domain-specific multi-result supercompiler by means of the MRSC toolkit
Preprint No. 24. Keldysh Institute of Applied Mathematics, Moscow, 2012.
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24

A script is a collection of inductive predicate definitions + a few
lemmas/theorems (with proofs). It can be executed by Isabelle automatically,
without human assistance.

theory mesi

imports Main

begin

inductive unsafe :: "(nat * nat * nat * nat) => bool" where

"unsafe (i, e, s, Suc (Suc m))" |

"unsafe (i, e, Suc s, Suc m)"

...

20/40

http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24

MESI protocol: the script for Isabelle (2)

The non-trivial (and non-standard) part of the script is the definition of the
relation mesi’ that is weaker than mesi. In contrast to mesi, the definition of
mesi’ is not recursive! Without this hint Isabelle would be unable to prove the
safeness of all reachable states.

...

inductive mesi :: "(nat * nat * nat * nat) => bool" where

"mesi (i, 0, 0, 0)" |

"mesi (Suc i, e, s, m) ==> mesi (i, 0, Suc (s + e + m), 0)" |

"mesi (i, Suc e, s, m) ==> mesi (i, e, s, Suc m)" |

"mesi (i, e, Suc s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)" |

"mesi (Suc i, e, s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)"

inductive mesi’ :: "(nat * nat * nat * nat) => bool" where

"mesi’(_, Suc 0, 0, 0)" |

"mesi’(_, 0, 0, Suc 0)" |

"mesi’(_, 0, _, 0)"

...
21/40

MESI protocol: the script for Isabelle (3)

And now here are the proofs.

...

lemma inclusion: "mesi c ==> mesi’ c"

apply(erule mesi.induct)

apply(erule mesi’.cases | simp add: mesi’.intros)+

done

lemma safety: "mesi’ c ==> ~unsafe c"

apply(erule mesi’.cases)

apply(erule unsafe.cases | auto)+

done

theorem valid: "mesi c ==> ~unsafe c"

apply(insert inclusion safety, simp)

done

end

22/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

23/40

Variations of supercompilation

Variations of supercompilation.

The classic/deterministic/single-result (functions):
sc p = r.

Non-deterministic (relations):
p ndsc r.

Multi-result (multi-valued functions):
mrsc p = [r1,...,rk].

24/40

A variety of candidates =⇒ the search for best solutions

The search for a single solution.

solve p =

let p’ = sc p in

if good p’ then Just p’ else Nothing

The search for all solutions.

solve p = filter good (mrsc p)

The selection of best solutions.

solve p = filter best (filter good (mrsc p))

This is a simplification. Usually, best is a binary relation, rather than a predicate.

25/40

MOESI protocol: the DSL program

case object MOESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0, 0)
val rules: List[TransitionRule] =
List({ // rm

case List(i, m, s, e, o) if i>=1 =>
List(i-1, 0, s+e+1, 0, o+m)

}, { // wh2

case List(i, m, s, e, o) if e>=1 =>
List(i, m+1, s, e-1, o)

}, { // wh3

case List(i, m, s, e, o) if s+o>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

}, { // wm

case List(i, m, s, e, o) if i>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

})

def unsafe(c: Conf) = c match {
case List(i, m, s, e, o) if m>=1 && e+s+o>=1 => true
case List(i, m, s, e, o) if m>=2 => true
case List(i, m, s, e, o) if e>=2 => true
case _ => false

}

}

26/40

MOESI protocol: the graph (SC)

𝜔, 0, 0, 0, 0

𝜔, 0, 1, 0, 0 𝜔, 0, 0, 1, 0

𝜔, 0, 𝜔, 0, 0 𝜔, 0, 0, 1, 0

𝜔, 0, 𝜔, 0, 0 𝜔, 0, 0, 1, 0

𝜔, 0, 2, 0, 0 𝜔, 1, 0, 0, 0 𝜔, 0, 0, 1, 0

𝜔, 0, 1, 0, 1 𝜔, 0, 0, 1, 0

𝜔, 0, 𝜔, 0, 1 𝜔, 0, 0, 1, 0

𝜔, 0, 𝜔, 0, 1 𝜔, 0, 0, 1, 0

1 4

1 3, 4

1 3, 4

1 2 4

1 3,4

1 3,4

1 3,4

27/40

MOESI protocol: the minimal graph (MRSC)

𝜔, 0, 𝜔, 0, 𝜔

𝜔, 0, 𝜔, 0, 𝜔 𝜔, 0, 0, 1, 0

𝜔, 0, 2, 0, 0 𝜔, 1, 0, 0, 0 𝜔, 0, 0, 1, 0

𝜔, 0, 1, 0, 1 𝜔, 0, 0, 1, 0

1 3,4

1 2
4

1
4

28/40

MOESI protocol: graph size reduction. What is the trick?

“A sudden flash of inspiration”

The initial configuration (𝜔, 0, 0, 0, 0) can be immediately generalized to
(𝜔, 0, 𝜔, 0, 𝜔)!

Such “crazy” generalizations are not performed by a single-result optimizing
supercompiler. Why?

Generalization leads to loss of information. Hence, it should be avoided by
all means.

Generalization is only performed by necessity, when the whistle blows.

When optimizing a loop, it makes sense to partially unroll the loop, even if,
finally, the supercompiler has to fall into the general case.

Postponing a generalization is likely to improve the execution speed. Code
bloat is considered to be “a lesser evil”. (Modulo memory caches. . .)

However, this is not of importance in the case of analyzing supercompilation.

29/40

Graph sizes for a number of protocols

SC MRSC

Synapse 11 6
MSI 8 6
MOSI 26 14
MESI 14 9
MOESI 20 9
Illinois 15 13
Berkley 17 6
Firefly 12 10
Futurebus 45 24
Xerox 22 13
Java 35 25
ReaderWriter 48 9
DataRace 9 5

30/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

31/40

DSSC + MRSC: synergy =⇒ resource savings

The search for best solutions.

solve p = filter best (filter good (mrsc p))

A three-pass algorithm! What about “fusing” them? How? Early filtering!

Let us filter graphs, rather than residual programs.

Let us filter (even) incomplete graphs.

This can be done by taking into account the specifics of the problem domain.

The predicate unsafe is monotonic with respect to generalization of
configurations.

The (multi-result) supercompilation algorithm can only remove a
configuration by replacing it with a more general configuration.

So, “unsafeness” is monotonic with respect to graph building

If an unsafe configuration appears in a graph G , all graphs derived from G are
bound to contain unsafe configurations. Therefore, G can be discarded without
losing any solution.

32/40

Pruning: a classic idea from artificial intelligence

A yet another property of the (multi-result) supercompilation algorithm.

All graphs derived from a graph G cannot be lesser in size than G .

So, pruning!

If there has been found a complete graph G , consisting of safe configurations, all
incomplete graphs exceeding G in size can be discarded without losing the
minimal solution. (Just because their descendants would be greater in size than
G .)

D. Poole and A. K. Mackworth. Artificial Intelligence - Foundations of
Computational Agents. Cambridge University Press, 2010.

33/40

Taking into account the properties of generalization

Notation: c ⊑ c ′ ⇐⇒ the configuration c ′ is not less general than the
configuration c .

Definition

c ′ is a one-step generalization of a configuration c , if c ′ can be obtained from c
by replacing a numeric component of c with 𝜔.

The structure of the set of generalizations of a configuration

If c ⊑ c ′, then there exists a sequence of generalizations c1, . . . , ck , such that
c = c1, c ′ = ck and ci+1 is a one-step generalization of ci .

Example

(0, 0) ⊑ (𝜔, 0) ⊑ (𝜔, 𝜔)
(0, 0) ⊑ (0, 𝜔) ⊑ (𝜔, 𝜔)

34/40

5 variations of the supercompiler (MRSC)

SC1. A graph is examined by the filter only after having been completed.
Thus, no use is made of the knowledge about domain-specific properties of
generalization or the predicate unsafe.

SC2. SC1 + when rebuilding a configuration, only one-step generalizations
are considered (all other generalizations remain reachable by a number of
steps).

SC3. SC2 + the configurations produced by generalization are checked for
being safe, and the unsafe ones are immediately discarded.

SC4. SC3 + the configurations that could be produced by driving a
configuration c are checked for being safe. If one or more of the new
configurations turn out to be unsafe, driving is not performed for c .

SC5. SC4 + the current graph is discarded if there has been already
constructed a complete graph that is smaller in size than the current graph
(pruning).

35/40

Resources consumed by 5 supercompilers (1)

SC1 SC2 SC3 SC4 SC5

Synapse
completed 48 37 3 3 1
pruned 0 0 0 0 2
commands 321 252 25 25 15

MSI
completed 22 18 2 2 1
pruned 0 0 0 0 1
commands 122 102 15 15 12

MOSI
completed 1233 699 6 6 1
pruned 0 0 0 0 5
commands 19925 11476 109 109 35

MESI
completed 1627 899 6 3 1
pruned 0 0 27 20 21
commands 16329 9265 211 70 56

MOESI
completed 179380 60724 81 30 2
pruned 0 0 0 24 36
commands 2001708 711784 922 384 126

36/40

Resources consumed by 5 supercompilers (2)

SC1 SC2 SC3 SC4 SC5

Illinois
completed 2346 1237 2 2 1
pruned 0 0 21 17 18
commands 48364 26636 224 74 61

Berkley
completed 3405 1463 30 30 2
pruned 0 0 0 0 14
commands 26618 12023 282 282 56

Firefly
completed 2503 1450 2 2 1
pruned 0 0 2 2 3
commands 39924 24572 47 25 21

Futurebus
completed - - - - 4
pruned - - - - 148328
commands - - - - 516457

Xerox
completed 317569 111122 29 29 2
pruned 0 0 0 0 1
commands 5718691 2031754 482 482 72

37/40

Resources consumed by 5 supercompilers (3)

SC1 SC2 SC3 SC4 SC5

Java
completed - - - - 10
pruned - - - - 329886
commands - - - - 1043563

ReaderWriter
completed 892371 402136 898 898 6
pruned 0 0 19033 19033 1170
commands 24963661 11872211 123371 45411 3213

DataRace
completed 51 39 8 8 3
pruned 0 0 0 0 4
commands 360 279 57 57 31

38/40

Outline

1 SC + filtering/selection =⇒ analysis/verification

2 Domain-specific supercompilation (DSSC): what are the benefits?

3 Multi-result supercompilation (MRSC): selecting the best results

4 DSSC + MRSC =⇒ synergistic effect: less CPU and memory resources

5 Conclusions

39/40

Conclusions

The benefits of domain-specific supercompilation.

Problems/tasks can be formulated in a natural way (DSL).
Some knowledge about the problem domain can be built into the
supercompiler.
The machinery of supercompilation can be simplified (by removing redundant
“gears”).
The correctness of simplified supercompilation is easier to ensure.

The benefits of multi-result supercompilation.

More modular structure of the supercompiler (decoupling the whistle and the
generalization algorithm).
The search and selection of best solutions.

Domain-specific SC + multi-result SC =⇒ a synergistic effect.

Search space reduction (by several orders of magnitude).

40/40

	SC + filtering/selection => analysis/verification
	Domain-specific supercompilation (DSSC): what are the benefits?
	Multi-result supercompilation (MRSC): selecting the best results
	DSSC + MRSC => synergistic effect: less CPU and memory resources
	Conclusions

