
Automatic Verification of Counter Systems
via Domain-Specific Multi-Result

Supercompilation?

Andrei V. Klimov, Ilya G. Klyuchnikov, and Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. We consider an application of supercompilation to the anal-
ysis of counter systems. Multi-result supercompilation enables us to find
the best versions of the analysis by generating a set of possible re-
sults that are then filtered according to some criteria. Unfortunately, the
search space may be rather large. However, the search can be drastically
reduced by taking into account the specifics of the domain. Thus, we
argue that a combination of domain-specific and multi-result supercom-
pilation may produce a synergistic effect. Low-cost implementations of
domain-specific supercompilers can be produced by using prefabricated
components provided by the MRSC toolkit.

1 Introduction

Supercompilation is a program manipulation technique that was originally intro-
duced by V. Turchin in terms of the programming language Refal (a first-order
applicative functional language) [37], for which reason the first supercompilers
were designed and developed for the language Refal [35,39,29].

Further development of supercompilation led to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the
original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [32,33,3]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [6].

Also, despite the fact that from the very beginning supercompilation was
regarded as a tool for both program optimization and program analysis [36],
the research in supercompilation, for a long time, was primarily focused only on
program optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs
[25,12,10].

Multi-result supercompilation is a technique of constructing supercompilers
that, given an input program, are able to produce a set of residual programs,
rather than just a single one [13,8].

? Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a and
RF President grant for leading scientific schools No. NSh-4307.2012.9.

Automatic Verification of Counter Systems 113

The purpose of the present work is to show, by presenting a concrete example,
that multi-result, domain-specific supercompilation is not a theoretical curiosity,
but rather a workhorse having certain advantages over general-purpose, single-
result (deterministic) supercompilation. Some of the reasons are the following.

– Tautologically speaking, a general-purpose supercompiler should deal with
programs written in a general-purpose subject language that, by definition, is
not dedicated to a particular problem domain. Thus, for a given domain, the
subject language may be too sophisticated, but, on the other hand, lacking
in certain features.

– In cases where supercompilation is used for the purposes of analysis and
verification, the problem of reliability and correctness of the supercompiler
itself becomes rather actual. Can we trust the results produced by a (large
and intricate) general-purpose supercompiler?

– On the other hand, it is only natural for a domain-specific supercompiler to
accept programs in a domain-specific language (DSL) that provides domain-
specific operations and control constructs whose mathematical properties
may be known in advance. This domain knowledge can be hard-coded into
the supercompiler, thereby increasing its power and enabling it to achieve
better results at program analysis and transformation, as compared to “pure”
supercompilation.

– The subject language of a domain-specific supercompiler may be very limited
in its means of expression, in which case some parts of the supercompiler
can be drastically simplified. For example, in some areas there is no need to
deal with nested function calls in configurations. The simplifications of that
kind increase the reliability of the supercompiler and make it easier to prove
its correctness by formal methods (as was shown by Krustev [15]).

– The implementation of a domain-specific supercompiler may be very cheap
if it is done on the basis of prefabricated components (for example, by means
of the MRSC toolkit [13,14]), so that the costs of implementation can be re-
duced by an order of magnitude, as compared to implementations of general-
purpose supercompilers.

114 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

2 Analyzing the behavior of systems by means of
supercompilation

One of the approaches to the analysis of systems consists in representing systems
by programs. Thus the task of analyzing the behavior of a system is reduced to
the task of inferring and analyzing the properties of a program p.

The program p, modeling the original system, may in turn be analyzed us-
ing the transformational approach, in which case p is transformed into another
program p′ (equivalent to p), so that some non-obvious properties of p become
evident in the program p′.

For example, suppose that the original program p is complicated in structure
and contains statements return False. Can this program return False? This
question is not easy to answer. Suppose, however, that by transforming p we
get a trivial program p′ whose body consists of a single statement return True.
Then we can immediately conclude that p′ can never return False. Since p′ is
equivalent to p, it implies that p also can never return False.

Initial states:
(i, 0, 0, 0)

Transitions:
(i, e, s,m) | i ≥ 1 −→ (i− 1, 0, s+ e+m+ 1, 0)
(i, e, s,m) | e ≥ 1 −→ (i, e− 1, s,m+ 1)
(i, e, s,m) | s ≥ 1 −→ (i+ e+ s+m− 1, 1, 0, 0)
(i, e, s,m) | i ≥ 1 −→ (i+ e+ s+m− 1, 1, 0, 0)

Unsafe states:
(i, e, s,m) |m ≥ 2
(i, e, s,m) | s ≥ 1 ∧m ≥ 1

Fig. 1: MESI protocol: a protocol model in form of a counter system

One of the applications of the transformational approach is the verification
of communication protocols modeled by counter systems [1]. For instance, let
us consider a model of the MESI protocol in form of a counter system that is
informally described in Fig. 1.

The states of the system are represented by quadruples of natural numbers.
The specification of the system includes the description of a set of initial states
and a set of transition rules of the form

(i, e, s,m) | p −→ (i′, e′, s′,m′)

where i, e, s, m are variables, p is a condition on the variables which must be
fulfilled for the transition to be taken, and i′, e′, s′, m′ are expressions that may
contain the variables i, e, s, m.

The system is non-deterministic, as several rules may be applicable to the
same state.

Automatic Verification of Counter Systems 115

The specification of a protocol model also includes the description of a set of
unsafe states. The analysis of such a protocol model is performed for the purpose
of solving the reachability problem: in order to prove that unsafe states are not
reachable from the initial states.

As was shown by Leuschel and Lehmann [21,18,19,16], reachability prob-
lems for transition systems of that kind can be solved by program specializa-
tion techniques. The system to be analyzed can be specified by a program in
a domain-specific language (DSL) [21]. The DSL program is then transformed
into a Prolog program by means of a classic partial evaluator LOGEN [5,17] by
using the first Futamura projection [2]. The Prolog program thus obtained is
then transformed by means of ECCE [22,20], a more sophisticated specializer,
whose internal workings are similar to those of supercompilers.

Lisitsa and Nemytykh [24,25,26] succeeded in verification of a number of com-
munication protocols by means of the supercompiler SCP4 [29,28,27]. The input
language of SCP4 is Refal, a first-order functional language developed by Turchin
[36]. SCP4 is a descendant of earlier supercompilers for Refal [35,36,39,37,38].

According to the approach by Lisitsa and Nemytykh, protocol models are rep-
resented as Refal programs. For instance, the MESI protocol [1,27,23] is modeled
by the Refal program in Fig. 2. The program is written in such a way that, if an
unsafe state is reached, it returns the symbol False and terminates.

The supercompiler SCP4 takes this program as input and produces the resid-
ual program shown in Fig. 3, which contains no occurrences of the symbol False.
This suggests the conclusion that the residual program is unable to return False.
However, strictly speaking, this argument is not sufficient in the case of a dynam-
ically typed language (like Lisp, Scheme and Refal): a program can still return
False, even if False does not appear in the text of the program. Namely, the
program may receive False via its input data and then transfer it to the out-
put. And, indeed, “engineering solutions” of that kind are extremely popular
with hackers as a means of attacking web-applications [34]. Fortunately, there
exist relatively simple data flow analysis techniques that are able to compute an
upper approximation to the set of results that can be produced by a function,
even for dynamically-typed languages [4], and which are able to cope with Refal
programs like that in Fig. 3.

116 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

*$MST_FROM_ENTRY;

*$STRATEGY Applicative;

*$LENGTH 0;

$ENTRY Go {e.A (e.I) =

<Loop (e.A) (Invalid e.I)(Modified)(Shared)(Exclusive) >;}

Loop {

() (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Result (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>;

(s.A e.A) (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

<Loop (e.A)

<RandomAction s.A

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4)>>;

}

RandomAction {

* rh Trivial

* rm

A (Invalid s.1 e.1) (Modified e.2) (Shared e.3) (Exclusive e.4) =

(Invalid e.1) (Modified) (Shared s.1 e.2 e.3 e.4) (Exclusive);

* wh1 Trivial

*wh2

B (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive s.4 e.4) =

(Invalid e.1)(Modified s.4 e.2)(Shared e.3)(Exclusive e.4);

* wh3

C (Invalid e.1)(Modified e.2)(Shared s.3 e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified)(Shared)(Exclusive s.3);

* wm

D (Invalid s.1 e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified)(Shared)(Exclusive s.1);

}

Result{

(Invalid e.1)(Modified s.2 e.2)(Shared s.3 e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified s.21 s.22 e.2)(Shared e.3)(Exclusive e.4) = False;

(Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) = True;

}

Fig. 2: MESI protocol: a protocol model in form of a Refal program

Automatic Verification of Counter Systems 117

* InputFormat: <Go e.41 >

$ENTRY Go {

(e.101) = True ;

A e.41 (s.103 e.101) = <F24 (e.41) (e.101) s.103 > ;

D e.41 (s.104 e.101) = <F35 (e.41) (e.101) s.104 > ;

}

* InputFormat: <F35 (e.109) (e.110) s.111 e.112 >

F35 {

() (e.110) s.111 e.112 = True ;

(A e.109) (e.110) s.111 s.118 e.112 =

<F24 (e.109) (e.112 e.110) s.118 s.111 > ;

(A e.109) (s.119 e.110) s.111 = <F24 (e.109) (e.110) s.119 s.111 >;

(B) (e.110) s.111 e.112 = True ;

(B A e.109) (e.110) s.111 s.125 e.112 =

<F24 (e.109) (e.112 e.110) s.125 s.111 > ;

(B A e.109) (s.126 e.110) s.111 =

<F24 (e.109) (e.110) s.126 s.111> ;

(B D e.109) (e.110) s.111 s.127 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.127 > ;

(B D e.109) (s.128 e.110) s.111 =

<F35 (e.109) (s.111 e.110) s.128> ;

(D e.109) (e.110) s.111 s.120 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.120 > ;

(D e.109) (s.121 e.110) s.111 = <F35 (e.109) (s.111 e.110) s.121 >;

}

* InputFormat: <F24 (e.109) (e.110) s.111 e.112 >

F24 {

() (e.110) s.111 e.112 = True ;

(A e.109) (s.114 e.110) s.111 e.112 =

<F24 (e.109) (e.110) s.114 s.111 e.112 > ;

(C e.109) (e.110) s.111 e.112 =

<F35 (e.109) (e.110) s.111 e.112 >;

(D e.109) (s.115 e.110) s.111 e.112 =

<F35 (e.109) (s.111 e.112 e.110) s.115 > ;

}

Fig. 3: MESI protocol: the residual Refal program.

118 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

3 Domain-specific supercompilation as a means of
analysis

3.1 Drawbacks of general-purpose supercompilation

An obvious advantage of general-purpose supercompilation is just its being
general-purpose. Upon having designed and implemented a general-purpose su-
percompiler, we can apply it to various problems again and again, in theory,
without any extra effort. However, there are some disadvantages associated with
general-purpose supercompilation. As an example, let us consider the use of the
specializer SCP4 for the analysis of counter systems [28,24,25,26], in which case
the tasks for the supercompiler are formulated as Refal programs [27,23]. This
causes the following inconveniences.

– Natural numbers in input programs are represented by strings of star sym-
bols, and their addition by string concatenation. This representation is used
in order to take into account the behavior of some general-purpose algo-
rithms embedded in SCP4 (the whistle, the generalization), which know
nothing about the specifics of counter systems. Thus, the representation of
data has to conform to subtle details of the internal machinery of SCP4,
rather than comply with the problem domain.

– The programs modeling counter systems have to be supplemented with some
directions (in form of comments) for SCP4, which control some aspects of its
behavior. In this way SCP4 is given certain information about the problem
domain, and without such directions, residual programs produced by SCP4
would not possess desirable properties. Unfortunately, in order to be able to
give right directions to SCP4, the user needs to understand its internals.

– There remains the following question: to what extent can we trust the results
of the verification of counter systems, obtained with the aid of SCP4? The
internals of SCP4 are complicated and the source code is big. Thus the
problem of verifying SCP4 itself seems to be intractable.

3.2 Domain-specific algorithms of supercompilation

Which techniques and devices embedded into SCP4 are really essential for the
analysis of counter systems? This question was investigated by Klimov who
has developed a specialized supercompilation algorithm that was proven to be
correct, always terminating, and able to solve reachability problems for a certain
class of counter systems [6,7,10,8].

It was found that, in the case of counter systems, supercompilation can be
simplified in the following ways.

– The structure of configurations is simpler, as compared to the case of classic
supercompilation for functional languages.
• There are no nested function calls.
• There are no multiple occurrences of variables.

Automatic Verification of Counter Systems 119

• A configuration is a tuple, all configurations consisting of a fixed number
of components.
• A component of a configuration is either a natural number n, or the

symbol ω (a wildcard, representing an arbitrary natural number).
– The termination of the supercompilation algorithm is ensured by means of a

very simple generalization algorithm: if a component of a configuration is a
natural number n, and n ≥ l, where l is a constant given to the supercompiler
as one of its input parameters, then n must be replaced with ω (and in this
way the configuration is generalized). It can be easily seen that, given an l,
the set of all possible configurations is finite.

3.3 Domain-specific supercompilers for domain-specific languages

The domain-specific supercompilation algorithm developed by Klimov [6,7,10,8]
turned out to be easy to implement with the aid of the MRSC toolkit [13,14].
The simplicity of the implementation is due to the following.

– We have only to implement a simplified supercompilation algorithm for a
domain-specific language, rather than a sophisticated general-purpose algo-
rithm for a general-purpose language.

– The MRSC toolkit is based on the language Scala that provides power-
ful means for implementing embedded DSLs. The implementations can be
based either on interpretation (shallow embedding) or on compilation (deep
embedding).

– The MRSC toolkit provides prefabricated components for the construction
of graphs of configurations (by adding/removing graph nodes), for manip-
ulating sets of graphs and pretty-printing graphs. When implementing a
supercompiler, it is only necessary to implement the parts that depend on
the subject language and on the structure of configurations.

When we develop a domain-specific supercompiler, it seems logical for its
subject language also to be domain-specific, rather than general-purpose.

In this case the formulations of problems that are submitted to the supercom-
piler can be concise and natural, since the programs written in the subject DSL
may be very close to the informal formulations of these problems. For instance,
consider the 3 specifications of the MESI protocol: the informal one (Fig. 1), the
one in form of a Refal program (Fig. 2), and the one written in a domain-specific
language (Fig. 4).

A protocol model encoded as a DSL program is, in terms of Scala, an object
implementing the trait Protocol (Fig. 5). Thus this program is not a first-order
value (as is implicitly assumed in the classic formulation of the Futamura pro-
jections [2]), but rather is a mixture of first-order values (numbers, lists) and
higher-order values (functions). This approach is close to the DSL implementa-
tion technique known as “shallow embedding”.

By supercompiling the model of the MESI protocol, we obtain the graph of
configurations shown in Fig. 6.

120 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

object MESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0)
val rules: List[TransitionRule] = List(
{case List(i, e, s, m) if i>=1 => List(i-1, 0, s+e+m+1, 0)},
{case List(i, e, s, m) if e>=1 => List(i, e-1, s, m+1)},
{case List(i, e, s, m) if s>=1 => List(i+e+s+m-1, 1, 0, 0)},
{case List(i, e, s, m) if i>=1 => List(i+e+s+m-1, 1, 0, 0)})

def unsafe(c: Conf) = c match {
case List(i, e, s, m) if m>=2 => true
case List(i, e, s, m) if s>=1 && m>=1 => true
case _ => false

}

}

Fig. 4: MESI protocol: a protocol model in form of a DSL program

package object counters {
type Conf = List[Expr]
type TransitionRule = PartialFunction[Conf, Conf]
...

}

sealed trait Expr { ... }

trait Protocol {
val start: Conf
val rules: List[TransitionRule]
def unsafe(c: Conf): Boolean

}

Fig. 5: DSL for specifying counter systems: the skeleton of its implementation in
Scala

4 Using multi-result supercompilation for finding short
proofs

When analyzing a transition system, a graph of configurations produced by
supercompilation describes an upper approximation of the set of reachable states.
This graph can be transformed in a human-readable proof that any reachable
state satisfy some requirements (or, in other words, cannot be “unsafe”).

The smaller the graph the easier it is to understand, and the shorter is the
proof that can be extracted from this graph. However, a traditional single-result
supercompiler returns a single graph that may not be the smallest one.

However, a multi-result supercompiler returns a set of graphs, rather than a
single graph. Thus the set of graphs can be filtered, in order to select “the best”

Automatic Verification of Counter Systems 121

ω, 0, 0, 0

ω, 0, 1, 0 ω, 1, 0, 0

ω, 1, 0, 0ω, 0, ω, 0

ω, 0, ω, 0 ω, 1, 0, 0

ω, 0, 2, 0 ω, 0, 0, 1 ω, 1, 0, 0

ω, 0, 2, 0 ω, 1, 0, 0

1 4

1
4

1 3,4

1 2
4

1
4

Fig. 6: MESI protocol: the graph of configurations (single-result supercompila-
tion)

ω, 0, ω, 0

ω, 0, ω, 0 ω, 1, 0, 0

ω, 0, 2, 0 ω, 0, 0, 1 ω, 1, 0, 0

ω, 0, 2, 0 ω, 1, 0, 0

1 3,4

1 2
4

1
4

Fig. 7: MESI protocol: the minimal graph of configurations (multi-result super-
compilation)

ones. In the simplest case, “the best” means “the smallest”, although the graphs
can be filtered according to other criteria (for example, we may select the graphs
that are, in a sense, “well-structured”, to transform them into “well-structured”
proofs).

122 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

For example, the graph produced for the MESI protocol (see Fig. 6) by single-
result positive supercompilation [32,33] contains 12 nodes, while, by filtering the
set of graphs produced by multi-result supercompilation, we can find the graph
shown in Fig. 7, which only contains 8 nodes.

The point is that single-result supercompilers, especially those meant for
program optimization try to avoid the generalization of configurations by all
means. This strategy is reasonable and natural in the case of optimizing super-
compilation, but it is unlikely to produce minimal graphs. In the above example,
single-result supercompilation starts from the configuration (ω, 0, 0, 0) and, af-
ter a while, comes to the configuration (ω, 0, ω, 0), which is more general than
(ω, 0, 0, 0).

However, multi-result supercompilation, by “a sudden flash of inspiration”,
starts with generalizing the initial configuration. From the viewpoint of opti-
mizing supercompilation, this action appears to be strange and pointless. But it
leads to producing the graph shown in Fig. 7, which is a subgraph of the graph
in Fig. 6

Another interesting point is that in the case of single-result supercompilation
the whistle and the generalization algorithm are tightly coupled, since general-
ization is performed at the moments when the whistle blows, in order to ensure
termination of supercompilation. For this reason, the whistle and the general-
ization algorithm, to be consistent, have to be developed together. In the case
of multi-result supercompilation, however, the whistle and generalization are
completely decoupled. In particular, configurations can be generalized at any
moment, even if the whistle does not regard the situation as dangerous. As a
result, a multi-result supercompiler can find graphs that are not discovered by
single-result supercompilation.

As an example, let us consider the verification of the MOESI protocol (Fig. 8).
The graph produced by single-result supercompilation (Fig. 9) contains 20 nodes,
while the graph discovered by multi-result supercompilation (Fig. 10) contains
8 nodes only.

This is achieved due to a “brilliant insight” of multi-result supercompilation
that the initial configuration (ω, 0, 0, 0, 0) can be immediately generalized to the
configuration (ω, 0, ω, 0, ω). This leads to an 8-node graph that is not contained
as a subgraph in the 20-node graph produced by single-result supercompilation.
Note that the configuration (ω, 0, ω, 0, ω) does not appear in the 20-node graph,
and, in general, the structure of the graphs in Fig. 9 and Fig.10 is completely
different.

It should be noted that there exists a domain-specific supercompilation al-
gorithm for counter systems (developed by Klimov [10]) that, in some cases,
is able to reduce the number of nodes in the graphs, because, as compared to
general-purpose optimizing supercompilers, it generalizes configurations more
energetically. For instance, for the MESI protocol, it generates the same graph
(Fig. 7), as that produced by multi-result supercompilation.

The idea of Klimov’s algorithm [10] is the following. Suppose, in the process
of supercompilation there appears a configuration c, such that c is an instance

Automatic Verification of Counter Systems 123

case object MOESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0, 0)
val rules: List[TransitionRule] =
List({ // rm

case List(i, m, s, e, o) if i>=1 =>
List(i-1, 0, s+e+1, 0, o+m)

}, { // wh2

case List(i, m, s, e, o) if e>=1 =>
List(i, m+1, s, e-1, o)

}, { // wh3

case List(i, m, s, e, o) if s+o>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

}, { // wm

case List(i, m, s, e, o) if i>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

})

def unsafe(c: Conf) = c match {
case List(i, m, s, e, o) if m>=1 && e+s+o>=1 => true
case List(i, m, s, e, o) if m>=2 => true
case List(i, m, s, e, o) if e>=2 => true
case _ => false

}

}

Fig. 8: MOESI protocol: a protocol model as a DSL program

of a configuration c′ that is already present in the graph. Then c has to be
generalized to c′.

Unfortunately, this algorithm is not always successful in generating minimal
graphs. For example, in the case of the MOESI protocol, multi-result supercom-
pilation finds such configurations that are not appear in the process of classic
positive supercompilation [32,33].

The table in Fig. 11 compares the results of verifying 13 communication
protocols. The column SC shows the number of nodes in the graphs produced
by classic single-result positive supercompilation, and the column MRSC shows
the number of nodes in the graphs produced by straightforward multi-result
supercompilation derived from positive supercompilation [32,33] according to
the scheme described in [14]. It is evident that, practically always, multi-result
supercompilation is able to find graphs of smaller size than those produced by
single-result supercompilation.

124 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

ω, 0, 0, 0, 0

ω, 0, 1, 0, 0 ω, 0, 0, 1, 0

ω, 0, ω, 0, 0 ω, 0, 0, 1, 0

ω, 0, ω, 0, 0 ω, 0, 0, 1, 0

ω, 0, 2, 0, 0 ω, 1, 0, 0, 0 ω, 0, 0, 1, 0

ω, 0, 1, 0, 1 ω, 0, 0, 1, 0

ω, 0, ω, 0, 1 ω, 0, 0, 1, 0

ω, 0, ω, 0, 1 ω, 0, 0, 1, 0

1 4

1 3, 4

1
3, 4

1 2 4

1 3,4

1 3,4

1 3,4

Fig. 9: MOESI protocol: the graph of configurations (single-result supercompila-
tion)

5 Domain-specific residualization of the graphs of
configurations

Traditionally, general-purpose supercompilation is performed in two steps. At
the first step, there is produced a finite graph of configurations. At the second
step, this graph is “residualized”, i.e. transformed into a residual program. For
example, the supercompiler SCP4 generates residual programs in the language
Refal (see Fig. 3)

When the purpose of supercompilation is the analysis of counter systems,
residual programs are not executed, but analyzed to see whether they possess
some desirable properties. For example, as regards the program in Fig. 3, all
that matters is whether it can return False, or not? This can be determined
either by asking a human’s opinion, or, in a more rigorous way, by submitting
the program to a data flow analysis algorithm [4].

Automatic Verification of Counter Systems 125

ω, 0, ω, 0, ω

ω, 0, ω, 0, ω ω, 0, 0, 1, 0

ω, 0, 2, 0, 0 ω, 1, 0, 0, 0 ω, 0, 0, 1, 0

ω, 0, 1, 0, 1 ω, 0, 0, 1, 0

1 3,4

1 2
4

1
4

Fig. 10: MOESI protocol: the minimal graph of configurations (multi-result su-
percompilation)

SC MRSC

Synapse 11 6
MSI 8 6
MOSI 26 14
MESI 14 9
MOESI 20 9
Illinois 15 13
Berkley 17 6
Firefly 12 10
Futurebus 45 24
Xerox 22 13
Java 35 25
ReaderWriter 48 9
DataRace 9 5

Fig. 11: Single-result vs. multi-result supercompilation: the size of proofs (repre-
sented by graphs of configurations)

However, when using supercompilation for the analysis of counter systems,
we can take an easier way: it turns out that graphs of configurations are easier
to analyze, than residual programs. Thus, we can dispense with the generation
of residual programs for the purposes of separating the good outcomes of super-
compilation from the bad ones. Moreover, upon selecting a graph with desirable
properties, instead of generating a residual program in a programming language,
we can transform the graph into a script for a well-known proof assistant [16],
in order to verify the results obtained by supercompilation.

In particular, we have implemented a domain-specific supercompiler that
transforms graphs of configurations into scripts for the proof assistant Isabelle
[30]. A script thus produced specifies the reachability problem for a communi-

126 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

theory mesi

imports Main

begin

inductive mesi :: "(nat * nat * nat * nat) => bool" where
"mesi (i, 0, 0, 0)" |

"mesi (Suc i, e, s, m) ==> mesi (i, 0, Suc (s + e + m), 0)" |
"mesi (i, Suc e, s, m) ==> mesi (i, e, s, Suc m)" |
"mesi (i, e, Suc s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)" |
"mesi (Suc i, e, s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0)"

inductive unsafe :: "(nat * nat * nat * nat) => bool" where
"unsafe (i, e, s, Suc (Suc m))" |

"unsafe (i, e, Suc s, Suc m)"

inductive mesi’ :: "(nat * nat * nat * nat) => bool" where
"mesi’(_, Suc 0, 0, 0)" |

"mesi’(_, 0, 0, Suc 0)" |

"mesi’(_, 0, _, 0)"

lemma inclusion: "mesi c ==> mesi’ c"
apply(erule mesi.induct)

apply(erule mesi’.cases | simp add: mesi’.intros)+

done

lemma safety: "mesi’ c ==> ∼unsafe c"
apply(erule mesi’.cases)

apply(erule unsafe.cases | auto)+

done

theorem valid: "mesi c ==> ∼unsafe c"
apply(insert inclusion safety, simp)

done

end

Fig. 12: MESI protocol: the script for the proof assistant Isabelle produced by
the domain-specific supercompiler.

cation protocol and, in addition, a number of tactics that instruct Isabelle how
to formally prove that all reachable states are safe.

For example, in the case of the MESI protocol, there is produced the script
shown in Fig. 12. The script comprises the following parts.

Automatic Verification of Counter Systems 127

– Inductive definitions of the predicate mesi, specifying the set of reachable
states, and the predicate unsafe, specifying the set of unsafe states (unsafe),
which are the same (modulo notation) as in the source DSL program.

– An inductive definition of the predicate mesi’, specifying a set of states that
is an upper approximation to the set specified by mesi. This definition (mod-
ulo notation) enumerates configurations appearing in the graph in Fig. 7. In
order to reduce the size of the script, there is applied a simple optimization:
if the graph contains two configurations c′ and c, where c′ is an instance
of c, then c′ is not included into the definition of the predicate mesi’. The
definition of mesi’ is the most important (and non-trivial) part of the script.

– The lemma inclusion, asserting that any reachable state belongs to the set
specified by mesi’, or, in other words, for any state c, mesic implies mesi’c.

– The lemma safety, asserting that all states in the set specified by mesi’
are safe, or, in other words, for any state c, mesi’ c implies ¬unsafe c.

– The main theorem: any reachable state is safe. In other words, for all states c,
mesi c implies ¬unsafe c. This trivially follows from the lemmas inclusion
and safety).

The fundamental difference between the definitions of mesi and mesi’ is that
mesi is defined inductively, while the definition of mesi’ is just an enumeration
of a finite number of cases. For this reason, the lemma safety can be proven by
tedious, yet trivial case analysis.

Thus the rôle of supercompilation in the analysis of counter systems amounts
to generalizing the description of the set of reachable states in such a way that
proving the safety of reachable states becomes trivial. Therefore, supercompi-
lation can be regarded as a useful supplement to other theorem-proving and
verification techniques.

6 Improving the efficiency of supercompilation by taking
into account the specifics of the domain

6.1 Exploiting the mathematical properties of domain-specific
operations

As was shown by Klimov [6,7,10,8], in the case of supercompilation for counter
systems it is sufficient to deal with configuration of the form (a1, . . . , an), whose
each component ai is either a natural number N , or the symbol ω. As regards
driving, it is sufficient to deal with tests of the form either e = N , or e ≥ N ,
where N is a natural number and e is an arithmetic expression that can only
contain the operators +, −, natural numbers and ω. All necessary operations
over such expressions are easy to implement in terms of the language Scala (see
Fig.13).

But, if we use a general-purpose supercompiler, dealing with programs in a
general-purpose language, the supercompiler does not have any knowledge about
the problem domain and the operations over domain-specific data structures. For
example, when the supercompiler SCP4 is used for the verification of protocols,

128 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

package object counters {
...

implicit def intToExpr(i: Int): Expr = Num(i)
}

sealed trait Expr {
def +(comp: Expr): Expr
def -(comp: Expr): Expr
def >=(i: Int): Boolean
def ===(i: Int): Boolean

}

case class Num(i: Int) extends Expr {
def +(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i + j)

}

def -(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i - j)

}

def ===(j: Int) = i == j
def >=(j: Int) = i >= j

}

case object Omega extends Expr {
def +(comp: Expr) = Omega
def -(comp: Expr) = Omega
def >=(comp: Int) = true
def ===(j: Int) = true

}

Fig. 13: Counter systems: operations over components of configurations imple-
mented in Scala.

natural numbers have to be encoded as strings of the star symbol, and addition of
natural numbers as concatenation of strings (see Fig. 2 and 3). As a consequence,
it becomes difficult (both for humans and for supercompilers) to see that a
program operates on natural numbers.

6.2 Handling non-determinism in a direct way

When a supercompiler is a general-purpose one, its subject language is usually
designed for writing deterministic programs. This causes some inconveniences
in cases where supercompilation is used for the analysis of non-deterministic
systems. If a model of a non-deterministic system has to be encoded as a de-
terministic program, there arises the need for using various tricks and artificial

Automatic Verification of Counter Systems 129

workarounds, which, certainly, complicates the program and obscures its mean-
ing.

Consider, for example, the model of the MESI protocol in Fig. 2, encoded as
a Refal program. The entry point of the program is the function Go which takes
2 parameters: e.A and e.I [27,23].

$ENTRY Go {e.A (e.I) =

<Loop (e.A) (Invalid e.I)(Modified)(Shared)(Exclusive) >;}

The parameter e.I is used for building the initial state, while the parameter
e.A has been artificially introduced in order to simulate non-determinism. Since
the rules describing the transition system are not mutually exclusive, more than
one rule can be applicable at the same time, and the value of the parameter e.A
is a sequence of rule names, prescribing which rule must be applied at each step.

Unfortunately, this additional parameter, pollutes not only the source pro-
gram, but also the configurations emerging during supercompilation and, finally,
the residual program (see Fig. 3), thereby obscuring its meaning.

However, if a model of a non-deterministic system is encoded as a program
in a non-deterministic language (see Fig. 4), then there disappears the need for
using tricks and workarounds related to non-determinism. Also note that non-
determinism, by itself, does not create additional problems for supercompilation,
as, unlike an ordinary interpreter, a supercompiler has to consider all possible
ways of executing a program (for a given set of initial states) [18,19].

6.3 Filtering graphs of configurations, rather than residual
programs

As has been discussed in Section 2, multi-result supercompilation can be used
for finding residual programs satisfying some criteria. Since a multi-result super-
compiler may produce hundreds, or even thousands of residual programs, there
is a need for automatic filtering of residual programs.

For example, when applying a general-purpose supercompiler for the analysis
of counter systems, we need a filter for selecting residual problems that are
certain not to return False, and such a filter can be constructed on the basis of
well-known data-flow analysis algorithms [4].

In the case of domain-specific supercompilation, however, “residual programs”
may not be programs in traditional sense of the word. For instance, the result
produced by analyzing a counter system can be presented as a script for an au-
tomatic proof assistant (see Section 5). So the filtering of programs should be
replaced with the filtering of something else.

Fortunately, it turns out that filtering of the final results of supercompilation
can be replaced with filtering of graphs of configurations. Moreover, taking into
account the specifics of the domain allows the process of filtering to be optimized
by discarding some graphs that are in construction, without waiting for them to
be completed. This can considerably reduce the amount of work performed by a
multi-result supercompiler, because discarding an incomplete graph prunes the
whole set of graphs that would be generated by completing the discarded graph.

130 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

SC1 SC2 SC3 SC4 SC5

Synapse
completed 48 37 3 3 1
pruned 0 0 0 0 2
commands 321 252 25 25 15

MSI
completed 22 18 2 2 1
pruned 0 0 0 0 1
commands 122 102 15 15 12

MOSI
completed 1233 699 6 6 1
pruned 0 0 0 0 5
commands 19925 11476 109 109 35

MESI
completed 1627 899 6 3 1
pruned 0 0 27 20 21
commands 16329 9265 211 70 56

MOESI
completed 179380 60724 81 30 2
pruned 0 0 0 24 36
commands 2001708 711784 922 384 126

Illinois
completed 2346 1237 2 2 1
pruned 0 0 21 17 18
commands 48364 26636 224 74 61

Berkley
completed 3405 1463 30 30 2
pruned 0 0 0 0 14
commands 26618 12023 282 282 56

Firefly
completed 2503 1450 2 2 1
pruned 0 0 2 2 3
commands 39924 24572 47 25 21

Futurebus
completed - - - - 4
pruned - - - - 148328
commands - - - - 516457

Xerox
completed 317569 111122 29 29 2
pruned 0 0 0 0 1
commands 5718691 2031754 482 482 72

Java
completed - - - - 10
pruned - - - - 329886
commands - - - - 1043563

ReaderWriter
completed 892371 402136 898 898 6
pruned 0 0 19033 19033 1170
commands 24963661 11872211 123371 45411 3213

DataRace
completed 51 39 8 8 3
pruned 0 0 0 0 4
commands 360 279 57 57 31

Fig. 14: Resources consumed by different versions of the multi-result supercom-
piler

Automatic Verification of Counter Systems 131

As regards counter systems, the specifics of the domain are the following.
The predicate unsafe must be monotonic with respect to configurations: for
all configurations c and c′, such that c is an instance of c′, unsafe c implies
unsafe c′. Another point is that if a configuration c has appeared in a graph
of configurations, it can be removed by supercompilation only by replacing c
with a more general configuration c′ (such that c is an instance of c′). Thus,
if c is unsafe, it can only be replaced with an unsafe configuration (due to the
monotonicity of the predicate unsafe). Therefore, if a graph contains an unsafe
configuration, it can be discarded immediately, since all graphs produced by
completing that graph would also contain unsafe configurations.

The detection of unsafe configurations can be performed at various places
in the supercompilation algorithm, and the choice of such places bears great
influence on the efficiency of multi-result supercompilation.

The next optimization, depending on the specifics of the domain, takes into
account the properties of the set of all possible generalizations of a given config-
uration c.

Namely, all generalizations of c can be obtained by replacing some numeric
components of c with ω. Thus, the configuration (0, 0) can be generalized in 3
ways, to produce (ω, 0), (0, ω) and (ω, ω). Note that (ω, ω) is a generalization
with respect to (ω, 0) and (0, ω).

A näıve multi-result supercompilation algorithm, when trying to rebuild a
configuration c by replacing it with a more general configuration c′, considers all
possible generalizations of c immediately. If a generalization c′ is not a maximal
one, after a while, it will be, in turn, generalized. For instance, (ω, 0), and (0, ω)
will be generalized to (ω, ω). Thus the same graph of configurations will be pro-
duced 3 times: by immediately generalizing (0, 0) to (ω, ω), and by generalizing
(0, 0) to (ω, ω) in two steps, via (ω, 0), and (0, ω).

The number of graphs, considered during multi-result supercompilation, can
be significantly reduced, by allowing only minimal generalization of a config-
uration, which can be obtained by replacing a single numeric component in a
configuration with ω.

We have studied the performance of 5 variations of a supercompilation algo-
rithm for counter systems: SC1, SC2, SC3, SC4 and SC5. Each variant differs
from the previous one in that it introduces an additional optimization.

– SC1. Filtering and generation of graphs are completely decoupled. A graph
is examined by the filter only after having been completed. Thus, no use
is made of the knowledge about domain-specific properties of generalization
(its decomposability into elementary steps) and the predicate unsafe (its
monotonicity). This design is modular, but inefficient.

– SC2. The difference from SC1 is that, when rebuilding a configuration c, SC2
only considers the set of “minimal” generalizations (produced by replacing
a single component of c with ω).

– SC3. The difference from SC2 is that the configurations produced by gen-
eralization are checked for being safe, and the unsafe ones are immediately
discarded.

132 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

– SC4. The difference from SC3 is that the configurations that could be pro-
duced by driving a configuration c are checked for being safe. If one or more
of the new configurations turn out to be unsafe, driving is not performed for
c.

– SC5. The difference from SC4 is that the graphs that are too large are
discarded, without completing them. Namely, the current graph is discarded
if there is a complete graph that has been constructed earlier, and whose size
is smaller than that of the current graph. (Note that, due to the optimizations
introduced in SC2, SC3 and SC4, all configurations in completed graphs are
guaranteed to be safe.)

The optimization introduced in SC5 is typical for algorithms in the field of
artificial intelligence, where it is known as “pruning” [31].

The table in Fig. 14 shows the resources consumed by the 5 versions of the
supercompiler while verifying 13 communication protocols. For each protocol,
the row completed shows the number of completed graphs that have been pro-
duced (with possible repetitions), the row pruned shows the number of discarded
incomplete graphs, and the row commands shows the number of graph building
steps that have been performed during supercompilation.

In the case of the protocols Futurebus and Java, the data are only given for
the version SC5, as the resource consumption by the other versions of the super-
compiler turned out to be too high, for which reason data were not obtained.

The data demonstrate that the amount of resources consumed by multi-result
supercompilation can be drastically reduced by taking into account the specifics
of the problem domain.

7 Conclusions

Multi-result supercompilation is not a theoretical curiosity, but rather a workhorse
that, when exploited in a reasonable way, is able to produce results of practical
value.

– The use of multi-result supercompilation in the field of the analysis and ver-
ification of transition systems improves the understandability of the results,
by considering various versions of the analysis and selecting the best ones.

– The use of multi-result supercompilation allows the whistle and the algo-
rithm of generalization to be completely decoupled, thereby simplifying the
structure of the supercompiler. This, in turn, makes it easier to ensure the
correctness of the supercompiler.

The usefulness of domain-specific supercompilation is due to the following.

– The tasks for a domain-specific supercompiler can be written in a domain-
specific language that is better at taking into account the specifics of the
problem domain, than a general-purpose language. (For example, this DSL
may be non-deterministic, or provide domain-specific data types and opera-
tions.)

Automatic Verification of Counter Systems 133

– In the case of a domain-specific supercompiler, the machinery of supercom-
pilation can be simplified, since, in a particular domain, some complexities
of general-purpose supercompilation may be of little usefulness.

– The efficiency of multi-result supercompilation can be improved by early
discarding of unsatisfactory variants of supercompilation.

– The MRSC toolkit allows domain-specific multi-result supercompilers to be
manufactured at low cost, making them a budget solution, rather than a
luxury.

Thus, the combination of domain-specific and multi-result supercompilation
produces a synergistic effect: generating multiple results gives the opportunity to
select the best solutions to a problem, while taking into account the specifics of
the problem domain reduces the amount of resources consumed by multi-result
supercompilation.

Acknowledgements

The authors express their gratitude to the participants of the Refal seminar at
Keldysh Institute for useful comments and fruitful discussions.

References

1. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-
tocols. Form. Methods Syst. Des., 23:257–301, November 2003.

2. Y. Futamura. Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

3. N. D. Jones. The essence of program transformation by partial evaluation and
driving. In Proceedings of the Third International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics, PSI ’99, pages 62–79, London, UK,
UK, 2000. Springer-Verlag.

4. N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional pro-
grams. Theor. Comput. Sci., 375(1-3):120–136, 2007.

5. J. Jørgensen and M. Leuschel. Efficiently generating efficient generating extensions
in Prolog. In O. Danvy, R. Glück, and P. Thiemann, editors, Dagstuhl Seminar
on Partial Evaluation, volume 1110 of Lecture Notes in Computer Science, pages
238–262. Springer, 1996.

6. A. Klimov. An approach to supercompilation for object-oriented languages: the
Java supercompiler case study. In First International Workshop on Metacomputa-
tion in Russia, 2008.

7. A. V. Klimov. A Java supercompiler and its application to verification of cache-
coherence protocols. In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors, Ershov
Memorial Conference, volume 5947 of Lecture Notes in Computer Science, pages
185–192. Springer, 2009.

8. A. V. Klimov. Multi-result supercompilation in action: Solving coverability prob-
lem for monotonic counter systems by gradual specialization. In International
Workshop on Program Understanding, PU 2011, Novososedovo, Russia, July 2–5,
2011, pages 25–32. Ershov Institute of Informatics Systems, Novosibirsk, 2011.

134 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

9. A. V. Klimov. Yet another algorithm for solving coverability problem for mono-
tonic counter systems. In V. Nepomnyaschy and V. Sokolov, editors, Second
Workshop “Program Semantics, Specification and Verification: Theory and Ap-
plications”, PSSV 2011, St. Petersburg, Russia, June 12–13, 2011, pages 59–67.
Yaroslavl State University, 2011.

10. A. V. Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In E. Clarke, I. Virbitskaite, and A. Voronkov, editors, Per-
spectives of Systems Informatics, 8th Andrei Ershov Informatics Conference, PSI
2011, Akademgorodok, Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162
of Lecture Notes in Computer Science, pages 193–209. Springer, 2012.

11. A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Implementing a domain-
specific multi-result supercompiler by means of the MRSC toolkit. Preprint 24,
Keldysh Institute of Applied Mathematics, 2012.

12. I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order terms
by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of LNCS, pages 193–205, 2010.

13. I. Klyuchnikov and S. Romanenko. Multi-result supercompilation as branching
growth of the penultimate level in metasystem transitions. In Ershov Informatics
Conference, volume 7162 of LNCS, pages 210–226, 2012.

14. I. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-result
supercompilers. Preprint 77, Keldysh Institute of Applied Mathematics, 2011.

15. D. Krustev. A simple supercompiler formally verified in Coq. In Second Interna-
tional Workshop on Metacomputation in Russia, 2010.

16. H. Lehmann and M. Leuschel. Inductive theorem proving by program specialisa-
tion: Generating proofs for Isabelle using Ecce. In M. Bruynooghe, editor, LOP-
STR, volume 3018 of Lecture Notes in Computer Science, pages 1–19. Springer,
2003.

17. M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using the hand-
written compiler generator LOGEN. Electr. Notes Theor. Comput. Sci., 30(2):157–
162, 1999.

18. M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other well-
structured transition systems by partial deduction. In Proceedings of the First
International Conference on Computational Logic, CL ’00, pages 101–115, London,
UK, 2000. Springer-Verlag.

19. M. Leuschel and H. Lehmann. Solving coverability problems of Petri nets by partial
deduction. In Proceedings of the 2nd ACM SIGPLAN international conference on
Principles and practice of declarative programming, PPDP ’00, pages 268–279, New
York, NY, USA, 2000. ACM.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Trans. Program.
Lang. Syst., 20:208–258, January 1998.

21. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In Selected papers from the 9th International
Workshop on Logic Programming Synthesis and Transformation, pages 62–81, Lon-
don, UK, 2000. Springer-Verlag.

22. M. Leuschel and D. D. Schreye. Logic program specialisation: How to be more
specific. In H. Kuchen and S. D. Swierstra, editors, PLILP, volume 1140 of Lecture
Notes in Computer Science, pages 137–151. Springer, 1996.

23. A. Lisitsa. Verification of MESI cache coherence protocol. http://www.csc.liv.
ac.uk/˜alexei/VeriSuper/node5.html.

http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html
http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html

Automatic Verification of Counter Systems 135

24. A. Lisitsa and A. P. Nemytykh. Towards verification via supercompilation. Com-
puter Software and Applications Conference, Annual International, 2:9–10, 2005.

25. A. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing (exper-
iments with the SCP4 supercompiler). Programming and Computer Software,
33(1):14–23, 2007.

26. A. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via supercom-
pilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

27. A. Nemytykh. SCP4 : Verification of protocols. http://refal.botik.ru/

protocols/.

28. A. P. Nemytykh. The supercompiler SCP4: General structure. In M. Broy and
A. V. Zamulin, editors, Ershov Memorial Conference, volume 2890 of Lecture Notes
in Computer Science, pages 162–170. Springer, 2003.

29. A. P. Nemytykh and V. A. Pinchuk. Program transformation with metasystem
transitions: Experiments with a supercompiler. LECTURE NOTES IN COM-
PUTER SCIENCE, pages 249–260, 1996.

30. T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

31. D. Poole and A. K. Mackworth. Artificial Intelligence - Foundations of Computa-
tional Agents. Cambridge University Press, 2010.

32. M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of positive
information propagation. Master’s thesis, Dept. of Computer Science, University
of Copenhagen, 1994.

33. M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

34. Z. Su and G. Wassermann. The essence of command injection attacks in web appli-
cations. In Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’06, pages 372–382, New York, NY,
USA, 2006. ACM.

35. V. F. Turchin. A supercompiler system based on the language refal. SIGPLAN
Not., 14(2):46–54, 1979.

36. V. F. Turchin. The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 1980.

37. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

38. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.

39. V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a super-
compiler. In LFP ’82: Proceedings of the 1982 ACM symposium on LISP and
functional programming, pages 47–55, New York, NY, USA, 1982. ACM.

http://refal.botik.ru/protocols/
http://refal.botik.ru/protocols/

136 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

A An implementation

Here we show the source code of the multi-result supercompiler for counter
systems implemented by means of the MRSC toolkit. More detailed explanations
about the code may be found in [11].

A.1 Operations over configurations

First of all, the supercompiler has to perform the following operations over con-
figurations: testing whether a configuration c1 is an instance of a configuration
c2, and enumerating all possible generalizations of a configuration c. An imple-
mentation of these operations is shown in Fig. 15.

package mrsc.counters

object Conf {
def instanceOf(c1: Conf, c2: Conf): Boolean =
(c1, c2).zipped.forall((e1, e2) => e1 == e2 || e2 == Omega)

def gens(c: Conf) =
product(c map genExpr) - c

def oneStepGens(c: Conf): List[Conf] =
for (i <- List.range(0, c.size) if c(i) != Omega)
yield c.updated(i, Omega)

def product[T](zs: List[List[T]]): List[List[T]] = zs match {
case Nil => List(List())
case x :: xs => for (y <- x; ys <- product(xs)) yield y :: ys

}

private def genExpr(c: Expr): List[Expr] = c match {
case Omega => List(Omega)
case Num(i) if i >= 0 => List(Omega, Num(i))
case v => List(v)

}

}

Fig. 15: Operations over configurations: testing for instances and building gen-
eralizations

The function instanceOf tests whether a configuration c1 is an instance of
a configuration c2.

The function genExpr generates all possible generalization of an expression
(which is a component of a configuration). Note that the original expression is

Automatic Verification of Counter Systems 137

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Fig. 16: MRSC “middleware” for supercompiler construction

included into the set of generalization. The set of generalization of the symbol
ω contains only the symbol ω, while the set of generalizations of a number N
consists of two elements: N and ω.

The function gens generates the set of all possible generalizations of a con-
figuration c. Note that c is not included into this set.

The function oneStepGens generates the set of all generalizations of a con-
figurations c that can be produced by generalizing a single component of c. This
function will be used in the optimized version of the supercompiler shown in
Fig. 20.

A.2 Graph builder

(Fold)
∃α : foldable(g, β, α)

g → fold(g, β, α)

(Drive)
6 ∃α : foldable(g, β, α) ¬dangerous(g, β) cs = driveStep(c)

g → addChildren(g, β, cs)

(Rebuild)
6 ∃α : foldable(g, β, α) c′ ∈ rebuildings(c)

g → rebuild(g, β, c′)

Notation:
g – a current graph of configurations
β – a current node in a graph of configurations
c – a configuration in a current node β

Fig. 17: Multi-result supercompilation specified by rewrite rules

Technically, a supercompiler written using MRSC is based upon two compo-
nents shown in Fig. 16: GraphRewriteRules and GraphGenerator [14].

138 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

The trait GraphRewriteRules declares the method steps, which is used in
the main loop of supercompilation for obtaining all graphs that can be derived
from a given incomplete graph g by applying the rewrite rules Fold, Drive and
Rebuild [14] shown in Fig. 17. Namely, steps(g) returns a list of “graph rewrite
steps” [14]. Then the graph generator applies each of these “steps” to the graph
g to produce the collection of the descendants of g.

A concrete supercompiler is required to provide an implementation for the
method steps. The class GraphGenerator, by contrast, is a ready-to-use com-
ponent: it is a constituent part of any supercompiler built on top of MRSC.

package mrsc.counters

class MRCountersRules(protocol: Protocol, l: Int)
extends GraphRewriteRules[Conf, Unit] {

override def steps(g: G): List[S] =
fold(g) match {
case None => rebuild(g) ++ drive(g)
case Some(s) => List(s)

}

def fold(g: G): Option[S] = {
val c = g.current.conf
for (n <- g.completeNodes.find(n => instanceOf(c, n.conf)))
yield FoldStep(n.sPath)

}

def drive(g: G): List[S] =
if (dangerous(g)) List()
else List(AddChildNodesStep(next(g.current.conf)))

def rebuild(g: G): List[S] =
for (c <- gens(g.current.conf))
yield RebuildStep(c): S

def dangerous(g: G): Boolean =
g.current.conf exists

{ case Num(i) => i >= l; case Omega => false }

def next(c: Conf): List[(Conf, Unit)] =
for (Some(c) <- protocol.rules.map(_.lift(c)))
yield (c, ())

}

Fig. 18: Graph rewrite rules: an implementation for counter systems

Automatic Verification of Counter Systems 139

In the case of supercompilation for counter systems the method steps can
be straightforwardly implemented as shown in Fig. 18.

The methods fold, drive and rebuild correspond to the rewrite rules Fold,
Drive and Rebuild [14]. Since the rewrite rules are independent from each other,
the body of the method (steps) could have been defined in the following trivial
way:

fold(g) ++ rebuild(g) ++ drive(g)

However, we have preferred to slightly optimize the implementation by taking
into account that the rule Fold is mutually exclusive with the rules Drive and Re-
build. Another subtle point is that, in general, the rule Fold is non-deterministic,
because the current configuration may be foldable to several configurations in
the graph. Thus, the rule Fold may be applicable in zero, one or more ways.
However, in the case of counter systems, all variants of folding are equally good.
For this reason, in the implementation in Fig. 18, the method fold returns no
more than one variant of folding, the type of the results being Option[S], rather
than List[S]. And the rules Drive and Rebuild are only applied if fold returns
zero results.

The implementations of the methods fold and rebuild are straightforward.
The method dangerous implements the whistle suggested by Klimov [10,9]:

a configuration is considered as “dangerous” if it contains a number N , such
that N ≥ l, where l is a constant given to the supercompiler as one of its input
parameters.

The implementation of the method drive uses an auxiliary method next,
which tries to apply all transition rules to a configuration c. If a rule is applicable,
it returns a configuration c′, in which case the pair (c′, ()) is included in the list
returned by next. In general, this pair has the form c′, d, where c′ is the new
configuration and d the label for the edge entering the node containing the
configuration c′. But, in the case of counter systems, edges need not be labeled,
for which reason we put the placeholder () in the second component of the pair.

A.3 Optimizations

Fig. 19 shows the supercompiler for counter systems that has been produced
from the supercompiler in Fig. 18 by implementing the aforementioned opti-
mizations. Technically, the improved supercompiler is implemented as the class
FastMRCountersRules, which is a subclass of MRCountersRules.

The main loop of the optimized supercompiler is shown in Fig. 20. Complete
graphs are produced by the iterator graphs by demand. Since the goal is to find
a graph of minimum size, the variable minGraph contains the smallest of the
graphs that have been encountered.

Now let us consider the internals of the class FastMRCountersRules.
The variable maxSize holds the maximum size of graphs that are worth

considering: if the supercompiler encounters a graph whose size exceeds maxSize,
this graph is discarded (see the definition of the method steps).

140 A. V. Klimov, I. G. Klyuchnikov, S. A. Romanenko

package mrsc.counters

class FastMRCountersRules(protocol: Protocol, l: Int)
extends MRCountersRules(protocol, l) {

var maxSize: Int = Int.MaxValue

override def drive(g: G): List[S] =
for (AddChildNodesStep(ns) <- super.drive(g)

if ns.forall(c =>!protocol.unsafe(c._1)))
yield AddChildNodesStep(ns)

override def rebuild(g: G): List[S] =
for (c <- oneStepGens(g.current.conf) if !protocol.unsafe(c))
yield RebuildStep(c): S

override def steps(g: G): List[S] =
if (protocol.unsafe(g.current.conf) || size(g) > maxSize)
List()

else
super.steps(g)

private def size(g: G) =
g.completeNodes.size + g.incompleteLeaves.size

}

Fig. 19: Graph rewrite rules: an optimized implementation for counter systems

val rules = new FastMRCountersRules(protocol, l)
val graphs = GraphGenerator(rules, protocol.start)

var minGraph: SGraph[Conf, Unit] = null
for (graph <- graphs) {
val size = graphSize(graph)
if (size < rules.maxSize) {
minGraph = graph
rules.maxSize = size

}

}

Fig. 20: Optimized implementation of the main loop of multi-result supercompi-
lation

Automatic Verification of Counter Systems 141

The method rebuild is redefined: now, instead of considering all possible
generalization (produced by the method gens), it only considers one-step gen-
eralizations (produced by the method oneStepGens).

All other modifications are related to detecting unsafe configurations: the
goal is to detect unsafe configurations as soon as possible. This is achieved by
applying the predicate unsafe to configurations at several places.

	Introduction
	Analyzing the behavior of systems by means of supercompilation
	Domain-specific supercompilation as a means of analysis
	Drawbacks of general-purpose supercompilation
	Domain-specific algorithms of supercompilation
	Domain-specific supercompilers for domain-specific languages

	Using multi-result supercompilation for finding short proofs
	Domain-specific residualization of the graphs of configurations
	Improving the efficiency of supercompilation by taking into account the specifics of the domain
	Exploiting the mathematical properties of domain-specific operations
	Handling non-determinism in a direct way
	Filtering graphs of configurations, rather than residual programs

	Conclusions
	References
	An implementation
	Operations over configurations
	Graph builder
	Optimizations

