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WHAT AND WHY ?

Obfuscation = hiding of intended meaning in communication, making a
program confusing, wilfully ambiguous, and harder to interpret.

I Making something dark

I Putting something in a shadow

Our version: a semantics-preserving program transformation intended
to make transformed programs hard to understand.

Popular in the computer security and software engineering communities:
Obfuscation, Watermarking, Steganography. WHY ?

I To avoid theft of an algorithm (hard to steal or adapt or patent)

I to hide evidence in a program of its authorship, ownership, creator

I . . . related other security techniques . . .
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OBFUSCATION = A PROGRAM TRANSFORMATION p 7→ p′

A scenario:

I An attacker is trying to analyze or decipher obfuscated program p′

I a defender is trying to construct p′ to make this hard to do

Want: p′ is executable, but it should be hard to adapt, exploit, or analyze.

SOME CRITERIA:

1. Semantics preservation: we must have

∀p . [[p’]] = [[p]]

2. Automation: p′ is obtained from p without hand work.

Thus the programmer/inventor of p can release p′ instead of p.

3. Efficiency: p′ should not be too much slower or larger than p.

4. Potency = hard reverse engineering, namely
p is hard to obtain from its obfuscated version p′.
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HOW ? OUR SILVER BULLET

Program transformation by specializing a self-interpreter.

Program interp is a self-interpreter if for all programs p and data d ∈ D

[[p]](d) = [[interp]](p, d)

A partial evaluator (or program specializer) spec satisifies for every pro-
gram p with “static” input s ∈ D and “dynamic” input d ∈ D, that

[[p]](s, d) = [[ [[spec]](p,s) ]] (d)

Some practical program specializers:
TEMPO and CMIX for C; ECCE and LOGEN for Prolog; UNMIX, SIMILIX and
PGG for SCHEME.

We used Unmix in our experiments.
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PROGRAM TRANSFORMATION BY INTERPRETER
SPECIALIZATION

Suppose

p′ := [[spec]](interp, p)

So p′ is the result of specializing a self-interpreter to program p.

Claim: [[p]] = [[p′]], by simple equational reasoning. For any data d,

[[p]](d) = [[interp]](p, d) definition of self-interpreter
= [[[[spec]](interp,p)]](d) definition of specializer
= [[p′]](d) definition of p’

Therefore the function

p 7→ [[spec]](interp, p)

is a semantics-preserving program transformer.
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OPTIMAL SPECIALIZATION VERSUS OBFUSCATION

In the transformation

p 7→ p′ = [[spec]](interp, p)

For optimal specialization:
p′ should be as efficient as p.

But. . . for good obfuscation:
p′ should be harder to understand than p.

Conflicting goals, but achievable by (re-)designing interp cleverly.

We show that several useful program obfuscations can be obtained by
interpreter specialization.

A bit of useful slack:

It is OK for interp to be slow, as long as
p′ is fast enough, and hard enough to understand.
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IN GENERAL, IF p′ = [[spec]](interp, p):

1. Program p′ inherits the algorithm of program p.

2. Program p′ inherits the programming style of interp.

Our trick: build a program transformer

I by programming a self-interpreter interp+

I in a style to give the desired transformation.

I Then (automatically)

• specialise interp+ to any input program p

• to transform p as desired.

Some writing styles that can be inherited from interp:

I functional language, tail-recursive ,or CPS (continuation-passing) styles

I Or interp can use memoisation to implement function calls.
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STRUCTURE OF A SIMPLE SELF-INTERPRETER

input p, d; Program to be interpreted, and its data
pc := 2; Initialise program counter
store := [in 7→ d, out 7→ 0, x1 7→ 0, . . .]; Initialise store
while pc < length(p) do

instruction := lookup(p, pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc := pc+ 1; Once case per command type
x := e : store := store[x 7→ eval(e, store)]; pc := pc+ 1;

. . . endw ;

output store[out];
eval(e, store) = case e of Function to evaluate expressions

constant : e

variable : store(e)

e1 + e2 : eval(e1, store) + eval(e2, store)

e1− e2 : eval(e1, store)− eval(e2, store)
e1 ∗ e2 : eval(e1, store) ∗ eval(e2, store)
. . .
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SPECIALIZATION OF THE SIMPLE SELF-INTERPRETER

A simple color-coding scheme:

I GREEN for static(ally computable)

I RED for dynamic.

First steps using this coding:

I interp variable p is classified as “static”, and variable d is classified
as “dynamic”.

I . . . and a bit more:

I

I interp variables e, pc and instruction are classified as “static”, since
given any p they can only assume finitely many values.
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STRUCTURE OF A SIMPLE SELF-INTERPRETER

input p, d; Program to be interpreted, and its data
pc:=2; Initialise program counter
store :=[in 7→ d, out 7→ 0, x1 7→ 0, . . .]; Initialise store
while pc<length(p) do

instruction:=lookup(p,pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc:=pc+1; Once case per command type
x:=e : store := store[x 7→ eval(e, store)]; pc:=pc+1;
. . . endw ;

output store[out];
eval(e, store) = case e of Function to evaluate expressions

constant : e
variable : store(e)

e1 + e2 : eval(e1, store)+eval(e2, store)

e1 - e2 : eval(e1, store)−eval(e2, store)
e1 * e2 : eval(e1, store)∗eval(e2, store)
. . .
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SPECIALIZATION OF THE SIMPLE SELF-INTERPRETER

I interp variable p is classified as “static”, and variable d is classified
as “dynamic”.

I interp variables e, pc and instruction are classified as “static”, since
given any p they can only assume finitely many values.

I

I The interpreter’s while loop is unfolded, so the only remaining control
transfers implement the transfers in program p.

— 11 —



STRUCTURE OF A SIMPLE SELF-INTERPRETER

input p, d; Program to be interpreted, and its data
pc:=2; Initialise program counter
store :=[in 7→ d, out 7→ 0, x1 7→ 0, . . .]; Initialise store
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instruction:=lookup(p,pc); Find the pc-th instruction
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SPECIALIZATION OF THE SIMPLE SELF-INTERPRETER

I interp variable p is classified as “static”, and variable d is classified
as “dynamic”.

I interp variables e, pc and instruction are classified as “static”, since
given any p they can only assume finitely many values.

I

I The interpreter’s while loop is unfolded, so the only remaining control
transfers correspond to those present in program p.

I

I interp function eval is completely unfolded and so does not appear
in p′, since all recursive calls decrease the static value e.
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SPECIALIZATION OF THE SIMPLE SELF-INTERPRETER

I interp variable p is classified as “static”, and variable d is classified
as “dynamic”.

I interp variables e, pc and instruction are classified as “static”, since
given any p they can only assume finitely many values.

I

I The interpreter’s while loop is unfolded, so the only remaining control
transfers correspond to those present in program p.

I

I interp function eval is completely unfolded and so does not appear
in p′, since all recursive calls decrease the static value e.

I interp variable store is a function with static domain but dynamic
range.

I “Arity raising” splits store into: one specialised program variable
for each of p’s variables.
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SPECIALIZATION OF THE SIMPLE SELF-INTERPRETER

Net effect of all of these tricks:

– the specialized program p′ = [[spec]](interp, p)

– is identical to p (up to variable renaming).

Alas, this is not what we want for obfuscation

since p′ is α-equivalent to p

(identical up to renaming = too easy to deobfuscate. . . )

But it is a first step towards

more interesting automatic program transformation
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AN EASY EXAMPLE: DATA OBFUSCATION

Data obfuscation Similar to Drape’s technique, but automated.

Modify the simple self-interpreter so that

I all values in the store are obfuscated, e.g., by multiplying by 2.

I Mutual inverse functions obf(x) and dob(x).

Modify interp so that:

I All stored values are obfuscated;

• Input values are obfuscated in the initial store;
• variable values are obfuscated just before putting in the store; and
• output values are de-obfuscated in the program’s final store.

I Expression evaluation yields obfuscated values:
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A VERY SIMPLE DATA OBFUSCATION: V 7→ 2V

input p, d; Program to be interpreted, and its data
pc := 2; Initialise program counter and obfuscated store:
store := [in 7→ obf(d), out 7→ obf(0), x1 7→ obf(0), . . .];
while pc < length(p) do

instruction := lookup(p, pc);

case instruction of Dispatch on syntax
skip : pc := pc+ 1; Obfuscate values when stored:
x:=e : store := store[x 7→ obf(eval(e, store))]; pc := pc+ 1;

. . . endw ;

output dob(store[out]);
obf(V ) = 2 ∗ V ; dob(V ) = V/2 Obfuscation/de-obfuscation
eval(e, store) = case e of

constant : obf(e)
variable : store(e) Variable values
e1 + e2 : obf(dob(eval(e1, store)) + dob(eval(e2, store)))
e1 - e2 : obf(dob(eval(e1, store))− dob(eval(e2, store)))
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EXAMPLE OUTPUT FROM DATA OBFUSCATION

Program p
1.input x;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x− 1

endw
6.output y;
7.end

is automatically transformed into this equivalent obfuscated program p′:
1.input x;
1.5.x := 2 ∗ x; Obfuscate input x
2.y := 2 ∗ 2; Obfuscate y := 2
3.while x/2 > 0 do De-obfuscate x

4.y := 2 ∗ (y/2 + 2);
5.x := 2 ∗ (x/2− 1)

endw
6.output y/2; De-obfuscate output
7.end
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WHAT IS HAPPENING ? HOW TO GENERALISE ?

1. The above example applies one-to-one functions

V alue V alue
-

�

λ x . 2x

λ x . x/2

2. More generally: apply one-to-one functions

V alue V alue
-

�

obf

dob

3. Still more generally: apply one-to-one store transformations:

Store Store
-

�

obf

dob

A nasty example:

obf(x, y) = (x+ y, x− y)

dob(u, v) = ((u+ v)/2, (u− v)/2)
This mixes up values of different variables!
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OBFUSCATION: (X,Y ) 7→ (U, V ) = (X + Y,X − Y )

Program p
1.input x;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x− 1

endw
6.output y;
7.end

is automatically transformed into this equivalent obfuscated program p′:
1.input x;u := x+ y; v := x− y; Initialise
2.1.u := (u+ v)/2 + 2; Obfuscated y := 2
2.2.v := (u+ v)/2− 2 -continued-
3.while (u+ v)/2 > 0 do De-obfuscated x > 0

4.u := u+ 2; v := v − 2;
5.u := u− 1; v := v − 1;

endw
6.output (u− v)/2; De-obfuscate output
7.end
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OBFUSCATION FROM A “WHOLE-PROGRAM” VIEWPOINT

A conflict that makes program obfuscation a subtle problem concerns a
general principle in programming:

Good programs are well-structured and have concise invariants.

This is a key to

I understanding a program, and

I adapting it to new purposes.

Good structure and short invariants are necessity in order to develop,
debug and perfect a program p in the first place.

However, instead an obfuscated program
should not be well-structured and

should not be easy to understand.

This suggests (among other things):

obfuscation by making the program’s control flow hard to understand.
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EXAMPLE OF CODE FLATTENING

The following flattened program p′ has
I only one loop (regardless of how many loops p has), and

I an explicit program counter pc

What has been obfuscated? The flow of control!

Original program p: Flattened equivalent program p′:

1.input x;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x− 1

endw
6.output y;
7.end

1.input x; 2.pc := 2;
3.while pc < 6 do

4.case pc of
2 : 5.y := 2; 6.pc := 3;

3 : 7.if x > 0 then 8.pc := 4 else 9.pc := 6;

4 : 10.y := y + 2; 11.pc := 5;

5 : 12.x := x− 1; 13.pc := 3;

endw
14.output y
15.end
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SPECIALIZATION OF THE “FLATTENING” INTERPRETER:

Essential trick: to recode interp so that the specializer will classify vari-
able pc as dynamic. Technically

I pc is made dynamic using the Unmix generalize annotation.

I interp is extended to have both dynamic and static copies of pc, so
specialization will generate p′ code such as

case . . . pc = 5 : x := x− 1; pc := 3

I Since pc is dynamic, the while loop in interpflat will not be unfolded,
and so pc comes to appear in the specialized program p′.

The transformation

p 7→ p′ = [[spec]](interpflat, p)

will flatten any program; i.e., it is in no way specific to the example pro-
gram p above.
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WHAT IS “HARD ENOUGH” ?

I Ideally, the complexity of obtaining p from p′ should be high (for ex-
ample, NP-hard).

View: the attacker is an arbitrary PTIME program.

We don’t know how to do this (one-way functions. . . ).

So we settle for an easier solution:

I Obfuscate so that p′ is hard to abstractly interpret.

View: the attacker is a program analyzer, e.g., as used in a compiler.

We know better how to do this:

• Use the concept of complete abstract interpretation
(studied by Giacobazzi et al)

• Design self-interpreter interp so that the abstract interpretation of
p′ is not complete (whether or not analysis of p would be complete)
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SIGN ANALYSIS: COMPLETENESS AND INCOMPLETENESS

Abstract lattice for sign analysis: {⊥,+, 0,−,>}

Sign analysis is complete for multiplication ∗: exact analysis information.
∗ − 0 +

− + 0 −
0 0 0 0

+ − 0 +

Sign analysis is incomplete for addition +: imprecise analysis inform’n.
+ − 0 +

− − − >(!)
0 − 0 +

+ >(!) + +

Our trick: let the interpreter evaluate ∗ using +

eval(e, store) = case e of
e1 + e2 : eval(e1, store) + eval(e2, store)

e1 * e2 : let v1 = eval(e1, store), v2 = eval(e2, store)

in v1 ∗ (v2− 1) + v1 The + makes analysis imprecise!
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OBFUSCATION BY EXPLOITING INCOMPLETENESS
Program p Sign analysis of p yields y 7→ + in

1.input x;
2.y := 2;
3.while x > 0 do

4.y := y ∗ y ;
5.x := x− 1

endw
6.output y;
7.end

is automatically transformed into this equivalent obfuscated program p′:
1.input x;
2.y := 2;
3.while x > 0 do

4.y := y ∗ (y − 1) + y ;
5.x := x− 1

endw
6.output y;
7.end

Sign analysis of p′ yields y 7→ >.
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EXAMPLE: ATTACK MODEL FOILED BY FLATTENING

In the paper, we show the control flow flattening-based obfuscation can
be modeled as making incomplete an abstract interpretation.

The attacker is an abstract interpretation extracting the program’s control
flow graph.
CFG extraction be done several abstraction steps:

I In input we lose the control flow when the program counter is dy-
namic, namely when it is controlled in the program itself,

I In output we lose the memory and the history of computations (tra-
versed branches).

I An enriched concrete semantics yields a flow chart modeling the his-
tory of the computation.

I An abstraction of this concrete semantics yields a flow chart for any
program.

Result: this (natural) abstract interpretation is incomplete for a flattened
program.
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META-LEVEL DISCUSSION

The Futamura projections are as follow for a distorted interpreter interp+:

1. p′ := [[spec]](interp+, p) Obfuscate one program

2. comp := [[spec]](spec, interp+) Generate a stand-alone obfuscator

3. cogen := [[spec]](spec, spec) A generator of obfuscators

The example obfuscating transformations we have seen are instances of
the 1st Futamura projection.

2nd Futamura projection: if P is interpflat, then compiler is a stand-alone
obfuscator: a “flattening” program transformer.

We have done all three using the UNMIX specializer.
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IMMEDIATE CONSEQUENCES OF FUTAMURA PROJ’S

There are other better ways to obfuscate and to produce a obfuscator:

I p′ = [[comp]](p) (obfuscate by compiler) and

I comp = [[cogen]](interp+) (generate obfuscator).

Future developments will involve gaining a deeper understanding in ex-
pected time factors: the relations among

1. timep′(d) and timep(d): the slowdown imposed by the obfuscation;

2. timespec(interp+, p) and length(p): the amount of
time to do the obfuscation by general specialization;

3. timecomp(p) and length(p): the amount of
time to do the obfuscation by running a generated obfuscator

(significantly less than above).
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ANOTHER TYPE OF OBFUSCATION

A conflict that makes program obfuscation a subtle problem concerns a
general principle in programming:

Good programs are well-structured and have concise invariants.

This led to flattening, to:

obfuscation by making the program’s control flow hard to understand.

There is another direction to attack the problem:

obfuscation by making the program’s invariants and data flow hard to
understand.

A next step: insertion of opaque predicates . Trick: replace command C

by

if always-false-test then junk-commands else C

Point: the inserted test and then-branch code will (barely) affect the pro-
gram execution. But they will complicate life for a program attacker that
does not know the program’s semantics.
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SUMMING UP

1. Nice (from my viewpoint): program obfuscation provides a motive to
do automatic program transformation

2. Different criteria for success from traditional program transformation:

I not for increased efficiency,
I not to compile, i.e., to change the programming language;
I but to make programs hard to understand or adapt by other people

(or by their automated program attack systems)

3. Partial evaluation provides a well-developed approach to do automatic
program transformation

4. Starting point: a “vanilla” self-interpreter for the source language

5. This is then distorted, so its specialization to a clear-text source pro-
gram will produce a computationally equivalent and correct

but harder-to-understand target program.

6. Examples: data distortion; flattening; inserting opaque predicates.
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QUESTIONS ?
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