Superlinear Speedup by Program Transformation

Neil D. Jones
DIKU, University of Copenhagen (prof. emeritus)

Joint work with Geoff Hamilton, Dublin City University
A number of fully automatic program transformers exist, including:

- classical compiler optimisations
- deforestation
- partial evaluation
- supercompilation and distillation

Rules of the game: to obtain

- Fully automatic transformation
- without human interaction, e.g.,
- not using a mathematician or even an interactive theorem-prover
- or unbounded search procedures

A dream: transformations

- as well-systematised and reliable as classical compiler techniques, but
- able to yield superlinear program speedup.
OVERVIEW, A BIRD’S EYE VIEW

1. Partial evaluation (Jones et al; without partially static structures)
2. Supercompilation (Turchin, M.H. Sørensen, Glück, Jones, Klyuchnikov)
3. Distillation (Geoff Hamilton)

Program speedups: \[\text{speedup}_p(s, d) = \frac{\text{time}_p(s, d)}{\text{time}_{ps}(d)} \]

- 1 and 2: proven at most linear \[\forall s \exists c \forall d \ (\text{speedup}_p(s, d) \leq c) \]
- 3: superlinear on some programs.
 Which ones? Where does the speedup come from?

Bottom-up, mainly by some simple examples:

- Classical compiler optimisations
- Søren Debois: Partial evaluation does classical compiler optimisations by interpreter specialisation.
- Functional program distillation: Fibonacci, naive reverse
- Imperative program distillation: nested loops, factorial sum
First idea: a transformation is

\[p \mapsto p' \]

Desirable: \([p] = [p']\). Though Turchin would allow \([p] \subseteq [p']\).

This is like compiler optimisation.

Natural first speedup measure

\[\text{speedup-optimise}_p(d) = \frac{\text{time}_p(d)}{\text{time}_{p'}(d)} \]
CLASSICAL COMPILER OPTIMISATIONS

- Constant propagation
- Code motion (out of a loop)
- Detecting common subexpressions
- Dead code elimination
- Strength reduction, etc etc etc

Some common characteristics:
- Based on program data flow analysis (a.k.a. abstract interpretation)
- Usually give useful but at most linear speedups

- Minimal changes to program structure are made, eg loop unrolling is uncommon
- Most compile-time computations operate within a single basic block
Program specialisation: transformation is \((s = \text{static data})\)

\[
(p, s) \mapsto p_s
\]

Correctness:

\[
\forall s \forall d \ (\llbracket p \rrbracket(s, d) = \llbracket p'_s \rrbracket(d))
\]

Partial evaluation and supercompilation are examples

A speedup measure

\[
\text{speedup}_s(d) = \frac{\text{time}_p(s, d)}{\text{time}_{p_s}(d)}
\]

Theorem (Jones, Andersen, Gomard, Sørensen) on constant-limited speedup:

\[
\forall s \exists c \forall d \ \text{speedup}_s(d) \leq c
\]

Example: string-matching pattern against subject.

- KMP gives “only” linear speedup.

 Note: \(c\) can depend on \(s\), e.g., \(|\text{pattern}|\).

- One can quibble, eg if \(|\text{pattern}| = O(|\text{subject}|)\) is it quadratic speedup?.

The arguments
▶ that partial evaluation and supercompilation speedups are at most linear
▶ depend on an assumption: \(\exists \) an order-preserving mapping between
▶ forced operations in the original computations and specialised ones.

Other assumptions can yield superlinear speedup.

Example: Elimination of “semantically dead” code:
▶ Remove code whose execution does not influence the program’s final results
▶ Effect: there are source code operations with no correspondents in the transformed program.
▶ Extreme case: transformed program runs in constant time, but source program does not. Can give arbitrarily high speedup!
WHERE CAN SPEEDUP COME FROM?

1. **Dead computations**: their result does not enter into the program’s final output.

 To exploit: just remove dead code

2. **Repeated computations**: the same problem is solved more than once.

 (Some ways to exploit: *tupling, Cook’s linear-time 2DPDA simulation, memoisation, . . .*)

3. **Similar computations**: several subproblems can be solved by the same computation.

 To exploit: many forms of generalisation.

4. **Compactifying the output representation**: Example: the Towers of Hanoi problem.

5. **Change of algorithm**: Examples: merge sort versus quick sort; variations on FFT.
Removing repeated subcomputations is another way to achieve superlinear speedup, less trivial than just eliding useless computations (cf. tupling, memoization).

Transformation-time detection of dead branches:
A logic programming analogy: detection of branches in Prolog’s SLD computation tree that are guaranteed to fail.

Much more significant than in functional programming:
► Time-consuming sequences of useless operations are most likely a sign of bad functional programming; but
► the ability to detect and prune fruitless branches of search trees is part of the essence of logic programming.
ARE THERE LIMITS TO SPEEDUP?

▸ Lower bounds are hard to find!
 (But some exist, e.g., $n \log n$ for sorting.)

▸ Complexity-theoretic lower bounds exist, e.g., $\text{ptime} \subset \text{exptime}$.
 (But seem always to be unnatural problems, e.g., obtained by diagonalisation...)

▸ Expectations:
 ● There are limits to speedups obtained by program transformation
 ● Algorithm change can give more, but is probably uncomputable in general
 ● And you can’t defeat lower bounds
A SILLY EXAMPLE OF SUPERLINEAR SPEEDUP

Program:

\[
\begin{align*}
\text{f } xs \text{ ys } [42] \text{ where } \\
\text{f } xs \text{ ys } zs = \text{ case } xs \text{ of } [] & \Rightarrow ys \\
\quad & | \text{ x : xs' } \Rightarrow f \text{ xs' } (1 : ys) (f \text{ xs' } ys (zs : zs))
\end{align*}
\]

Optimised program: just discard zs; It’s dead!

\[
\begin{align*}
\text{f1 } xs \text{ ys } \text{ where } \\
\text{f1 } xs \text{ ys } = \text{ case } xs \text{ of } [] & \Rightarrow ys \\
\quad & | \text{ x : xs' } \Rightarrow f1 \text{ xs' } (1 : ys)
\end{align*}
\]

Well... this

- is an example of bad programming
- if we assume call-by-value semantics

Odd remarks:

- This speedup wouldn’t happen in call-by-name, since
- the zs code would just not be executed.
PARTIAL EVALUATION: BIRD’S EYE VIEW (offline PE)

Preprocess time:

- Divide program inputs into
 - Static: will be known at transformation time
 - Dynamic: will be unknown
 - Note: each variable is totally static or totally dynamic

- BTA (binding-time analysis): $p \Rightarrow p^{ann} = \text{annotated program}: \text{every operation and function call is marked as either}
 - Static: do while transforming (evaluate, or unroll a function call); or
 - Dynamic: generate residual code.

Transformation time:

- Given: program p^{ann} and static data d
- Perform: all statically annotated bits (compute or unroll function calls)
- Generate residual code: for all the dynamically annotated bits

Well-automated: partial evaluators exist for Scheme, C, Prolog, ...
SUPERCOMPILATION: ESSENTIALLY online

Given: program e_0 where $f_1 = e_1 \ldots f_n = e_n$ (call-by-name semantics)

1. **Driving**: unfold e_0 (only at needed operations). Gives a process tree:

2. **Unfold** case $ce_1 \ldots e_n$ of $\text{pattern}_1 \Rightarrow e'_1 \mid \ldots \mid \text{pattern}_n \Rightarrow e'_n$

3. case x of $\text{pattern}_1 \Rightarrow e_1 \mid \ldots \mid \text{pattern}_n \Rightarrow e_n$
 - Generate a residual case expression
 - Drive each e_i in an extended environment $\text{env}[x \mapsto \text{pattern}_i]$

4. Similar for function calls and constructor applications. Effect: positive information propagation

5. Expressions e_i may be mixed static and dynamic

6. “Blow a whistle” when danger of nontermination is detected.
 - Homeomorphic embedding is a well-quasi order on expressions.
 - What? To decide where to “tie a loop” in the residual program.
 - How? By generalising expressions (LSG operation is dual to MGU)

7. Homeomorphic embedding tests are very expensive (frequent and slow)
DISTILLATION: MUCH LIKE SUPERCOMPILATION, BUT:

Generalisation is done
► not with respect to expressions, but
► with respect to process trees.
 (Something like matching one tree automaton against another, but complicated by bindings, calls, constructors and cases.)
► Payoff: more complex transformation; can give non-silly superlinear speedup.

Supercompilation speedup (Sørensen): for any expression e supercompiled into $e' = C[e]$, there is a constant c s.t. for all ground substitutions θ:
$$c \cdot C[e'\theta] \geq C[e\theta]$$

Distillation speedup (Hamilton): there exist expressions e distilled into $e' = D[e]$ such there is no constant c such that for all ground substitutions θ
$$c \cdot D[e'\theta] \geq D[e\theta]$$

For example: e has one free variable x, and:
$$time_{e'}(x) = (|x|) \text{ but } time_e(x) = (|x|)^2$$
WHAT IS GOING ON?

▶ Which programs allow superlinear speedup?
▶ Where does the speedup come from?

Remarks:
▶ There is an interesting phenomenon here, not yet well understood.
▶ Alas, distillation is too complex to get an easy overview.
▶ An alternative: study the problem by means of examples
▶ Simplify the context, by reducing some of assumptions from distillation:
 • Higher-order functions
 • Call-by-name (both function calls and constructors)
 • Nested function calls, eg $f(g(x), h(y, z))$

(Aim: to “drive the problem into a corner”)
▶ A much simpler context is a classical compiler intermediate language:
 • First-order flowchart programs

Is the phenomenon still present?
PARTIAL EVALUATION: A BIT MORE THAN COMPILERS

▶ Unlimited static computations
▶ Unlimited loop unrolling

Søren Debois (PEPM 2004): partial evaluating a self-interpreter can achieve several classical compiler optimisations, without data flow analysis, eg
▶ code motion
▶ strength reduction

Trick: write a “smart self-interpreter”, e.g., maintain a (finite) memory of
▶ assignments that have been seen before, so the interpreter
▶ never re-executes an already-executed statement.

An effect is to
▶ unroll a loop when first encountered; and to
▶ generate loop code on the second time around, but
▶ without first-time-around computations that are still available
SUPERLINEAR SPEEDUP OF FUNCTIONAL PROGRAMS: I

Fibonacci function:

```
fib n where
fib n = case n of 0 => 1
     | n'+1 => case n' of 0 => 1
           | n''+1 => (fib n') + (fib n'')
```

Time $2^{O(n)}$

Distilled Fibonacci function:

```
f n 1 1 where
f n x y = case n of 0 => 1
     | n'+1 => f n' (x+y)
```

Time $O(n)$

Source of speedup: shared function calls (fib n makes 2 calls to fib n-2)
Naive reverse:

\[\text{nrev } \text{xs where} \]
\[\text{nrev } \text{xs } \text{ys} = \text{case xs of } [\text{}] \Rightarrow [\text{}] \]
\[| \text{x :: xs'} \Rightarrow \text{append (nrev xs')} [\text{x}] \]
\[\text{append us vs = case us of } [\text{}] \Rightarrow vs \]
\[| \text{w : ws} \Rightarrow w : (\text{append ws vs}) \]

Distilled reverse function:

\[\text{arev } \text{zs where} \]
\[\text{arev } \text{zs} = \text{arev' } \text{zs } [\text{}] \]
\[\text{arev' } \text{zs } \text{acc} = \text{case zs of } [\text{}] \Rightarrow \text{acc} \]
\[| \text{y' : ys'} \Rightarrow \text{arev' } \text{ys'} (\text{y' :: acc}) \]

Source of speedup: semantically dead values. Concretely: \text{nrev } [1, 2, \ldots, n] makes calls to \text{nrev } [2, \ldots, n] and \text{nrev } [3, \ldots, n] and \ldots and \text{nrev } [n].

A tricky point: it is hard to see just where and when the produced intermediate values are consumed. (And even harder with call-by-name!)
First conclusions from the previous slides:

- Nested function calls \(f(g(x), h(y, z)) \) complicate things
- Call-by-name complicates things
- Natural question: can similar phenomena occur with imperative programs, i.e., with
 - Tail-recursive programs and
 - Call-by-value?

This led to some experiments (by eye and by running the distiller).

- The answer was yes.
- Now we’re trying to understand why? and how?.
NESTED LOOP EXAMPLE

Program:

\[
g u v m n \text{ where} \\
g u v x y = \begin{cases}
 0 & \Rightarrow \text{Pair } u v \quad \text{-- output} \\
 1+x' & \Rightarrow h 1+u 0 x' n \quad \text{-- } g \text{ calls } h
\end{cases}
\]

\[
h u v x y = \begin{cases}
 0 & \Rightarrow g u v x y \quad \text{-- } h \text{ calls } g \\
 1+y' & \Rightarrow h u 1+v x y' \quad \text{-- } h \text{ calls } h
\end{cases}
\]

Analysis:

1. \(g\) calls \(h\) while
 - resetting \(v\) and \(y\), and
 - incrementing \(u\) and decrementing \(x\)

2. Then \(h\) can call \(g\); or it
 - can call itself, incrementing \(v\) and decrementing \(y\).

3. Output depends on both \(m\) and \(n\); but \(v\) is recomputed again and again.

Optimisation: move the inside loop (either up or down). Time \(O(m + n)\)
NESTED LOOPS: OPTIMISED

Original program:

\[
g u v m n \quad \text{where} \\
\]
g \ u \ v \ x \ y = \text{case } x \text{ of } 0 \Rightarrow \text{Pair } u \ v \quad \text{-- output} \\
\quad \quad \quad \quad \quad \quad \quad 1+x' \Rightarrow h \ 1+u \ 0 \ x' \ n \quad \text{-- g calls h} \\
\]

\[
h u v x y = \text{case } y \text{ of } 0 \Rightarrow g u v x y \quad \text{-- h calls g} \\
\quad \quad \quad \quad \quad \quad \quad 1+y' \Rightarrow h u 1+v x y' \quad \text{-- h calls h} \\
\]

Distilled program:

\[
\text{case } m \text{ of } 0 \Rightarrow \text{Pair } u \ v \quad \text{-- output} \\
\quad \quad \quad \quad \quad \quad \quad 1+x' \Rightarrow r \ 1+u \ x' \ n \\
\]

\[
r u x n = \text{case } x \text{ of } 0 \Rightarrow s u 0 n \\
\quad \quad \quad \quad \quad \quad \quad 1+x' \Rightarrow r \ 1+u \ x' \ n \\
\]

\[
s u v y = \text{case } y \text{ of } 0 \Rightarrow \text{Pair } u \ v \\
\quad \quad \quad \quad \quad \quad \quad 1+y' \Rightarrow s u 1+v y' \\
\]

Somehow... this looks very elementary; but beyond an optimising compiler!

Explanation try: idempotence: \([\lbrack\text{code}; \text{code}\rbrack] = [\lbrack\text{code}\rbrack\]
SIMILAR, BUT OUTER LOOP AFFECTS INNER LOOP

Original program:

\[g \ m \ n \ u \ v \ m \ n \ \text{where} \]
\[g \ m \ n \ u \ v \ x \ y = \]
\[\begin{cases}
0 & \Rightarrow \text{Pair } u \ v \quad -- \text{output} \\
1+x' & \Rightarrow h \ m \ 1+n \ 1+u \ 0 \ x' \ n \quad -- \text{g calls h, increases n}
\end{cases} \]

\[h \ m \ n \ u \ v \ x \ y = \text{case } y \text{ of } \]
\[\begin{cases}
0 & \Rightarrow \ g \ m \ n \ u \ v \ x \ y \quad -- \text{h calls g} \\
1+y' & \Rightarrow h \ m \ n \ u \ 1+v \ x \ y' \quad -- \text{h calls h}
\end{cases} \]

Distilled program:

\[\begin{cases}
0 & \Rightarrow \text{Pair } u \ v \quad \text{Time } O(m + n)
\end{cases} \]

\[h \ m \ n \ u \ v \ x \ y = \text{case } y \text{ of } \]
\[\begin{cases}
0 & \Rightarrow \ g \ m \ n \ u \ v \ x \quad \text{where}
\end{cases} \]

Second explanation try: *absorption:* \([\text{code1; code2}] = [\text{code2}]\)
FACTORIAL SUM: DISTILLABLE QUADRATIC SPEEDUP

Original program:
Time $O(n^2)$

```
loop1 n 1 where  
  loop1 n sum = case n of  
    0 => sum  
    | 1+n1 => loop2 n 1 n1 sum;
```

```
loop2 i prod n sum = case i of  
  0 => loop1 n (sum + prod)  
  | 1+i1 => loop2 i1 (i * prod) n sum;
```

Distilled program:
Time $O(n)$

```
f n 0 where  
f n x =  
  case n of 0 => 1+x  
    | 1+n' => f n' 1+(x+(n'*(1+x))); or simplified: f n' n*(1+x)
```

Third explanation try: Neither earlier explanation works! The distiller did this automatically, but it looks like it should require induction or similar...
SUMMING UP

1. The distillation algorithm achieves some nontrivial superlinear speedups.
2. It is too complex for cause-and-effect to be clearly visible.
3. To understand limits, powers better, we have resorted to experiments, using a severely restricted input language.
4. Some unexpected and nontrivial superlinear speedups have been seen.
5. The severely restricted input language amounts to traditional compiler intermediate language.
6. BUT: traditional compiler optimisations do not yield such superlinear speedups.
7. This suggests: a “turbo” version of compiler optimisations that can achieve substantially greater speedups.
 Ideally, one that can run in times acceptable to a compiler.
8. More...? Who knows, it is indeed “work in progress”.