
Superlinear Speedup by Program Transformation

Neil D. Jones

DIKU, University of Copenhagen (prof. emeritus)

Joint work with Geoff Hamilton, Dublin City University



CONTEXT

A number of fully automatic program transformers exist, including:

I classical compiler optimisations

I deforestation

I partial evaluation

I supercompilation and distillation

Rules of the game: to obtain

I Fully automatic transformation

I without human interaction, e.g.,

I not using a mathematician or even an interactive theorem-prover

I or unbounded search procedures

A dream: transformations

I as well-systematised and reliable as classical compiler techniques, but

I able to yield superlinear program speedup.

— 2 —



OVERVIEW, A BIRD’S EYE VIEW

1. Partial evaluation (Jones et al; without partially static structures)

2. Supercompilation (Turchin, M.H. Sørensen, Glück, Jones, Klyuchnikov)

3. Distillation (Geoff Hamilton)

Program speedups: speedupp(s, d) = timep(s, d)/timeps(d)

I 1 and 2: proven at most linear ∀s ∃c ∀d ( speedupp(s, d) ≤ c )

I 3: superlinear on some programs.

Which ones? Where does the speedup come from?

Bottom-up, mainly by some simple examples:

I Classical compiler optimisations

I Søren Debois: Partial evaluation does classical compiler optimisations

by interpreter specialisation.

I Functional program distillation: Fibonacci, naive reverse

I Imperative program distillation: nested loops, factorial sum

— 3 —



SPEEDUP: LINEAR IN WHAT?

First idea: a transformation is

p 7→ p′

Desirable: [[p]] = [[p′]]. Though Turchin would allow [[p]] v [[p′]].

This is like compiler optimisation.

Natural first speedup measure

speedup-optimisep(d) =
timep(d)

timep′(d)

— 4 —



CLASSICAL COMPILER OPTIMISATIONS

I Constant propagation

I Code motion (out of a loop)

I Detecting common subexpressions

I Dead code elimination

I Strength reduction, etc etc etc

Some common characteristics:

I Based on program data flow analysis (a.k.a. abstract interpretation)

I Usually give

useful but at most linear speedups

I Minimal changes to program structure are made, eg loop unrolling is

uncommon

I Most compile-time computations operate within a single basic block

— 5 —



LINEAR SPEEDUP FOR MULTI-INPUT PROGRAMS?

Program specialisation: transformation is (s = static data)

(p, s) 7→ ps

Correctness:

∀s∀d ( [[p]](s, d) = [[p′s]](d) )

Partial evaluation and supercompilation are examples

A speedup measure

speedups(d) =
timep(s, d)

timeps(d)

Theorem (Jones, Andersen, Gomard, Sørensen) on constant-limited speedup:

∀s ∃c ∀d speedups(d) ≤ c
Example: string-matching pattern against subject.

I KMP gives “only” linear speedup.

Note: c can depend on s, e.g., |pattern|.

I One can quibble, eg if |pattern| = O(|subject|) is it quadratic speedup?.

— 6 —



MORE ABOUT THE LINEAR SPEEDUP BARRIER

Transformation by interpreter specialisation, NDJ, Science of Com-

puter Programming, 2004.

The arguments

I that partial evaluation and supercompilation speedups are at most linear

I depend on an assumption: ∃ an order-preserving mapping between

I forced operations in the original computations and specialised ones.

Other assumptions can yield superlinear speedup.

Example: Elimination of “semantically dead” code:

I Remove code whose execution does not influence the program’s final

results

I Effect: there are source code operations with no correspondents in the

transformed program.

I Extreme case: transformed program runs in constant time, but source

program does not. Can give arbitrarily high speedup!

— 7 —



WHERE CAN SPEEDUP COME FROM?

1. Dead computations: their result does not enter into the program’s final

output.

To exploit: just remove dead code

2. Repeated computations: the same problem is solved more than once.

(Some ways to exploit: tupling, Cook’s inear-time 2DPDA simulation,

memoisation,. . . )

3. Similar computations: several subproblems can be solved by the same

computation.

To exploit: many forms of generalisation.

4. Compactifying the output representation. Example: the Towers of Hanoi

problem.

5. Change of algorithm. Examples: merge sort versus quick sort; variations

on FFT.

— 8 —



WAYS TO BREAK THE LINEAR SPEEDUP BARRIER

Removing repeated subcomputations is another way to achieve superlin-

ear speedup, less trivial than just eliding useless computations (cf. tupling,

memoization).

Transformation-time detection of dead branches:

A logic programming analogy: detection of branches in Prolog’s SLD com-

putation tree that are guaranteed to fail.

Much more significant than in functional programming:

I Time-consuming sequences of useless operations are most likely a sign

of bad functional programming; but

I the ability to detect and prune fruitless branches of search trees is part

of the essence of logic programming.

— 9 —



ARE THERE LIMITS TO SPEEDUP?

I Lower bounds are hard to find!

(But some exist, e.g., n logn for sorting.)

I Complexity-theoretic lower bounds exist, e.g., ptime ⊂ exptime.

(But seem always to be unnatural problems, e.g., obtained by

diagonalisation...)

I Expectations:

• There are limits to speedups obtained by program transformation

• Algorithm change can give more, but is probably uncomputable in

general

• And you can’t defeat lower bounds

— 10 —



A SILLY EXAMPLE OF SUPERLINEAR SPEEDUP

Program: Time Ω(2O(|xs|))

f xs ys [42] where

f xs ys zs = case xs of [] => ys

| x : xs’ => f xs’ (1 : ys) (f xs’ ys (zs : zs))

Optimised program: just discard zs; It’s dead! Time O(|xs|)
f1 xs ys where

f1 xs ys = case xs of [] => ys

| x : xs’ => f1 xs’ (1 : ys)

Well. . . this

I is an example of bad programming

I if we assume call-by-value semantics

Odd remarks:

I This speedup wouldn’t happen in call-by-name, since

I the zs code would just not be executed.

— 11 —



PARTIAL EVALUATION: BIRD’S EYE VIEW (offline PE)

Preprocess time:

I Divide program inputs into

• Static: will be known at transformation time

• dynamic: will be unknown

• Note: each variable is totally static or totally dynamic

I BTA (binding-time analysis): p ⇒ pann = annotated program: every

operation and function call is marked as either

• static: do while transforming (evaluate, or unroll a function call); or

• dynamic: generate residual code.

Transformation time:

I Given: program pann and static data d

I Perform: all statically annotated bits (compute or unroll function calls)

I Generate residual code: for all the dynamically annotated bits

Well-automated: partial evaluators exist for scheme, C, prolog, . . .

— 12 —



SUPERCOMPILATION: ESSENTIALLY online

Given: program e0 where f1 = e1 . . . fn = en (call-by-name semantics)

1. Driving: unfold e0 (only at needed operations). Gives a process tree:

2. Unfold case ce1 . . . en of pattern1 ⇒ e′1 | . . . | patternn⇒ e′n

3. case x of pattern1 ⇒ e1 | . . . | patternn⇒ en

I Generate a residual case expression

I Drive each ei in an extended environment env[x 7→ patterni]

4. Similar for function calls and constructor applications. Effect: positive

information propagation

5. Expressions ei may be mixed static and dynamic

6. “Blow a whistle” when danger of nontermination is detected.

I Homeomorphic embedding is a well-quasi order on expressions.

I What? To decide where to “tie a loop” in the residual program.

I How? By generalising expressions (LSG operation is dual to MGU)

7. Homeomorphic embedding tests are very expensive (frequent and slow)

— 13 —



DISTILLATION: MUCH LIKE SUPERCOMPILATION, BUT:

Generalisation is done

I not with respect to expressions, but

I with respect to process trees.

(Something like matching one tree automaton against another, but com-

plicated by bindings, calls, constructors and cases.)

I Payoff: more complex transformation; can give non-silly superlinear speedup.

Supercompilation speedup (Sørensen): for any expression e supercompiled

into e′ = C[[e]], there is a constant c s.t. for all ground substitutions θ:

c · C[[e′θ]] ≥ C[[eθ]]

Distillation speedup (Hamilton): there exist expressions e distilled into e′ =

D[[e]] such there is no constant c such that for all ground substitutions θ

c · D[[e′θ]] ≥ D[[eθ]]

For example: e has one free variable x, and:

timee′(x) = (|x|) but timee(x) = (|x|)2

— 14 —



WHAT IS GOING ON?

I Which programs allow superlinear speedup?

I Where does the speedup come from ?

Remarks:

I There is an interesting phenomenon here, not yet well understood.

I Alas, distillation is too complex to get an easy overview.

I An alternative: study the problem by means of examples

I Simplify the context, by reducing some of assumptions from distillation:

• Higher-order functions

• Call-by-name (both function calls and constructors)

• Nested function calls, eg f(g(x), h(y, z))

(Aim: to “drive the problem into a corner”)

I A much simpler context is a classical compiler intermediate language:

• First-order flowchart programs

Is the phenomenon still present?

— 15 —



PARTIAL EVALUATION: A BIT MORE THAN COMPILERS

I Unlimited static computations

I Unlimited loop unrolling

Søren Debois (PEPM 2004): partial evaluating a self-interpreter can achieve

several classical compiler optimisations, without data flow analysis, eg

I code motion

I strength reduction

Trick: write a “smart self-interpreter”, e.g., maintain a (finite) memory of

I assignments that have been seen before, so the interpreter

I never re-executes an already-executed statement.

An effect is to

I unroll a loop when first encountered; and to

I generate loop code on the second time around, but

I without first-time-around computations that are still available

— 16 —



SUPERLINEAR SPEEDUP OF FUNCTIONAL PROGRAMS: I

Fibonacci function: Time 2O(n)

fib n where

fib n = case n of 0 => 1

| n’+1 => case n’ of 0 => 1

| n’’+1 => (fib n’) + (fib n’’)

Distilled Fibonacci function: Time O(n)

f n 1 1 where

f n x y = case n of 0 => 1

| n’+1 => f n’ (x+y)

Source of speedup: shared function calls (fib n makes 2 calls to fib n-2)

— 17 —



SUPERLINEAR SPEEDUP OF FUNCT. PROGRAMS: II

Naive reverse: Time O(n2)

nrev xs where

nrev xs ys = case xs of [] => []

| x :: xs’ => append (nrev xs’) [x])

append us vs = case us of [] => vs

| w : ws => w : (append ws vs)

Distilled reverse function: Time O(n)

arev zs where

arev zs = arev’ zs []

arev’ zs acc = case zs of [] => acc

| y’ : ys’ => arev’ ys’ (y’ :: acc)

Source of speedup: semantically dead values. Concretely: nrev [1,2,...,n]

makes calls to nrev [2,...,n] and nrev [3,...,n] and . . . and nrev [n].

A tricky point : it is hard to see just where and when the produced inter-

mediate values are consumed. (And even harder with call-by-name!)

— 18 —



SUPERLINEAR SPEEDUP OF IMPERATIVE PROGRAMS

First conclusions from the previous slides:

I Nested function calls f(g(x), h(y, z)) complicate things

I Call-by-name complicates things

I Natural question: can similar phenomena occur with imperative pro-

grams, i.e., with

• Tail-recursive programs and

• Call-by-value ?

This led to some experiments (by eye and by running the distiller).

I The answer was yes.

I Now we’re trying to understand why? and how?.

— 19 —



NESTED LOOP EXAMPLE

Program: Time O(m ∗ n)

g u v m n where

g u v x y = case x of 0 => Pair u v -- output

1+x’ => h 1+u 0 x’ n -- g calls h

h u v x y = case y of 0 => g u v x y -- h calls g

1+y’ => h u 1+v x y’ -- h calls h

Analysis:

1. g calls h while

I resetting v and y, and

I incrementing u and decrementing x

2. Then h can call g; or it

I can call itself, incrementing v and decrementing y.

3. Output depends on both m and n; but v is recomputed again and again.

Optimisation: move the inside loop (either up or down). Time O(m+ n)

— 20 —



NESTED LOOPS: OPTIMISED

Original program: Time O(m ∗ n)

g u v m n where

g u v x y = case x of 0 => Pair u v -- output

1+x’ => h 1+u 0 x’ n -- g calls h

h u v x y = case y of 0 => g u v x y -- h calls g

1+y’ => h u 1+v x y’ -- h calls h

Distilled program: Time O(m+ n)

case m of 0 => Pair u v -- output

| 1+x’ => r 1+u x’ n

r u x n = case x of 0 => s u 0 n

1+x’ => r 1+u x’ n

s u v y = case y of 0 => Pair u v

1+y’ => s u 1+v y’

Somehow. . . this looks very elementary; but beyond an optimising compiler!

Explanation try: idempotence: [[code; code]] = [[code]]

— 21 —



SIMILAR, BUT OUTER LOOP AFFECTS INNER LOOP

Original program: Time O(m ∗ n)

g m n u v m n where

g m n u v x y =

case x of 0 => Pair u v -- output

1+x’ => h m 1+n 1+u 0 x’ n -- g calls h, increases n

h m n u v x y = case y of 0 => g m n u v x y -- h calls g

1+y’ => h m n u 1+v x y’ -- h calls h

Distilled program: Time O(m+ n)

case n of 0 => Pair u v

| 1+n’ => h m n u 0 m n’ where

h m n u v x y = case y of

0 => g m n u v x

| 1+y’ => h m n u 1+v x y’

g m n u v x = case x of

0 => Pair u v

| 1+x’ => g m 1+n 1+u 1+v x’

Second explanation try: absorption: [[code1; code2]] = [[code2]]

— 22 —



FACTORIAL SUM: DISTILLABLE QUADRATIC SPEEDUP

Original program: Time O(n2)

loop1 n 1 where

loop1 n sum = case n of The part to add the factorials

0 => sum

| 1+n1 => loop2 n 1 n1 sum;

loop2 i prod n sum = case i of The part to compute n!

0 => loop1 n (sum + prod)

| 1+i1 => loop2 i1 (i * prod) n sum;

Distilled program: Time O(n)

f n 0 where

f n x =

case n of 0 => 1+x

| 1+n’ => f n’ 1+(x+(n’*(1+x))); or simplified: f n’ n*(1+x)

Third explanation try: Neither earlier explanation works! The distiller did

this automatically, but it looks like it should require induction or similar. . .

— 23 —



SUMMING UP

1. The distillation algorithm achieves some nontrivial superlinear speedups.

2. It is too complex for cause-and-effect to be clearly visible.

3. To understand limits, powers better, we have resorted to experiments,

using a

severely restricted input language.

4. Some unexpected and nontrivial superlinear speedups have been seen.

5. The severely restricted input language amounts to traditional

compiler intermediate language

6. BUT: traditional compiler optimisations do not yield such superlinear

speedups.

7. This suggests: a “turbo” version of compiler optimisations that can

achieve substantially greater speedups.

Ideally, one that can run in times acceptable to a compiler.

8. More. . . ? Who knows, it is indeed “work in progress”.

— 24 —


