
Superlinear Speedup by
Program Transformation

(Extended Abstract)

Neil D. Jones G.. W. Hamilton

Computer Science Department School of Computing
University of Copenhagen Dublin City University
2100 Copenhagen, Denmark Dublin 9, Ireland
e-mail: neil@diku.dk hamilton@computing.dcu.ie

There seems to be, at least in practice, a fundamental conflict within program
transformations. One way: hand transformations can yield dramatic speedups,
but seem to require human insight. They are thus are only suited to small pro-
grams and have not been successfully automated. On the other hand, there exist
a number of well-known automatic program transformations; but these have been
proven to give at most linear speedups.

This work in progress addresses this apparent conflict, and concerns the prin-
ciples and practice of superlinear program speedup. A disclaimer: we work in a
simple sequential program context: no caches, parallelism, etc.

Many interesting program transformations (by Burstall-Darlington, Bird,
Pettorossi, and many others) have been published that give superlinear pro-
gram speedups on some program examples. However, these techniques all seem
to require a “Eureka step” where the transformer understands some essential
property relevant to the problem being solved (e.g., associativity, commutativ-
ity, occurrence of repeated subproblems, etc.). Such transformations have proven
to be very difficult to automate.

On the other hand a number of fully automatic transformers exist, includ-
ing: classical compiler optimisations, deforestation, partial evaluation and super-
compilation. Mostly these give only linear speedups. (There are, however, two
Refal-based exceptions: the supercompiler work by Turchin, and Nemytykhs su-
percompiler SCP4.)

The limitation to linear time improvement has been proven in some cases,
e.g., by Jones and colleagues for partial evaluation (using call-by-value), and by
Sørensen for positive supercompilation (using call-by-name).

An instance: a goal for several years was automatically to achieve the speedup
of the Knuth-Morris-Pratt string pattern matching algorithm. The KMP speedup
is still linear though, although the constant speedup coefficient can be propor-
tional to the length of the pattern being searched for.

What principles can lead to superlinear speedup? Some examples that suggest
principles to be discovered and automated:

1. In functional programs:
– finding shared subcomputations (e.g., the Fibonacci example)



Superlinear Speedup by Program Transformation 89

– finding unneeded computations (e.g., most of the computation done by
“naive reverse”)

2. In imperative programs:
– finding unneeded computations (e.g., major speedups can result from

generalising the usual compiler “dead code” analysis also to span over
program loops)

– finding shared subcomputations (e.g., the factorial sum example)
– code motion to move an entire nested loop outside an enclosing loop
– strength reduction
– common subexression elimination across loop boundaries, e.g., extending

“value numbering”

In 2007 Hamilton showed that the “distillation” transformation (a further de-
velopment of positive supercompilation) can sometimes yield superlinear speedups.
Distillation has automatically transformed the quadratic-time “naive reverse”
program, and the exponential-time “Fibonacci” program, each into a linear-time
equivalent program that uses accumulating parameters.

On the other hand, there are subtleties, e.g., distillation works with a higher-
order call-by-name source language. Further, distillation is a very complex al-
gorithm, involving positive information propagation, homeomorphic embedding,
generalisation by tree matching, and folding. A lot of the complexity in the algo-
rithm arises from the use of potentially infinite data structures and the need to
process these in a finite way. It is not yet clear which programs can be sped up
so dramatically, and when and why this speedup occurs. It is as yet also unclear
whether the approach can be scaled up to use in practical, industrial-strength
contexts, as can classical compiler optimisations.

The aim of this work in progress is to discover an essential “inner core”
to distillation. Our approach is to study a simpler language, seeking programs
that still allow superlinear speedup. Surprisingly, it turns out that asymptotic
speedups can be obtained even for first-order tail recursive call-by-value pro-
grams (in other words, imperative flowchart programs). An example discovered
just recently concerned computing f(n) = 1!+2!+...+n!. Distillation transforms
the natural quadratic time factorial sum program into a linear time equivalent.

Even though distillation achieves many of these effects automatically, the
principles above seem to be buried in the complexities of the distillation algo-
rithm and the subtleties of its input language.

One goal of our current work is to extract the essential transformations
involved. Ideally, one could extend classical compiler optimisations (normally
only yielding small linear speedups) to obtain a well-understood and automated
“turbo” version that achieves substantially greater speedups, and is efficient
enough for daily use.

References

1. R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, January 1977.



90 N. D. Jones, G. W. Hamilton

2. Søren Debois. Imperative program optimization by partial evaluation. In Heintze
and Sestoft [5], pages 113–122.

3. Geoffrey William Hamilton and Neil D. Jones. Distillation with labelled transition
systems. In PEPM (ACM SIGPLAN 2012 Workshop on Partial Evaluation and
Program Manipulation), pages 15–24. ACM, 2012.

4. Geoffrey William Hamilton and Neil D. Jones. Proving the correctness of unfold/fold
program transformations using bisimulation. In Proceedings of the 8th Andrei Ershov
Informatics Conference, volume 7162 of Lecture Notes in Computer Science, pages
150–166. Springer, 2012.

5. Nevin Heintze and Peter Sestoft, editors. Proceedings of the 2004 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based Program Manipulation, 2004,
Verona, Italy, August 24-25, 2004. ACM, 2004.

6. Neil D. Jones. Transformation by interpreter specialisation. Sci. Comput. Program.,
52:307–339, 2004.

7. V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of System
Informatics, volume 1181 of LNCS. Springer, 1996.


