
Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

A Hierarchy of Program Transformers

G.W. Hamilton

School of Computing
Dublin City University
Dublin 9, Ireland

hamilton@computing.dcu.ie

META 2012

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Outline

1 Background

2 Language

3 Labelled Transition Systems

4 Hierarchy of Program Transformers

5 Distillation

6 Conclusions

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Background

This work is inspired by the supercompilation
transformation algorithm developed by Turchin.
Supercompilation became more widely known through the
positive supercompilation algorithm (Sørensen, Glück and
Jones).
Positive supercompilation can only produce a linear
speedup in programs (Sørensen).
More recently, the distillation algorithm was propsed, which
can produce a superlinear improvement in programs.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Background

Positive supercompilation uses the expressions
encountered during transformation to determine when to
perform generalization and folding.
Distillation as originally devised (PEPM 2007) used the
results obtained by positive supercompilation to determine
when to perform generalization and folding.
We could envisage another level on top of this which uses
the results of this transformation to determine when to
perform generalization and folding.
This suggests the existence of a hierarchy of levels of
program transformation.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Language Syntax

We use the following higher-order functional language:

e ::= x Variable
| c e1 . . . ek Constructor Application
| λx .e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek Case Expression
| let x = e0 in e1 Let Expression
| e0 where f1 = e1 . . . fn = en Local Function Definitions

p ::= c x1 . . . xk Pattern

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Example Program

fib n
where
fib = λn.case n of

Z ⇒ S Z
| S n′ ⇒ case n′ of

Z ⇒ S Z
| S n′′ ⇒ + (fib n′′) (fib n′)

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Reduction Rules

((λx .e0) e1)
β
! (e0{x "→ e1}) (let x = e0 in e1)

β
! (e1{x "→ e0})

f = e
f f
! e

e0
r
! e′0

(e0 e1)
r
! (e′0 e1)

e0
r
! e′0

(case e0 of p1 : e1| . . . pk : ek)
r
! (case e′0 of p1 : e1| . . .pk : ek)

pi = c x1 . . . xn
(case (c e1 . . . en) of p1 : e′1| . . . |pk : e′k)

c
! (ei{x1 "→ e1, . . . , xn "→ en})

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Labelled Transition Systems for Language

Similarly to Gordon, we use labelled transition systems to
characterise the run-time behaviour of a program.

We extend the work of Gordon by the inclusion of free
variables.

The LTS associated with program e0 is given by (E ,e0,→,Act):
E is the set of states of the LTS.

Each is an expression, or the end-of-action state 0.
e0 is the start state
Act is a set of actions α that can be silent (τ) or non-silent.
→ ⊆ E × Act × E is a transition relation that relates pairs of
states by actions.

If e ∈ E and (e, α, e′) ∈ → then e′ ∈ E .

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Labelled Transition Systems for Language

Actions:
x variable
c constructor
@ function in an application
#i i th argument in an application
λx abstraction over variable x
case case selector
p case branch pattern
let an abstraction
τf unfolding of the function f
τc elimination of the constructor c
τβ β-substitution

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

LTS Representation of Example Program
fib n

fib

@

n

#1

0

n

λn.case n of . . .

τfib

case n of . . .

λn

n

case

0

n

S Z

Z

0

S

Z

#1

0

Z

case n′ of . . .

S n′

n′

case

0

n′

S Z

Z

0

S

Z

#1

0

Z

+ (fib n′′) (fib n′)S n′′

+

@

0

+

fib n′′

#1

fib

@

0

τfib

n′′

#1

0

n′′

fib n′

#2

fib

@

0

τfib

n′

#1

0

n′

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Hierarchy of Program Transformers

At each level, the transformer takes a program as input
and produces a LTS as output.
LTSs corresponding to previously encountered terms are
compared to the LTS for the current term.
If a renaming of a previously encountered LTS is detected,
then folding is performed.
If an embedding of a previously encountered LTS is
detected, then generalization is performed.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Hierarchy of Program Transformers

An LTS is a renaming of another if the same transitions are
possible from each corresponding state (modulo variable
renaming)a.
An LTS is an embedding of another if the same transitions
are eventually possible from each corresponding state
(modulo variable renaming).
When generalizing, corresponding states with different
transitions are extracted using lets (extractions which are
weakly bisimilar are identified).

aSkipping over silent transitions.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 0 Transformer

Corresponds closely to the positive supercompilation
algorithm.
Performs a normal-order reduction of the input program.
The (LTS representation of) previously encountered terms
with a function redex are memoized.
If the (LTS representation of the) current term is a
renaming of a memoized one, then folding is performed.
If the (LTS representation of the) current term is an
embedding of a memoized one, then generalization is
performed.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 0 Transformer: Example

Result of level 0 transformation of the fib function (after
residualization):

f n
where
f = λn.case n of

Z ⇒ 1
| S n′ ⇒ case n′ of

Z ⇒ 1
| S n′′ ⇒ + (f n′′) (f (S n′′))

(1)

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level n + 1 Transformer

Rules are very similar to those for the level 0 transformer.
Also performs a normal-order reduction of the input
program.
Differs from the level 0 transformer in that the LTSs which
are memoized for the purposes of comparison when
determining whether to fold or generalize are those
resulting from the level n transformation of previously
encountered terms.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 1 Transformer: Example

If the result of the level 0 transformation of the fib program is
unfolded and further transformed within a level 1 transformer,
then the following level 0 result is subsequently encountered:

f n
where
f = λn.case n of

Z ⇒ + 1 1
| S n′ ⇒ case n′ of

Z ⇒ + 1 (+ 1 1)
| S n′′ ⇒ + (f n′′) (f (S n′′))

(2)

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 1 Transformer: Example

(2) is an embedding of (1):

f n
where
f = λn.case n of

Z ⇒ + 1 1
| S n′ ⇒ case n′ of

Z ⇒ + 1 (+ 1 1)
| S n′′ ⇒ + (f n′′) (f (S n′′))

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 1 Transformer: Example

Generalization is therefore performed with respect to the
previous level 0 result to obtain the following level 1 result:

let x = + 1 1
in let x ′ = + 1 (+ 1 1)

in f n
where
f = λn.case n of

Z ⇒ x
| S n′ ⇒ case n′ of

Z ⇒ x ′
| S n′′ ⇒ + (f n′′) (f (S n′′))

(3)

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 2 Transformer: Example

If this level 1 program is unfolded and further transformed within
a level 2 transformer, then the following level 1 result is
subsequently encountered.

let x ′′ = + (+ 1 1) (+ 1 (+ 1 1))
in let x ′′′ = + (+ 1 (+ 1 1)) (+ (+ 1 1) (+ 1 (+ 1 1)))

in f n
where
f = λn.case n of

Z ⇒ x ′′
| S n′ ⇒ case n′ of

Z ⇒ x ′′′
| S n′′ ⇒ + (f n′′) (f (S n′′))

(4)

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 2 Transformer: Example

(4) is an embedding of (3):

let x ′′ = + (+ 1 1) (+ 1 (+ 1 1))
in let x ′′′ = + (+ 1 (+ 1 1)) (+ (+ 1 1) (+ 1 (+ 1 1)))

in f n
where
f = λn.case n of

Z ⇒ x ′′
| S n′ ⇒ case n′ of

Z ⇒ x ′′′
| S n′′ ⇒ + (f n′′) (f (S n′′))

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Level 1 Transformer: Example

Generalization is therefore performed with respect to the
previous level 1 result to obtain the following level 2 result
(identifying equivalent extractions):

let x ′′ = + x x ′
in let x ′′′ = + x ′ (+ x x ′)

in f n
where
f = λn.case n of

Z ⇒ x ′′
| S n′ ⇒ case n′ of

Z ⇒ x ′′′
| S n′′ ⇒ + (f n′′) (f (S n′′))

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Result of Transformation

case n of
Z ⇒ 1

| S n′ ⇒ case n′ of
Z ⇒ 1

| S n′′ ⇒ f n′′ (+ 1 1) (+ 1 (+ 1 1))
where
f = λn.λx .λx ′.case n of

Z ⇒ x
| S n′ ⇒ case n′ of

Z ⇒ x ′
| S n′′ ⇒ f n′′ (+ x x ′) (+ x ′ (+ x x ′))

This program has a run-time which is linear with respect to the
size of the input number.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Program Transformation Hierarchy

Each transformer in the hierarchy performs more specific
generalization.
Over-generalization is therefore less likely to occur when
moving up through the levels.
The problem is knowing which level is sufficient for the
given program.

This should be the level beyond which no further
improvements are obtained.
If an arbitrary level is chosen, this may be overkill in many
cases.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Distillation

Distillation in its most recent formulation (PEPM 2012)
uses the results obtained from evaluating a program to
determine when to perform generalization and folding.
This formulation of distillation can also be described within
our program transformation hierarchy by starting at level 0
and moving up to the next level when necessary,
The need for generalization at one level in the hierarchy
indicates the need to move up to the next level.
The transformation of the fib function described earlier
using a level 2 transformer can also be obtained using
distillation.

Transformation starts at level 0.
The first generalization causes a move up to level 1.
The second generalization causes a move up to level 2.
The desired result is obtained at level 2.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Conclusions

We have defined a hierarchy of transformers in which the
transformer at each level of the hierarchy makes use of the
transformers at lower levels.
At the bottom of the hierarchy is the level 0 transformer,
which corresponds to positive supercompilation, and is
capable of achieving only linear improvements in efficiency.
Higher levels in the hierarchy are capable of achieving
superlinear improvements in efficiency; the first published
definition of distillation (PEPM 2007) is at level 1 in this
hierarchy.
We have shown how the more recently published definition
of distillation (PEPM 2012) can be simulated by moving up
through the levels of the transformation hierarchy until no
further improvements can be made.

G.W. Hamilton A Hierarchy of Program Transformers

Background Language Labelled Transition Systems Hierarchy of Program Transformers Distillation Conclusions

Related Work

Some semi-automatic techniques which also work on a
number of levels and are capable of obtaining superlinear
speedups are as follows:

Walk grammars (Turchin)
Second-order replacement (Kott)
Higher-level supercompilation (Klyuchnikov)

However:
usually require eureka steps
often need to make use of specific laws

Distillation is a fully automatic technique capable of
obtaining these superlinear speedups.

G.W. Hamilton A Hierarchy of Program Transformers

