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Abstract. In this paper, we describe a hierarchy of program transform-
ers in which the transformer at each level of the hierarchy builds on top of
the transformers at lower levels. The program transformer at the bottom
of the hierarchy corresponds to positive supercompilation, and that at
the next level corresponds to the first published definition of distillation
[4]. We then show how the more recently published definition of distil-
lation [5] can be described using this hierarchy. We see that this moves
up through the levels of the transformation hierarchy until no further
improvements can be made. The resulting definition of distillation uses
only finite data structures, as opposed to the definition in [5], and we
therefore argue that it is easier to understand and to implement.

1 Introduction

It is well known that programs written using functional programming languages
often make use of intermediate data structures and this can be inefficient. Sev-
eral program transformation techniques have been proposed to eliminate some of
these intermediate data structures; for example partial evaluation [7], deforesta-
tion [17] and supercompilation [15]. Positive supercompilation [14] is a variant
of Turchin’s supercompilation that was introduced in an attempt to study and
explain the essentials of Turchin’s supercompiler. Although strictly more pow-
erful than both partial evaluation and deforestation, Sørensen has shown that
positive supercompilation (and hence also partial evaluation and deforestation)
can only produce a linear speedup in programs [13].

The distillation algorithm was originally motivated by the need for automatic
techniques for obtaining superlinear speedups in programs. The original defini-
tion of distillation [4] was very similar in its formulation to positive supercompila-
tion; the main difference being that in positive supercompilation, generalization
and folding are performed with respect to expressions, while in distillation, they
are performed with respect to graphs. The graphs which were used in distillation
for this purpose were in fact those produced by positive supercompilation, so we
can see that this definition of distillation was built on top of positive supercompi-
lation. This suggests the existence of a hierarchy of program transformers, where
the transformer at each level is built on top of those at lower levels, and higher
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level transformers are more powerful. In this paper, we define such a hierarchy
inductively, with positive supercompilation as the base case at the bottom level,
and each new level defined in terms of the previous ones. The original definition
of distillation is therefore at the second level in this hierarchy, while the more
recently published definition of distillation [5] does not actually belong to any
single level of the hierarchy, but in fact moves up through the levels until no
further improvements can be made. We also define this more recent version of
distillation using our program transformer hierarchy.

The remainder of this paper is structured as follows. In Section 2, we de-
fine the syntax and semantics of the higher-order functional language on which
the described transformations are performed. In Section 3, we define labelled
transition systems, which are used to represent the results of transformations.
In Section 4, we define the program transformer hierarchy, where the trans-
former at the bottom level corresponds to positive supercompilation, and each
successive transformer is defined in terms of the previous ones. In Section 5, we
describe the more recent definition of distillation using the program transformer
hierarchy, and show how it moves up through the levels of this hierarchy until
no further improvements can be made. Section 6 concludes and considers related
work.

2 Language

In this section, we describe the higher-order functional language that will be
used throughout this paper. It uses call-by-name evaluation.

Definition 1 (Language Syntax). The syntax of this language is as shown
in Fig. 1.

e ::= x Variable
| c e1 . . . ek Constructor Application
| λx .e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 ñ e1 | � � � | pk ñ ek Case Expression
| let x � e0 in e1 Let Expression
| e0 where f1 � e1 . . . fn � en Local Function Definitions

p ::= c x1 . . . xk Pattern

Fig. 1. Language Grammar

A program in the language is an expression which can be a variable, construc-
tor application, λ-abstraction, function call, application, case, let or where.
Variables introduced by λ-abstraction, let or case patterns are bound; all other
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variables are free. We write e1 � e2 if e1 and e2 differ only in the names of bound
variables.

It is assumed that the input program contains no let expressions; these are
only introduced during transformation. Each constructor has a fixed arity; for
example Nil has arity 0 and Cons has arity 2. In an expression c e1 . . . en , n
must equal the arity of c. The patterns in case expressions may not be nested.
No variable may appear more than once within a pattern. We assume that the
patterns in a case expression are non-overlapping and exhaustive. It is also
assumed that erroneous terms such as pc e1 . . . enq e where c is of arity n and
case pλx.eq of p1 ñ e1 | � � � | pk ñ ek cannot occur.

Example 1. An example program in our language which calculates the nth fi-
bonacci number is shown in Fig. 2.

fib n
where
fib � λn.case n of

Z ñ S Z
| S n 1 ñ case n 1 of

Z ñ S Z
| S n2 ñ add pfib n2q pfib n 1q

add � λx .λy .case x of
Z ñ y

| S x 1 ñ S padd x 1 yq

Fig. 2. Example Program

Definition 2 (Substitution). θ � tx1 ÞÑ e1, . . . , xn ÞÑ enu denotes a substi-
tution. If e is an expression, then eθ � etx1 ÞÑ e1, . . . , xn ÞÑ enu is the result
of simultaneously substituting the expressions e1, . . . , en for the corresponding
variables x1, . . . , xn, respectively, in the expression e while ensuring that bound
variables are renamed appropriately to avoid name capture.

Definition 3 (Renaming). σ � tx1 ÞÑ x11, . . . , xn ÞÑ x1nu, where σ is a
bijective mapping, denotes a renaming. If e is an expression, then etx1 ÞÑ
x11, . . . , xn ÞÑ x1nu is the result of simultaneously replacing the variables x1, . . . , xn
with the corresponding variables x11, . . . , x

1
n, respectively, in the expression e.

Definition 4 (Shallow Reduction Context). A shallow reduction context
R is an expression containing a single hole 
 in the place of the redex, which can
have one of the two following possible forms:

R ::� 
 e | pcase 
 of p1 ñ e1 | . . . | pk ñ ekq

Definition 5 (Evaluation Context). An evaluation context E is represented
as a sequence of shallow reduction contexts (known as a zipper [6]), representing
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the nesting of these contexts from innermost to outermost within which the
expression redex is contained. An evaluation context can therefore have one of
the two following possible forms:

E ::� xy | xR : Ey

Definition 6 (Insertion into Evaluation Context). The insertion of an ex-
pression e into an evaluation context κ, denoted by κ
e, is defined as follows:

xy
e = e
xp
 e1q : κy
e = κ
pe e1q
xpcase 
 of p1 ñ e1 | . . . | pk ñ ekq : κy
e

= κ
pcase e of p1 ñ e1 | . . . | pk ñ ekq

Free variables within the expression e may become bound within κ
e; if κ
e is
closed then we call κ a closing context for e.

Definition 7 (Unfolding). The unfolding of a function in the redex of expres-
sion e with function environment ∆ is defined as shown in Fig. 3.

Urress ∆ � U 1rress xy H ∆

U 1rrx ss κ ρ ∆ =

"
U 1rrρpx qss κ ρ ∆, if x P dompρq
κ
x , otherwise

U 1rrc e1 . . . ek ss κ ρ ∆ = κ
pc e1 . . . ek q
U 1rrλx .ess κ ρ ∆ = κ
pλx .eq
U 1rrf ss κ ρ ∆ = κ
e where pf � eq P ∆
U 1rre0 e1 ss κ ρ ∆ = U 1rre0 ss xp
 e1q : κy ρ ∆
U 1rrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ ∆

= U 1rre0 ss xpcase 
 of p1 ñ e1 | � � � | pk ñ ek q : κy ρ ∆
U 1rrlet x � e0 in e1 ss κ ρ ∆ = let x � e0 in U 1rre1 ss κ pρY tx ÞÑ e0uq ∆
U 1rre0 where f1 � e1 . . . fn � en ss κ ρ ∆

= U 1rre0ss κ ρ p∆Y tf1 � e1, . . . , fn � enuq
where f1 � e1 . . . fn � en

Fig. 3. Function Unfolding

Within these rules, the context around the redex is built up within κ, the values
of let variables are stored in ρ and the set of function definitions are stored in
∆. If the redex is a variable which has a value within ρ, then that value is sub-
stituted into the redex position. If the redex can itself be divided into an inner
redex and shallow reduction context, then the shallow reduction context is added
to the overall context and the inner redex is further unfolded. If the innermost
redex is a function then it is replaced by its definition within ∆; otherwise this
innermost redex is simply inserted back into its context.

The call-by-name operational semantics of our language is standard: we define
an evaluation relation ó between closed expressions and values, where values
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are expressions in weak head normal form (i.e. constructor applications or λ-

abstractions). We define a one-step reduction relation
r
; inductively as shown

in Fig. 4, where the reduction r can be f (unfolding of function f), c (elimination
of constructor c) or β (β-substitution).

ppλx.e0q e1q
β
; pe0tx ÞÑ e1uq plet x � e0 in e1 q

β
; pe1tx ÞÑ e0uq

f � e

f
f
; e

e0
r
; e10

pe0 e1q
r
; pe10 e1q

pi � c x1 . . . xn

pcase pc e1 . . . enq of p1 : e11| . . . |pk : e1kq
c
; peitx1 ÞÑ e1, . . . , xn ÞÑ enuq

e0
r
; e10

pcase e0 of p1 : e1| . . . pk : ekq
r
; pcase e10 of p1 : e1| . . . pk : ekq

Fig. 4. One-Step Reduction Relation

We use the notation e
r
; if the expression e reduces, e ò if e diverges, e ó if e

converges and e ó v if e evaluates to the value v. These are defined as follows,

where
r
;

�
denotes the reflexive transitive closure of

r
;:

e
r
;, iff De1.e

r
; e1 eó, iff Dv.eóv

eóv, iff e
r
;

�
v ^ pv

r
;q eò, iff @e1.e

r
;

�
e1 ñ e1

r
;

We assume that all expressions are typable under system F , and that types
are strictly positive. This ensures that all infinite sequences of reductions must
include the unfolding of a function.

Definition 8 (Observational Equivalence). Observational equivalence, de-
noted by �, equates two expressions if and only if they exhibit the same termi-
nation behaviour in all closing contexts i.e. e1 � e2 iff @κ 
 pκ 
 e1ó iff κ 
 e2óq.

3 Labelled Transition Systems

In this section, we define the labelled transition systems (LTSs) which are used
to represent the results of our transformations.

Definition 9 (Labelled Transition System). The LTS associated with pro-
gram e is given by t � pE , e,Ñ, Actq where:

– E is the set of states of the LTS each of which is either an expression or the
end-of-action state 0.

– t always contains as root the expression e, denoted by rootptq � e.
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– Ñ � E�Act�E is a transition relation that relates pairs of states by actions
according to Fig. 5. We write e Ñ pα1, t1q, . . . , pαn, tnq for a LTS with root
state e where t1 . . . tn are the LTSs obtained by following the transitions
labelled α1 . . . αn respectively from e.

– If e P E and pe, α, e1q P Ñ then e1 P E .
– Act is a set of actions α that can be silent or non-silent. A non-silent action

may be: x, a variable; c, a constructor; @, the function in an application;
#i, the ith argument in an application; λx, an abstraction over variable x;
case, a case selector; p, a case branch pattern; or let, an abstraction. A
silent action may be: τf , unfolding of the function f ; τc, elimination of the
constructor c; or τβ , β-substitution.

Lrrx ss ρ ∆ = xÑ px,0q
Lrrc e1 . . . en ss ρ ∆ = pc e1 . . . enq Ñ pc,0q, p#1,Lrre1 ss ρ ∆q, . . . , p#n,Lrren ss ρ ∆q
Lrrλx .ess ρ ∆ = pλx.eq Ñ pλx,Lrress ρ ∆q
Lrrf ss ρ ∆ =

"
f Ñ pτf ,0q, if f P ρ
f Ñ pτf ,Lrress pρY tfuq ∆q, otherwise where pf � eq P ∆

Lrre0 e1 ss ρ ∆ = pe0 e1q Ñ p@,Lrre0 ss ρ ∆q, p#1,Lrre1 ss ρ ∆q
Lrre � pcase e0 of p1 ñ e1 | � � � | pk ñ ek qss ρ ∆

= eÑ pcase,Lrre0 ss ρ ∆q, pp1,Lrre1 ss ρ ∆q, . . . , ppk,Lrrek ss ρ ∆q
Lrre � plet x � e0 in e1 qss ρ ∆

= eÑ plet,Lrre1 ss ρ ∆q, px,Lrre0 ss ρ ∆q
Lrre0 where f1 � e1 . . . fn � en ss ρ ∆

= Lrre0 ss ρ p∆Y tf1 � e1, . . . , fn � enuq

Fig. 5. LTS Representation of a Program

Within the rules L shown in Fig. 5 for converting a program to a corre-
sponding LTS, the parameter ρ is the set of previously encountered function
calls and the parameter ∆ is the set of function definitions. If a function call is
re-encountered, no further transitions are added to the constructed LTS. Thus,
the constructed LTS will always be a finite representation of the program.

Example 2. The LTS representation of the program in Fig. 2 is shown in Fig. 6.

Within the actions of a LTS, λ-abstracted variables, case pattern variables and
let variables are bound; all other variables are free. We use fvptq and bvptq to
denote the free and bound variables respectively of LTS t.

Definition 10 (Extraction of Residual Program from LTS). A residual
program can be constructed from a LTS using the rules R as shown in Fig. 7.
Within these rules, the parameter ε contains the set of new function calls that
have been created, and associates them with the expressions they replaced. On
encountering a renaming of a previously replaced expression, it is also replaced
by the corresponding renaming of the associated function call.
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fib n

fib

@

n

#1

0

n

λn.case n of . . .

τfib

case n of . . .

λn

n

case

0

n

S Z

Z

0

S

Z

#1

0

Z

case n1 of . . .

S n1

n1

case

0

n1

S Z

Z

0

S

Z

#1

0

Z

add pfib n2q pfib n1q

S n2

add pfib n2q

@

add

@

λx.λy.case x of . . .

τadd

λy.case x of . . .

λx

case x of . . .

λy

x

case

0

x

y

Z

0

y

S padd x1 yq

S x1

0

S

add x1 y

#1

add x1

@

add

@

0

τadd

x1

#1

0

x1

y

#1

0

y

fib n2

#1

fib

@

0

τfib

n2

#1

0

n2

fib n1

#1

fib

@

0

τfib

n1

#1

0

n1

Fig. 6. LTS Corresponding to fib n

Fig. 6. LTS Corresponding to fib n
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Rrrtss � R1rrtss H

R1rre Ñ px ,0qss ε = x
R1rre Ñ pc,0q, p#1 , t1 q, . . . , p#n, tnqss ε

= c pR1rrt1 ss εq . . . pR1rrtn ss εq
R1rre Ñ pλx , tqss ε = λx .pR1rrtss εq
R1rre Ñ p@, t0 q, p#1 , t1 qss ε

= pR1rrt0 ss εq pR1rrt1 ss εq
R1rre Ñ pcase, t0 qpp1 , t1 q, . . . , ppn , tk qss ε

= case pR1rrt0 ss εq of p1 ñ pR1rrt1 ss εq | � � � | pk ñ pR1rrtk ss εq
R1rre Ñ plet, t0 q, px1 , t1 q, . . . , pxn , tnqss ε

= let x1 � pR1rrt1 ss εq in . . . let xn � pR1rrtn ss εq in pR1rrt0 ss εq

R1rre Ñ pτf , tqss ε =

$&
%
e1θ, if Dpe1 � e2q P ε 
 e � e2θ
f 1 x1. . . xn where f 1 � λx1 . . . xn.pR1rrtss pεY tf 1 x1 . . . xn � euqq,

otherwise (f 1 is fresh, tx1 . . . xnu � fvptqq
R1rre Ñ pτβ , tqss ε = R1rrtss ε
R1rre Ñ pτc , tqss ε = R1rrtss ε

Fig. 7. Rules For Residualization

Example 3. The residual program constructed from the LTS in Fig. 6 is esentially
that shown in Fig. 2 (modulo renaming of functions).

4 A Hierarchy of Program Transformers

In this section, we define a hierarchy of program transformers in which the
transformer at each level of the hierarchy makes use of those at lower levels. Each
transformer takes as its input the original program and produces as its output
a labelled transition system, from which a new (hopefully improved) program
can be residualized. In all the transformers, LTSs corresponding to previously
encountered terms are compared to the LTS for the current term. If a renaming
of a previously encountered LTS is detected, then folding is performed. If an
embedding of a previously encountered LTS is detected, then generalization is
performed. The use of LTSs rather than expressions when checking for renaming
or embedding allows us to abstract away from the specific function names which
are used within expressions and to focus on their underlying recursive structure.

Definition 11 (LTS Renaming). LTS t1 is a renaming of LTS t2 iff there is
a renaming σ such that t1 hH

σ t2, where the reflexive, transitive and symmetric
relation hρσ is defined as follows:

pxÑ px,0qq hρσ px1 Ñ px1,0qq, if xσ � x1

peÑ pτf , tqq hρσ pe1 Ñ pτf 1 , t1qq, if ppf, f 1q P ρq _ pt hρYtpf,f
1qu

σ t1q
peÑ pα1, t1q, . . . , pαn, tnqq hρσ pe1 Ñ pα11, t

1
1q, . . . , pα

1
n, t

1
nqq,

if @i P t1 . . . nu 
 pDσ1 
 pαi σ
1 � α1i ^ ti h

ρ
σYσ1 t1iqq
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The rules for renaming are applied in top-down order, where the final rule is
a catch-all. Two LTSs are renamings of each other if the same transitions are
possible from each corresponding state (modulo variable renaming according to
the renaming σ). The definition also handles transitions that introduce bound
variables (λ, case and let); in these cases the corresponding bound variables
are added to the renaming σ. The parameter ρ is used to keep track of the
corresponding function names which have been matched with each other.

Definition 12 (LTS Embedding). LTS t1 is embedded within LTS t2 iff there
is a renaming σ such that t1 À

H
σ t2, where the reflexive, transitive and anti-

symmetric relation Àρσ is defined as follows:

t Àρσ t
1, if pt �ρσ t

1q _ pt 'ρσ t
1q

t �ρσ peÑ pα1, t1q, . . . , pαn, tnqq, if Di P t1 . . . nu 
 t Àρσ ti
pxÑ px,0qq 'ρσ px

1 Ñ px1,0qq, if xσ � x1

peÑ pτf , tqq '
ρ
σ pe

1 Ñ pτf 1 , t1qq, if ppf, f 1q P ρq _ pt À
ρYtpf,f 1qu
σ t1q

peÑ pα1, t1q, . . . , pαn, tnqq '
ρ
σ pe

1 Ñ pα11, t
1
1q, . . . , pα

1
n, t

1
nqq,

if @i P t1 . . . nu 
 pDσ1 
 pαi σ
1 � α1i ^ ti À

ρ
σYσ1 t1iqq

The rules for embedding are applied in top-down order, where the final rule is a
catch-all. One LTS is embedded within another by this relation if either diving
(denoted by �ρσ) or coupling (denoted by 'ρσ) can be performed. In the rules
for diving, a transition can be followed from the current state in the embedding
LTS that is not followed from the current state in the embedded one. In the
rules for coupling, the same transitions are possible from each of the current
states. Matching transitions may contain different free variables; in this case the
transition labels should respect the renaming σ. Matching transitions may also
introduce bound variables (λ, case and let); in these cases the corresponding
bound variables are added to the renaming σ. The parameter ρ is used to keep
track of the corresponding function names which have been coupled with each
other.

Definition 13 (Generalization of LTSs). The function Grrtssrrt1ss θ that gen-
eralizes LTS t with respect to LTS t1 is defined in Fig. 8, where θ is the set of
previous generalizations which can be reused. The result of this function is the
generalization of the LTS t, in which some sub-components have been extracted
from t using lets.

Within the rules G1, γ is the set of bound variables within the LTS being gen-
eralized and ρ is used to keep track of the corresponding function names which
have been matched with each other. The rules are applied in top-down order. If
two corresponding states have the same transitions, these transitions remain in
the resulting generalized LTS, and the corresponding targets of these transitions
are then generalized. Matching transitions may introduce bound variables (λ,
case and let); in these cases the bound variables are added to the set of bound
variables γ. Unmatched LTS components are extracted into a substitution and
replaced by variable applications. The arguments of the variable applications
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Grrtssrrt1ss θ � Arrtgss θ1
where
ptg, θ1q � G1rrtssrrt1ss θ H H

G1rreÑ px,0qssrre1 Ñ px1,0qss θ γ ρ = ppeÑ px,0qq,Hq
G1rreÑ pc,0q, p#1, t1q, . . . , p#n, tnqssrre

1 Ñ pc,0q, p#1, t11q, . . . , p#n, t
1
nqss θ γ ρ

= ppeÑ pc,0q, p#1, tg1q, . . . , p#n, t
g
nqq,

�n
i�1 θiq

where
@i P t1 . . . nu 
 ptgi , θiq � G1rrtissrrt1iss θ γ ρ

G1rreÑ pλx, tqssrre1 Ñ pλx1, t1qss θ γ ρ = ppeÑ pλx, tgqq, θ1q
where
ptg, θ1q � G1rrtssrrt1ss pγ Y txuq ρ

G1rreÑ p@, t0q, p#1, t1qssrre
1 Ñ p@, t10q, p#1, t11qss θ γ ρ

= ppeÑ p@, tg0q, p#1, tg1qq, θ0 Y θ1q
where
@i P t0, 1u 
 ptgi , θiq � Grrtissrrt1iss θ γ ρ

G1rreÑ pcase, t0q, pp1, t1q, . . . , ppn, tnqssrre
1 Ñ pcase, t10q, pp

1
1, t

1
1q, . . . , pp

1
n, t

1
nqss θ γ ρ

= ppeÑ pcase, tg0q, pp1, t
g
1q, . . . , ppn, t

g
nqq,

�n
i�0 θiq

where
@i P t1 . . . nu 
 pDσ 
 pi � p1iσq
ptg0, θ0q � G1rrt0ssrrt10ss θ γ ρ
@i P t1 . . . nu 
 ptgi , θiq � G1rrtissrrt1iss θ pγ Y fvppiqq ρ

G1rreÑ plet, t0q, px1, t1q, . . . , pxn, tnqssrre
1 Ñ plet, t10q, px

1
1, t

1
1q, . . . , px

1
n, t

1
nqss θ γ ρ

= ppeÑ plet, tg0q, px1, t
g
1q, . . . , pxn, t

g
nqq,

�n
i�0 θiq

where
ptg0, θ0q � G1rrt0ssrrt10ss θ γ ρ
@i P t1 . . . nu 
 ptgi , θiq � G1rrtissrrt1iss θ γ ρ

G1rreÑ pτf , tqssrre
1 Ñ pτf 1 , t1qss θ γ ρ =

$''&
''%

ppeÑ pτf , tqq,Hq, if pf, f 1q P ρ
ppeÑ pτf , t

gqq, θ1q, otherwise
where
ptg, θ1q � G1rrtssrrt1ss θ γ pρY tpf, f 1quq

G1rreÑ pτβ , tqssrre
1 Ñ pτβ , t

1qss θ γ ρ = G1rrtssrrt1ss θ γ ρ
G1rreÑ pτc, tqssrre

1 Ñ pτc, t
1qss θ γ ρ = G1rrtssrrt1ss θ γ ρ

G1rrtssrrt1ss θ γ ρ =

"
pBrrxÑ px,0qss γ1,Hq, if Dpx, t1q P θ 
 t1 hH

H t2
pBrrxÑ px,0qss γ1, tx ÞÑ t2uq, otherwise (x is fresh)

where
γ1 � fvptq X γ
t2 � Crrtss γ1

Arrtss tx1 ÞÑ t1, . . . , xn ÞÑ tnu � rootptq Ñ plet, tq, px1, t1q, . . . , pxn, tnq

Brrtss tx1 . . . xnu � rootptq Ñ p@, p. . . rootptq Ñ p@, tq, p#1, x1 Ñ px1,0qq . . .qq, p#1, xn Ñ pxn,0qq

Crrtss tx1 . . . xnu � rootptq Ñ pλx1, . . . rootptq Ñ pλxn, tq . . .q

Fig. 8. Rules for Generalization
Fig. 8. Rules for Generalization

introduced are the free variables of the LTS component which are also contained
in the set of overall bound variables γ; this ensures that bound variables are
not extracted outside their binders. If an extracted LTS component is contained
in the set of previous generalizations θ, then the variable name from this pre-
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vious generalization is reused. Otherwise, a new variable is introduced which is
different and distinct from all other program variables.

4.1 Level 0 Transformer

We now define the level 0 program transformer within our hierarchy, which corre-
sponds closely to the positive supercompilation algorithm. The transformer takes
as its input the original program and produces as its output a labelled transition
system, from which a new (hopefully improved) program can be residualized.
The level 0 transformer effectively performs a normal-order reduction of the
input program. The (LTS representation of) previously encountered terms are
‘memoized’. If the (LTS representation of the) current term is a renaming of a
memoized one, then folding is performed, and the transformation is complete.

introduced are the free variables of the LTS component which are also contained
in the set of overall bound variables γ; this ensures that bound variables are
not extracted outside their binders. If an extracted LTS component is contained
in the set of previous generalizations θ, then the variable name from this pre-
vious generalization is reused. Otherwise, a new variable is introduced which is
different and distinct from all other program variables.

4.1 Level 0 Transformer

We now define the level 0 program transformer within our hierarchy, which corre-
sponds closely to the positive supercompilation algorithm. The transformer takes
as its input the original program and produces as its output a labelled transition
system, from which a new (hopefully improved) program can be residualized.

T0rrx ss κ ρ θ ∆ = T 1
0 rrxÑ px,0qss κ ρ θ ∆

T0rre � c e1 . . . en ss xy ρ θ ∆
= eÑ pc,0q, p#1, T0rre1 ss xy ρ θ ∆q, . . . , p#n, T0rren ss xy ρ θ ∆q

T0rre � c e1 . . . en ss pκ � xpcase 
 of p1 ñ e 11 | � � � | pk ñ e 1k q : κ1yq ρ θ ∆
= pκ
eq Ñ pτc, T0rre

1
itx1 ÞÑ e1 , . . . , xn ÞÑ enuss κ

1 ρ θ ∆q
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= eÑ pλx, T0rre0 ss xy ρ θ ∆q
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 e1 q : κ1yq ρ θ ∆
= pκ
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1 ρ θ ∆q
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fq Ñ pτf , T0rrUrrκ
f ss ∆ss xy pρY ttuq θ ∆q, otherwise

where t � Lrrκ
f ss H ∆
T0rre0 e1 ss κ ρ θ ∆ = T0rre0ss xp
 e1 q : κy ρ θ ∆
T0rrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ θ ∆
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T0rre0 where f1 � e1 . . . fn � en ss κ ρ θ ∆
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pcase, tq, pp1, T0rrpκ
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e
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T 1
0 rrtss xpcase 
 of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆
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1
kss κ ρ θ ∆q

Fig. 9. Level 0 Transformation Rules
Fig. 9. Level 0 Transformation Rules



A Hierarchy of Program Transformers 77

If the (LTS representation of the) current term is an embedding of a memo-
ized one, then generalization is performed, and the resulting generalized term
is further transformed. Generalization ensures that a renaming of a previously
encountered term is always eventually encountered, and that the transformation
therefore terminates. The rules for level 0 transformation are as shown in Fig. 9.

The rules T0 are defined on an expression and its surrounding context, de-
noted by κ. The parameter ρ contains the LTS representations of memoized
terms; for our language it is only necessary to add LTSs to ρ for terms in which
the redex is a function, as any infinite sequence of reductions must include such
terms. The parameter θ contains terms which have been extracted using a let
expression as a result of generalization. If an identical term is subsequently ex-
tracted as a result of further generalization, then the extraction is removed and
the same variable is used as for the previous extraction. The parameter ∆ con-
tains the set of function definitions.

The rules T 1
0 are defined on an LTS and its surrounding context, also denoted

by κ. These rules are applied when the normal-order reduction of the input pro-
gram becomes ‘stuck’ as a result of encountering a variable in the redex position.
In this case, the context surrounding the redex is further transformed. If the
context surrounding a variable redex is a case, then information is propagated
to each branch of the case to indicate that this variable has the value of the
corresponding branch pattern.

Example 4. The result of transforming the fib program in Fig. 2 using the level 0
transformer is shown in Fig. 10 (due to space constraints, we present the results
of transformation in this and further examples as residualized programs rather
than LTSs). As we can see, this is no real improvement over the original program.

f n
where
f � λn.case n of

Z ñ S Z
| S n 1 ñ case n 1 of

Z ñ S Z
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 10. Result of Level 0 Transformation
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4.2 Level n � 1 Transformer

We now define the transformers at all levels above 0 within our hierarchy. Each
of these transformers makes use of the transformers below it in the hierarchy.
The rules for a level n� 1 transformer are actually very similar to those for the
level 0 transformer; the level n�1 transformer also takes as its input the original
program, performs normal-order reduction on it, and produces as its output a
labelled transition system. Where the level n � 1 transformer differs from that
at level 0 is that the LTSs, which are memoized for the purposes of comparison
when determining whether to fold or generalize, are those resulting from the
level n transformation of previously encountered terms.

After the LTS resulting from level n transformation has been memoized, it is
residualized, unfolded and further transformed. If a renaming of a memoized LTS
is encountered, then folding is performed. If an embedding of a memoized LTS is
encountered, then generalization is performed; this generalization will have the
effect of adding an extra layer of lets around the LTS. Thus, each successive
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level in the transformer hierarchy will have the effect of adding an extra layer of
lets around the LTS representation of the current term.

As over-generalization may occur at each level in the transformer hierarchy,
the extracted terms at each level are substituted back in at the next succes-
sive level. The lets themselves are retained as the extracted terms could be re-
encountered in further generalization, and the let variables reused; if they are not
reused, then the let can be removed in a post-processing phase. Note that at each
successive level in the transformer hierarchy, the size of the components which
are extracted by generalization must get smaller as they are sub-components of
the result of transformation at the previous level.

The level n � 1 transformation rules are defined as shown in Fig. 11. The
parameters used within these rules are the same as those for the level 0 trans-
former, except that the memoization environment ρ contains the LTSs resulting
from the level n transformation of previously encountered terms.

Example 5. If the result of the level 0 transformation of the fib program shown
in Fig. 10 is further transformed within a level 1 transformer, then the level 0
result as shown in Fig. 12 is encountered.

f n
where
f � λn.case n of

Z ñ S S Z
| S n 1 ñ case n 1 of

Z ñ S S S Z
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 12. Further Result of Level 0 Transformation

Generalization is therefore performed with respect to the previous level 0
result in Fig. 10 to obtain the level 1 result shown in Fig. 13. We can see that an
extra layer of lets has been added around this program. If this level 1 program
is further transformed within a level 2 transformer, then the level 1 result as
shown in Fig. 14 is encountered.

Generalization is therefore performed with respect to the previous level 1
result in Fig. 13 to obtain the level 2 result shown in Fig. 15. Again, we can
see that an extra layer of lets has been added around this program. If this
level 2 program is further transformed within a level 3 transformer, then the
level 2 result as shown in Fig. 16 is encountered. Generalization is therefore
performed with respect to the previous level 2 result in Fig. 15 to obtain the
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let x1 � S Z
in let x2 � S S Z

in f n
where
f � λn.case n of

Z ñ S x1
| S n 1 ñ case n 1 of

Z ñ S x2
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 13. Result of Level 1 Transformation

let x3 � S S S Z
in let x4 � S S S S S Z

in f n
where
f � λn.case n of

Z ñ S S x3
| S n 1 ñ case n 1 of

Z ñ S S S x4
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 14. Further Result of Level 1 Transformation

level 3 result shown in Fig. 17. In this case, we can see that an extra layer of
lets has not been added around the program; this is because the components
which would have been extracted had been extracted previously, so the variables
from these previous extractions were reused. If this level 3 program is further
transformed within a level 4 transformer, then the level 3 result as shown in Fig.
18 is encountered.

We can now see that the level 3 result in Fig. 18 is a renaming of the level 3
result in Fig. 17. Folding is therefore performed to obtain the result in Fig. 19
(for the sake of brevity, this program has been compressed, but the actual result
can be obtained from this by performing a couple of function unfoldings).

We can see that the original program which contained double recursion has
been transformed into one with single recursion. Note that the result we have



A Hierarchy of Program Transformers 81

let x5 � λx .S x
in let x6 � λx .S S x

in let x3 � S x2
in let x4 � S S x3

in f n
where
f � λn.case n of

Z ñ S px5 x3 q
| S n 1 ñ case n 1 of

Z ñ S px6 x4 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 15. Result of Level 2 Transformation

let x9 � λx .S S S x
in let x10 � λx .S S S S S x

in let x7 � S S S x4
in let x8 � S S S S S x7

in f n
where
f � λn.case n of

Z ñ S px9 x7 q
| S n 1 ñ case n 1 of

Z ñ S px10 x8 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 16. Further Result of Level 2 Transformation

obtained is not the linear version of the fib function which we might have ex-
pected. This is because the addition operation within the original program is
not a constant-time operation; it is a linear-time operation defined on Peano
numbers. If we had used a constant-time addition operator, then we would have
obtained the linear version of the fib function using transformers at level 1 and
upwards. This requires building the addition operator into our language, and
defining specific transformation rules for such built-in operators which trans-
form their arguments in sequence.
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let x9 � λx .x5 px6 x q
in let x10 � λx .x6 px5 px6 x qq

in let x7 � x5 px6 x4 q
in let x8 � x6 px5 px6 x4 qq

in f n
where
f � λn.case n of

Z ñ S px9 x7 q
| S n 1 ñ case n 1 of

Z ñ S px10 x8 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 17. Result of Level 3 Transformation

let x13 � λx .x9 px10 x q
in let x14 � λx .x10 px9 px10 x qq

in let x11 � x9 px10 x8 q
in let x12 � x10 px9 px10 x8 qq

in f n
where
f � λn.case n of

Z ñ S px13 x11 q
| S n 1 ñ case n 1 of

Z ñ S px14 x12 q
| S n2 ñ case pf n2q of

Z ñ f pS n2q
| S x ñ S pg x n2q

g � λx .λn.case x of
Z ñ f pS nq

| S x 1 ñ S pg x 1 nq

Fig. 18. Further Result of Level 3 Transformation

5 Distillation

In this section, we show how distillation can be described within our hierarchy of
program transformers. One difficulty with having such a hierarchy of transform-
ers is knowing which level within the hierarchy is sufficient to obtain the desired
results. For example, for many of the examples in the literature of programs
which are improved by positive supercompilation (level 0 in our hierarchy), no
further improvements are obtained at higher levels in the hierarchy. However,
only linear improvements in efficiency are possible at this level [13]. Higher levels



A Hierarchy of Program Transformers 83

case n of
Z ñ S Z

| S n 1 ñ case n 1 of
Z ñ S Z

| S n2 ñ f n2 pλx .S x q pλx .S S x q Z Z
where
f � λn.λg .λh.λx .λy .case n of

Z ñ S pg x q
| S n 1 ñ case n 1 of

Z ñ Sph yq
| S n2 ñ f n2 pλx .g ph x qq pλx .h pg ph x qqq pg x q ph yq

Fig. 19. Overall Result of Level 4 Transformation

5 Distillation

In this section, we show how distillation can be described within our hierarchy of
program transformers. One difficulty with having such a hierarchy of transform-
ers is knowing which level within the hierarchy is sufficient to obtain the desired
results. For example, for many of the examples in the literature of programs
which are improved by positive supercompilation (level 0 in our hierarchy), no
further improvements are obtained at higher levels in the hierarchy. However,
only linear improvements in efficiency are possible at this level [13]. Higher levels
in the hierarchy are capable of obtaining super-linear improvements in efficiency,
but are overkill in many cases.

We therefore give a formulation of distillation which initially performs at
level 0 in our hierarchy, and only moves to higher levels when necessary. Moving
to a higher level in the hierarchy is only necessary if generalization has to be
performed at the current level. Thus, when generalization is performed, the result
of the generalization is memoized and is used for comparisons at the next level
when checking for renamings or embeddings.

The rules for distillation are shown in Fig. 20. These rules are very simi-
lar to those for the transformers within the hierarchy; they take the original
program as input, perform normal-order reduction, and produce a labelled tran-
sition system as output. The rules differ from those for the transformers within
the hierarchy in that when generalization has to be performed, the LTS resulting
from generalization at the current level is memoized, residualized, unfolded and
then transformed at the next level up in the transformer hierarchy. Thus, each
generalization will have the effect of moving up to the next level in the trans-
former hierarchy in addition to adding an extra layer of lets around the LTS
representation of the current term.

We have already seen that at each successive level in the transformer hierar-
chy, the size of the components which are extracted by generalization must get
smaller as they are sub-components of the result of transformation at the previ-
ous level. A point must therefore always be reached eventually at which extracted

Fig. 19. Overall Result of Level 4 Transformation

in the hierarchy are capable of obtaining super-linear improvements in efficiency,
but are overkill in many cases.

We therefore give a formulation of distillation which initially performs at
level 0 in our hierarchy, and only moves to higher levels when necessary. Moving
to a higher level in the hierarchy is only necessary if generalization has to be
performed at the current level. Thus, when generalization is performed, the result
of the generalization is memoized and is used for comparisons at the next level
when checking for renamings or embeddings.

The rules for distillation are shown in Fig. 20. These rules are very simi-
lar to those for the transformers within the hierarchy; they take the original
program as input, perform normal-order reduction, and produce a labelled tran-
sition system as output. The rules differ from those for the transformers within
the hierarchy in that when generalization has to be performed, the LTS resulting
from generalization at the current level is memoized, residualized, unfolded and
then transformed at the next level up in the transformer hierarchy. Thus, each
generalization will have the effect of moving up to the next level in the trans-
former hierarchy in addition to adding an extra layer of lets around the LTS
representation of the current term.

We have already seen that at each successive level in the transformer hierar-
chy, the size of the components which are extracted by generalization must get
smaller as they are sub-components of the result of transformation at the previ-
ous level. A point must therefore always be reached eventually at which extracted
components re-occur, and the same generalization variables will be reused with-
out introducing new lets. At this point, no further generalization will be done
and the distiller will not move any further up the transformer hierarchy and
must terminate at the current level.

Example 6. The result of transforming the fib program in Fig. 2 using distillation
is the same as that of the level 4 transformer within our transformation hierarchy
shown in Fig. 19.
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Dnrrx ss κ ρ θ ∆ = D1
nrrxÑ px,0qss κ ρ θ ∆

Dnrre � c e1 . . . en ss xy ρ θ ∆
= eÑ pc,0q, p#1,Dnrre1 ss xy ρ θ ∆q, . . . , p#n,Dnrren ss xy ρ θ ∆q

Dnrre � c e1 . . . en ss pκ � xpcase 
 of p1 ñ e 11 | � � � | pk ñ e 1k q : κ1yq ρ θ ∆
= pκ
eq Ñ pτc,Dnrre 1itx1 ÞÑ e1 , . . . , xn ÞÑ enuss κ

1 ρ θ ∆q
where pi � c x1 . . . xn

Dnrre � λx .e0 ss xy ρ θ ∆
= eÑ pλx,Dnrre0 ss xy ρ θ ∆q
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 e1 q : κ1yq ρ θ ∆
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eq Ñ pτβ ,Dnrre0 tx ÞÑ e1 uss κ

1 ρ θ ∆q
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$''&
''%

pκ
fq Ñ pτf ,0q, if Dt1 P ρ, σ 
 t1 hH
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Dn�1rrUrrRrrtgssss Hss xy ttgu θ H, if Dt1 P ρ, σ 
 t1 'Hσ t
where tg � Grrtssrrt 1ss θ
pκ
fq Ñ pτf ,DnrrUrrRrrtssss Hss xy pρY ttuq θ Hq, otherwise

where t � Tnrrf ss κ H θ ∆
Dnrre0 e1 ss κ ρ θ ∆

= Dnrre0ss xp
 e1 q : κy ρ θ ∆
Dnrrcase e0 of p1 ñ e1 | � � � | pk ñ ek ss κ ρ θ ∆

= Dnrre0ss xpcase 
 of p1 ñ e1 | � � � | pk ñ ek q : κy ρ θ ∆
Dnrre � let x � e0 in e1 ss κ ρ θ ∆

= pκ
eq Ñ plet,Dnrre1 tx ÞÑ e0 uss κ pρY tx ÞÑ e0uq θ ∆q, px,Dnrre0 ss xy ρ θ ∆q
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D1
nrrtss xy ρ θ ∆ = t

D1
nrrtss xp
 eq : κy ρ θ ∆

= D1
nrrpt eq Ñ p@, tq, p#1,Dnrress xy ρ θ qss κ ρ θ ∆
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nrrxÑ px,n� 1qss xpcase 
 of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆

= pcase x of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ
pcase, tq, pp1,Dnrrpκ
e11qtxÞÑ p1uss xy ρ θ ∆q, . . . , ppk,Dnrrpκ
e1kqtxÞÑ pkuss xy ρ θ ∆q

D1
nrrtss xpcase 
 of p1 ñ e 11 | � � � | pk ñ e 1k q : κy ρ θ ∆

= pcase rootptq of p1 ñ e 11 | � � � | pk ñ e 1k q Ñ
pcase, tq, pp1,Dnrre11ss κ ρ θ ∆q, . . . , ppk,Dnrre1kss κ ρ θ ∆q

Fig. 20. Distillation Transformation Rules
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and the distiller will not move any further up the transformer hierarchy and
must terminate at the current level.

Example 6. The result of transforming the fib program in Fig. 2 using distillation
is the same as that of the level 4 transformer within our transformation hierarchy
shown in Fig. 19.
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6 Conclusion and Related Work

We have defined a hierarchy of transformers in which the transformer at each
level of the hierarchy makes use of the transformers at lower levels. At the bot-
tom of the hierarchy is the level 0 transformer, which corresponds to positive
supercompilation [14], and is capable of achieving only linear improvements in
efficiency. The level 1 transformer corresponds to the first published definition
of distillation [4], and is capable of achieving super-linear improvements in effi-
ciency. Further improvements are possible at higher levels in the hierarchy, but
the difficulty is in knowing the appropriate level at which to operate for an ar-
bitrary input program. We have also shown how the more recently published
definition of distillation [5] moves up through the levels of the transformation
hierarchy until no further improvements can be made.



A Hierarchy of Program Transformers 85

Previous works [9,2,1,18,13] have noted that the unfold/fold transformation
methodology is incomplete; some programs cannot be synthesized from each
other. This is because the transformation methodologies under consideration
correspond to level 0 in our hierarchy; higher levels are required to achieve the
desired results.

There have been several attempts to work on a meta-level above supercom-
pilation, the first one by Turchin himself using walk grammars [16]. In this ap-
proach, traces through residual graphs are represented by regular grammars
that are subsequently analysed and simplified. This approach is also capable of
achieving superlinear speedups, but no automatic procedure is defined for it; the
outlined heuristics and strategies may not terminate.

The most recent work on building a meta-level above supercompilation is
by Klyuchnikov and Romanenko [8]. They construct a hierarchy of supercom-
pilers in which lower level supercompilers are used to prove lemmas about term
equivalences, and higher level supercompilers utilise these lemmas by rewriting
according to the term equivalences (similar to the “second order replacement
method” defined by Kott [10]). This approach is also capable of achieving super-
linear speedups, but again no automatic procedure is defined for it; the need to
find and apply appropriate lemmas introduces infinite branching into the search
space, and various heuristics have to be used to used to try to limit this search.

Logic program transformation is closely related, and the equivalence of partial
deduction and driving has been argued by Glück and Sørensen [3]. Superlinear
speedups can be achieved in logic program transformation by goal replacement
[11,12]: replacing one logical clause with another to facilitate folding. Techniques
similar to the notion of “higher level supercompilation” [8] have been used to
prove correctness of goal replacement, but have similar problems regarding the
search for appropriate lemmas.
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