Overgraph Representation for Multi-Result Supercompilation

Sergei Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Meta 2012
General Idea of Multi-Resultness

We use **heuristics** to guess the best path

And get a **single** residual program
General Idea of Multi-Resultness

We take (almost) every possible path

We get a set of residual programs

And then we choose the best one (optionally)
A problem

Millions of residual programs

A solution

Overgraph – a compact representation for sets of graphs
MRSC Toolkit Architecture

Core

Rules

- Whistle
- Generalization Strategy
- Folding Strategy
- Driving Rules

Graph

Rewriting Steps

Residualization

...
MRSC: Graphs of Configurations

- Root
- Folding Edge
- Incomplete Nodes
- Current Node
MRSC: Graph Rewriting Steps

Complete

AddChildNodes

Fold

Rebuild
MRSC: Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
Combinatorial Explosion

Too many graphs

- Use some **heuristics**
- **Share** some parts of graphs

Spaghetti Stack (MRSC)
Do Spaghetti Stacks Solve the Problem?

Not entirely

These subtrees are likely to be equal but they won't be shared
Rules : Graph → [Step]

Rules transform graphs into rewriting steps

But usually they don't need the whole graph, just a path from the root to the current node.
Rules : Path \rightarrow [Step]

- Let's try to restrict rules to work on paths

- We would lose an interesting ability to fold with cross edges

- We would need some new \textit{representation} to make use of this new property
Overtree Representation

Let's combine all configuration trees into one big overtree

An overtree represents a set of trees

\[
\text{data } \text{Tree} = \text{Tree} (\text{F Tree})
\]

\[
\text{data } \text{OTree} = \text{OTree} [\text{F OTree}]
\]
Do Overtrees Solve the Problem?

- They are a bit better, but still...

- We've already lost cross edges

- Are we going to lose folding edges completely?
Overgraph

• Let's just glue together nodes equivalent up to renaming

• Each configuration corresponds to no more than one node
Folding

We don't need special folding edges
Advantages and Problems

- Overgraphs are more compact
- Overgraphs are cleaner
 - One configuration — one node
 - No special folding edges
- Overgraphs contain more information

- Each node can have multiple parents
 - Can we use binary whistles?
 - How can we control generalization?
- How to apply rules?
- How to extract residual programs?
Hyperedges

- We will call **bundles of edges** hyperedges

- Hyperedges represent steps like driving and generalization

- Completion step can be represented as a hyperedge with **zero destination nodes**

\[f \circ g \circ h \rightarrow (f, g \circ h) \]

- Incomplete nodes have no outgoing hyperedges

\[C_1 \rightarrow () \]
Supercompilation with Overgraphs

1) Overgraph **Construction**
 Add nodes and edges while possible

2) Overgraph **Truncation**
 Remove useless nodes and edges

3) **Residualization**
Overgraph Construction

- Rule: Configuration → [Step]
 - Add this node

- Rule: Overgraph → [Hyperedge]

 In what order should we apply the rules?

 \(r \) is monotone if for all graphs \(G \) and \(H \):

 \[
 G \subseteq H \Rightarrow r(G) \subseteq r(H)
 \]

 If all rules are monotone we can apply them in any order
Rules

- We can also write rules in this form:

 \[
 \text{precondition} \quad \quad \text{hyperedges to add}
 \]

- Examples:

 \[
 \neg \text{UnaryWhistle}(c) \quad \quad \text{always}
 \]

 \[
 c \rightarrow \text{drive}(c) \quad \quad c \rightarrow \text{generalize}(c)
 \]

 \[
 \text{min_depth}(c) < 42 \quad \quad \text{This precondition is monotone}
 \]

 \[
 c \rightarrow \text{drive}(c)
 \]
Binary Whistles

¬ ∃ d ∈ G : BinaryWhistle(c,d)

\[c \rightarrow \text{drive}(c) \]

\[\text{NOT} \text{ monotone} \]

∃ path p from root to c :
\[\forall d \in p : \neg \text{BinaryWhistle}(c,d) \]

\[c \rightarrow \text{drive}(c) \]

\[\text{OK} \]

This green path won't disappear
Overgraph Truncation

We should remove all incident hyperedges
Residualization

Building a full set of graphs should be avoided!

We will represent residual programs as **trees with back edges** (i.e. no subprogram sharing)
Naive Residualization Algorithm

Convert Overgraph into an Overtree and then convert it into a set of trees
Naive Residualization Algorithm

Convert Overgraph into an Overtree and then convert it into a set of trees
Suboptimality

Absolutely identical subtrees

Idea: Cache intermediate results
More Formal Definition

\[R : \text{Node} \to [\text{Node}] \to [\text{Tree}] \]

\[
R \ n \ h \ | \ n \in \ h = [\text{Fold}(n)]
\]
\[
R \ n \ h \ | \ \text{otherwise} =

[n \to (r_1 \ldots \ r_k) \mid
n \to (d_1 \ldots \ d_k) \in G,
ri \in R \ di \ (n:h)]
\]

\[
h = [4, 2, 1]
n = 2
\]
More Formal Definition

\[R : \text{Node} \rightarrow \text{[Node]} \rightarrow \text{[Tree]} \]

\[
R \ n \ h \ | \ n \in h = \text{[Fold(n)]}
\]

\[
R \ n \ h \ | \ \text{otherwise} =
\]

\[
\text{[n \rightarrow (r_1 \ldots r_k) | n \rightarrow (d_1 \ldots d_k) \in G, } \]
\]

\[
ri \in R \ di \ (n:h)]
\]

\[
h = [2, 1]
\]

\[
n = 4
\]

\[
R \ 2 \ [4, 2, 1]
\]
History Structure

\[R : \text{Node} \rightarrow [\text{Node}] \rightarrow [\text{Tree}] \]

- **Predecessors**: Can be in a history but cannot be folded against. These can influence folding.
- **Successors**: Won't be in a history.
- **Both**: History structure relationships.
Enhanced Residualization

- Removing pure predecessors from history won't change the result
 \[R(n, h) = R(n, (h \cap \text{succs}(n))) \]

- Let's rewrite residualization algorithm this way:
 \[
 \begin{align*}
 R(n, h) & | n \in h = [\text{Fold}(n)] \\
 R(n, h) & | \text{otherwise} = \[n \rightarrow (r_1 \ldots r_k) | \\
 & \quad \quad n \rightarrow (d_1 \ldots d_k) \in G, \\
 & \quad \quad r_i \in R(d_i \cap \text{succs}(d_i))]
 \end{align*}
 \]

- Now we can just apply memoization
Evaluation of Residualization Algorithms

- Caching improves performance

![Improvement (times)]

- But the algorithms produce trees with back edges
 Turned out it is not very useful for most tasks
Example: Counter Systems

• The task is to find the minimal proof of a counter system's safety
• A proof is a graph, not a tree with back edges
• MRSC uses cross edges to simulate graphs
• But overgraphs may be still useful because they enable truncation
Experiment with Counter Systems

Rules

Core

Branch & Bound

VS

Rules

Overgraph
Construction

Truncation

Core

Branch & Bound
Experimental Results

Improvement (times)

(in terms of the number of visited nodes)
Why overgraphs were useful?

- We could compute **sets of successors**
- We could **truncate** an overgraph

An overgraph contains a lot of **information** about relations between configurations

This is even more important than its compactness
Further Work

• Experiments with subgraph-producing residualization algorithms
 – need graph-based language
 – tree-producing algorithm seems unsuitable for real-world tasks

• Searching for heuristics (whistles etc) useful for overgraph representation

• Applying overgraphs to higher-level supercompilation
Conclusions

We suggested the Overgraph representation

- An Overgraph is a very compact representation
- Rules, Whistles and Residualization were generalized to Overgraphs
- The implementation has shown its usefulness
 - Caching residualization algorithm
 - Truncation for counter systems
- Overgraph contains a lot of information, so it is possible to analyze multiple graphs at once
Please return to the previous slide
Correctness

- It is possible that not all of the trees extracted from an overgraph represent correct programs.

- Usually it is not a problem for single-level supercompilation.
Language used in experiments

- The language is essentially based on trees with back edges

- Higher order
- Explicit fixed point combinator
- No let-expressions
Overgraph vs E-PEG

- Essentially the same idea applied to different domains
- We work with functional languages, so we have a clear recursion rather than incomprehensible cycles
- We don't have symmetric equalities
- We decided to residualize to trees, they naturally “residualize” to graphs
 - Should we do the same?
There are no more slides