
1

Overgraph Representation for
Multi-Result Supercompilation

Sergei Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Meta 2012

2

General Idea of Multi-Resultness

P1

SC(P1)

P1

We use heuristics to
guess the best path

SC(P1)

And get a single
residual program

3

General Idea of Multi-Resultness

P1

SC(P1)

P1

SC(P1)

We take (almost)
every possible path

We get a set of
residual programs

And then we choose
the best one
(optionally)

4

A problem

Millions of residual programs

Overgraph – a compact
representation for sets of graphs

A solution

5

MRSC Toolkit Architecture

Core

Rules

Whistle
Generalization

Strategy

Driving
Rules

Folding
Strategy

...

Graph

C

Rewriting Steps

Residualization R

6

MRSC: Graphs of Configurations

C1

C2 C3

C4 C5 C6 C7

C2' C8

Root

Current Node

Incomplete Nodes

Folding Edge

7

MRSC: Graph Rewriting Steps

Complete

AddChildNodes

Fold

Rebuild

1 2

8

MRSC: Tree of Graphs

9

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

10

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

11

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

12

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

13

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

Yield

14

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

Yield

Yield

Yield

Yield

15

Combinatorial Explosion

Too many graphs

– Use some heuristics
– Share some parts of graphs

Shared

Spaghetti Stack
(MRSC)

16

Do Spaghetti Stacks Solve the
Problem?

Not entirely

These subtrees are
likely to be equal

but they won't be
shared

17

Rules : Graph → [Step]

Rules transform graphs into rewriting steps

Add this node

Add this node

But usually they don't need the whole graph,
just a path from the root to the current node

18

Rules : Path → [Step]

● Let's try to restrict rules to work on paths

Add this node

● We would need some new representation to
make use of this new property

● We would lose an interesting ability to fold with cross
edges

19

Overtree Representation

Let's combine all configuration trees into one
big overtree

+ =

An overtree represents a set of trees

data Tree = Tree (F Tree)

data OTree = OTree [F OTree]

20

Do Overtrees Solve the Problem?

● They are a bit better, but still...

f(g(h(x)))

f(g(x)) h(x) g(h(x))f(x)

f(x) g(x) g(x) h(x)

Duplication

● We've already lost cross edges

● Are we going to lose folding edges completely?

21

Overgraph

● Let's just glue together nodes equivalent up to
renaming

f(g(h(x)))

f(g(x)) h(x) g(h(x))f(x)

g(x)

● Each configuration corresponds to no more
than one node

22

Folding

We don't need special folding edges

f(x)

f(g(y))

f(z) g(y)

...

f(x)

f(g(y))

g(y)

...

23

Advantages and Problems
● Overgraphs are more compact

● Overgraphs are cleaner

– One configuration ― one node

– No special folding edges
● Overgraphs contain more information

● Each node can have multiple parents

– Can we use binary whistles?

– How can we control generalization?
● How to apply rules?

● How to extract residual programs?

24

Hyperedges

f g h∘ ∘

f g∘ h g h∘f

g

Hyperedge
f g h → (f , g h)∘ ∘ ∘

● Hyperedges represent steps like driving and
generalization

● Completion step can be represented as a hyperedge
with zero destination nodes

C1 → ()C1 C2
incomplete nodes have
no outgoing hyperedges

● We will call bundles of edges hyperedges

25

Supercompilation with Overgraphs

1) Overgraph Construction

Add nodes and edges while possible

2) Overgraph Truncation

Remove useless nodes and edges

3) Residualization

26

Overgraph Construction

● Rule : Configuration → [Step]

Add this node

● Rule : Overgraph → [Hyperedge]

In what order should we apply the rules?

G ⊆ H ⇒ r(G) ⊆ r(H)
r is monotone if for all graphs G and H:

If all rules are monotone we can apply
them in any order

27

Rules

● We can also write rules in this form:

precondition

hyperedges to add

● Examples:
¬ UnaryWhistle(c)

c → drive(c)

always

c → generalize(c)

min_depth(c) < 42

c → drive(c)

This precondition is
monotone

28

Binary Whistles

¬ d G : BinaryWhistle(c,d)∃ ∈

c → drive(c)

NOT monotone

 ∃ path p from root to c :
 ∀ d p : ¬BinaryWhistle(c,d)∈

c → drive(c)

OK

This green path won't
disappear

29

Overgraph Truncation

This incomplete node
is useless

We should remove all incident hyperedges

30

Residualization

Overgraph Set of graphs

Building a full set of graphs should be avoided!

We will represent residual
programs as trees with
back edges
(i.e. no subprogram sharing)

31

Naive Residualization Algorithm

1

4

32

5 6

1

4

32

5 6

4

5 6

2Convert Overgraph into an Overtree
and then convert it into a set of trees

32

Naive Residualization Algorithm

1

4

32

5 6

1

4

32

5 6

4

5 6

2Convert Overgraph into an Overtree
and then convert it into a set of trees

33

Suboptimality

1

4

32

5 6

1

4

32

5 6

4

5 6

Absolutely identical subtrees

Idea: Cache intermediate results

34

More Formal Definition

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |
n → (d1 ... dk) ∈ G,
ri ∈ R di (n:h)]

R : Node → [Node] → [Tree]

1

4

32
h = [4, 2, 1]
n = 2

2

4

2'

1

35

More Formal Definition

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |
n → (d1 ... dk) ∈ G,
ri ∈ R di (n:h)]

R : Node → [Node] → [Tree]

1

32

h = [2, 1]
n = 4

4 R 2 [4, 2, 1]

36

History Structure
R : Node → [Node] → [Tree]

N

Predecessors

Successors

Both

History

Won't be in a history

Can be in a history but
cannot be folded against

These can influence
folding

37

Enhanced Residualization

● Removing pure predecessors from history
won't change the result

R n h = R n (h ∩ succs(n))
● Let's rewrite residualization algorithm this way:

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |
n → (d1 ... dk) ∈ G,
ri ∈ R di (n:h ∩ succs(di))]

● Now we can just apply memoization

38

Evaluation of Residualization
Algorithms

● Caching improves performance

add

mul

fict

idle

evenBad

nrev

0 2 4 6 8 10 12 14

Improvement (times)

● But the algorithms produce trees with back edges

Turned out it is not very useful for most tasks

39

Example: Counter Systems

● The task is to find the minimal proof of a
counter system's safety

● A proof is a graph, not a tree with back edges
● MRSC uses cross edges to simulate graphs
● But overgraphs may be still useful because

they enable truncation

40

Experiment with Counter Systems

Rules

Core

Branch & Bound
Branch & Bound

Overgraph
Construction

Truncation

Rules

Core

VS

41

Experimental Results

Synapse

MSI

MOSI

MESI

MOESI

Illinois

Berkley

Firefly

Xerox

Java

ReaderWriter

DataRace

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Improvement (times)

(in terms of the number of visited nodes)

42

Why overgraphs were useful?

● We could compute sets of successors
● We could truncate an overgraph

An overgraph contains a lot of information
about relations between configurations

This is even more important than its
compactness

43

Further Work

● Experiments with subgraph-producing
residualization algorithms
– need graph-based language

– tree-producing algorithm seems unsuitable for
real-world tasks

● Searching for heuristics (whistles etc) useful
for overgraph representation

● Applying overgraphs to higher-level
supercompilation

44

Conclusions

We suggested the Overgraph representation
● An Overgraph is a very compact

representation
● Rules, Whistles and Residualization were

generalized to Overgraphs
● The implementation has shown its usefulness

– Caching residualization algorithm
– Truncation for counter systems

● Overgraph contains a lot of information, so it is
possible to analyze multiple graphs at once

45

Please return to the previous slide

46

Correctness

● It is possible that not all of the trees extracted
from an overgraph represent correct programs

● Usually it is not a problem for single-level
supercompilation

a b

id

id

a = b
b = a

a = a

a b

c

✓

47

Language used in experiments

● The language is essentially based on trees
with back edges

Y (λ f → ...)

f

● Higher order
● Explicit fixed point combinator
● No let-expressions

48

Overgraph vs E-PEG

● Essentially the same idea applied to different
domains

● We work with functional languages, so we
have a clear recursion rather than
incomprehensible cycles

● We don't have symmetric equalities
● We decided to residualize to trees, they

naturally “residualize” to graphs

– Should we do the same?

49

There are no more slides

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

