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Abstract. In this paper we present a new approach to multi-result su-
percompilation based on joining together process graphs into a single
graph and welding nodes corresponding to equal configurations. We show
that this leads to a considerable reduction of nodes being built during su-
percompilation and enables more efficient configuration graph processing
algorithms on the example of an enhanced residualization algorithm.

1 Introduction

Supercompilation [15] is traditionally seen as a program transformation which
produces a single program that is equivalent in some sense to the original one.
This approach is very understandable: we usually need only one program, actu-
ally the most optimal one we can produce. But this approach goes deep down
the process of supercompilation. Being a complex transformation, supercompi-
lation consists of smaller steps (like driving, folding and generalization) that can
be applied in some order. The principle of single result dictates us to choose
a single step each time we have a choice. This means that we ought to make
decisions using some a priori heuristics which may lead us to a solution that is
far from optimal. Of course there is no purity in the world and supercompilers
often implement backtracking through generalization of an upper configuration.

The flaw of this approach becomes more pronounced when we consider a
problem that doesn’t consist in finding an optimal solution, for example proving
of equivalence of two programs. The standard approach is to supercompile both
of them and then compare the resultant programs syntactically [6,(10]. But we
don’t really need an optimal solution to do it, and since the optimal solution
is hard to find, we would increase chances of success by constructing a set of
equivalent programs for each original program and then checking if the sets
intersect. Another example — program analysis. In this case a supercompiler can
be used as a transformation that simplifies a program into one that is easier to
analyze. But “easier to analyze” might not be the same as “more efficient” and
it may be more difficult to express using heuristics.
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Undoubtedly it is possible to stuff the supercompiler with all sorts of heuris-
tics and then tune it to suit the specific task. This approach has the right to live.
It must be said that it is also used outside the field of supercompilation, for ex-
ample, it is common to automatically adjust the set of parameters of optimising
compilers to a certain architecture or even to a set of programs [2}[3[11].

An alternative approach is to dismiss the idea of the single path to the opti-
mal program. Let supercompiler perform all possible steps simultaneously when
it has a choice. This idea is known as the multi-result supercompilation [9]. It
first appeared not a very long time ago and was intended to be used primarily
for program analysis. It should be noted that similar idea had appeared in the
field of optimizing compilers [14] where it enabled selecting the best program
by evaluating the programs a posteriori using global profitability heuristics; this
indicates that the idea of multiple results is advantageous for optimization prob-
lems.

The main problem of multi-resultness is lack of efficiency. Each branching
point multiplies the number of programs leading to combinatorial explosion.
This issue can be resolved by restricting branching using heuristics (which is
not desirable but seems unavoidable) or by using some better representation of
the set of programs to diminish redundancy. In this paper the latter approach
is discussed.

2 The Approach of MRSC

MRSC is a multi-result supercompilation framework written in Scala |8|El The
goal of MRSC is to provide a set of components to rapidly build various multi-
result supercompilers. MRSC consists of a core which implements basic domain-
independent operations over process graphs, and several domain-specific (i.e.
specific to different languages and tasks) modules which give meaning to these
graphs and guide their construction.

MRSC is based on explicit construction of configuration graphs. Being a
multi-result supercompiler, it takes an initial configuration and produces a list
of corresponding configuration graphs which is then transformed into a list of
programs through the process known as residualization. MRSC issues configura-
tion graphs incrementally. In particular, this design choice makes it possible to
use MRSC as a traditional single-result supercompiler without efficiency loss by
simply taking the first issued graph. On the other hand it determines that MRSC
should use depth-first traversal to build and issue every next graph as quickly as
possible. Thus, the MRSC supercompilation algorithm can be formulated using
a stack of graphs as follows:

1. Put a graph with only one node containing the initial configuration on the
stack.
2. While the stack is not empty repeat the following steps.

! The source code of MRSC is available at https://github.com/ilya-klyuchnikov/
Mrsc


https://github.com/ilya-klyuchnikov/mrsc
https://github.com/ilya-klyuchnikov/mrsc
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Pop a graph g from the stack.

If the graph ¢ is completed, issue it.

5. If the graph is incomplete, transform it according to some domain-specific
rules and push the resultant graphs (there may be many of them as the
supercompilation is multi-result) onto the stack

o

It should be noted that although we talk about graphs they are actually repre-
sented as trees with back edges (which are represented differently from normal
edges).

Each graph has a list of complete nodes and a list of incomplete nodes. The
first incomplete node of a graph is called the current node and represents the
place where the graph is growing. A graph is completed if it doesn’t contain
incomplete nodes.

o O O O

Fig. 1. Tree of graphs

Graph transforming rules are specified with a function that maps a graph into
a list of steps to perform on it (by “perform” we don’t mean that they actually
modify it, we apply steps in a functional way). When a step is performed, the
current node usually becomes complete and the next incomplete node becomes
current (if there are incomplete nodes left). A step can be one of the following:

1. CompleteCurrentNode — just mark the current node complete and move on to
the next incomplete node. It is usually used if the the current node contains
a fully evaluated expression as a configuration.

2. Fold(b) — make a back edge from the current node to b.

AddChildNodes(cs) — append nodes to the current one.

4. Rebuild(c) — replace the configuration of the current node with ¢. This step
does not make the current node complete.

5. Rollback(n,c) — perform an upper rebuilding: remove the subgraph that
grows from the node n and then replace the configuration of n with ¢. n
becomes current.

&
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If there is no step produced by the rules function, the graph is thrown away as it
is incomplete and cannot be completed. It is usually the case when the whistle
blows but there is no possibility of generalizing, or the graph doesn’t meet some
conditions we require (like the safety condition in the case of counter systems).

So what if the rules prescribe several different steps to one incomplete graph?
All of them will be performed on it simultaneously, producing several graphs.
This leads to the idea of a tree of graphs (Fig. . The tree of graphs is a mental
construction rather than an actual tree that resides in a memory, but it can be
used to give another formulation of MRSC supercompilation algorithm: MRSC
just performs the depth-first traversal of this tree filtering out incomplete graphs.

Fig. 2. Spaghetti-stack-based graph representation

When more than one step is applicable the number of graphs multiplies by
the number of steps, and it may seem that MRSC doesn’t cope with the problem
of combinatorial explosion very well. But actually MRSC uses a clever represen-
tation to reduce memory usage by exploiting sharing of common subgraphs. This
representation is based on spaghetti-stacks |1]. A graph represented this way can
be thought of as a configuration graph with all edges reversed (except folding
edges which are treated separately) (Fig. . This allows initial parts of graphs
to be shared. Moreover this representation makes it possible to work with graphs
in a functional way efficiently. Note that this optimization doesn’t interfere with
our view on graphs as separate objects.

3 Can we do better?

Certainly there is a room for improvement. Let us look when MRSC does not
work very well. Consider a configuration that being driven produces two child
nodes: b and c. Then the node b will become current. Let it have multiple dif-
ferent steps that can be applied to it. We get at least two different graphs with
incomplete node ¢ (Fig. [3). That means that the ¢ node will be current at least
twice (in different graphs) and thus each subgraph growing from it will be built
at least twice and won’t be shared, which might be considered as a drawback.
This happens because a graph growing from a node is usually determined by the



52 S. A. Grechanik

()
() (@)

(=)
O,
-
@

@@ @@
®

Fig. 3. Two different nodes with the same configuration and identical histories
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configuration in this node and the predecessors of the node. But MRSC is too
general as it assumes that rules work on whole graphs, not just paths from a
root to a current node. So it is possible to write rules which prescribe different
steps for the node ¢ in the considered example. It means that we should put
more restrictions on rules in order to perform more sophisticated optimizations.

Another drawback of MRSC is a premature loss of information. As graphs
are seen as independent from a graph consumer point of view we cannot use
more efficient algorithms that can make use of their interconnections. To give
an example of such an algorithm let’s consider a problem of finding the small-
est program among the residual programs. A brute-force solution would be to
residualize all completed graphs and then compute the sizes of the programs and
find the minimum. A more clever solution would be to pick the smallest resid-
ual subprogram for each intermediate node while building the residual program.
The algorithm enabling this optimization will be discussed in more detail later
in this article.

Now we can see what representation would be more advantageous — let’s
replace a set of graphs with its description by merging the graphs into one
huge graph, which we will call an overtree to underline that the graphs are still
essentially trees with back edges. It is convenient to combine edges representing
a single step into a hyperedge with one source and several destinations (Fig.
hyperedges are drawn as bundles of edges going from one point). Then it is
possible to extract a graph representing a program from an overtree by selecting
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one outcoming hyperedge for each node and then removing unreachable nodes.
Note that it is convenient to consider terminal nodes (which represent constants,
variables, etc.) as having outcoming hyperedges with zero destination nodes.

Fig. 4. Overtree representation

This representation, which we will call the overtree representation, doesn’t
change the graph building algorithm very much, it actually becomes much more
similar to the traditional single-result supercompilation. This representation has
been implemented in MRSC as an experiment. This experiment unveiled some
shortcomings of the proposed representation: turned out there were a lot of equal
but unshared subtrees. It is quite clear where they were coming from. Consider
some complex program involving multiplication (implemented as a function on
Peano numbers). There will be a lot of different ways of supercompiling this
program, some of them will have the multiplication function fused with other
operations, but some will prefer to generalize it out leading to multiple equal
subgraphs corresponding to the multiplication and scattered over the overtree.
Obviously we do not want to supercompile the same thing several times, so the
next natural step is to get rid of duplicated configurations. We could have done it
by introducing cross edges similarly to back edges, but there is a cleaner solution
— let’s shift from a de facto tree representation to a fully fledged graph (Fig. [5]).
That is if during supercompilation we encounter a configuration which we have
already processed, we do not create a new node for it. Thus each configuration
corresponds to no more than one node. This new representation can be called the
overgraph representation. Note that configurations equal up to renaming should
be identified.

Unlike the overtree representation this one seems to be a bit more ground-
breaking. Special folding edges are not needed anymore as they can be rep-
resented as ordinary edges. However, we cannot safely use traditional binary
whistles because possible steps cannot depend on the history of computation
(and hence unary whistles can still be used). Why is it so? Because each node
may have multiple immediate predecessors and thus multiple histories. Let us de-
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Fig. 5. Overgraph representation

scribe the overgraph representation more formally and consider how these issues
can be addressed.

4 Overgraph Representation

In this section a multi-result supercompilation with overgraph representation is
discussed. A configuration graph corresponds to (and actually can be represented
by) a set of statements of the following form:

S—l>(d1,,dn)

where s is a source configuration and d; are destination configurations. Configu-
rations are in one-to-one correspondence with nodes. The whole statement cor-
responds to a hyperedge labeled with some information . The exact meaning of
the statements depends on the interpretation of the relation — which is different
for different applications of supercompilation. For traditional supercompilation
of functional programs it can be like this:

sh(dy,....dy) &L sy f(di,. ... dy)

Note the use of the improvement relation () instead of a simple equality (=).
This is due to the necessity of ensuring correctness of folding [12[13]. Informally
a > b means that a is not only operationally equal to b but also more efficient
than b (needs fewer reduction steps to be evaluated in any context). We won’t
elaborate on the topic of correctness since it is not very troublesome in the
case of one-level supercompilation, but importance of the improvement relation
consists in asymmetry it brings. When a hyperedge connects only two nodes we
cannot generally consider it undirected which could be inferred if the relation
were symmetric.

If we do not put any restrictions on the set thus representing a graph, then
we get an overgraph. If we want to represent a singular configuration graph then
we should state that each configuration can appear to the left of the — no more
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than once. Several singular graphs can be merged to form an overgraph by simple
union.

The supercompilation with overgraphs is proposed to be performed in three
steps:

1. Graph construction. In this step edges and nodes are only being added.
2. Graph truncation. In this step edges and nodes are only being removed.
3. Residualization. As it will be seen this step becomes a bit more nontrivial.

For construction and truncation we will use the rules of the form

precondition precondition

s (i, ... dy) remove(node or hyperedge)

to add a new hyperedge (together with necessary nodes) and to remove a hyper-
edge or a node (together with all incident hyperedges) correspondingly.

4.1 Graph Construction

This step seems to be rather straightforward: start with a graph containing only
a root node (with the configuration being supercompiled) and then apply the
rules until the saturation is reached, i.e. there is no applicable rule that can add a
new node or edge. There are two problems: the rules formulation and the order
of their application. The rules should ensure termination and provide enough
diversity but not too much. The traditional way of ensuring termination is to
use a whistle. But whistles have been used not only for the termination problem
but also for picking the configurations that are to be generalized. Since we use
the multi-result supercompilation the generalization can be decoupled from the
whistle and thus a much simpler whistle can be used. For example, it is possible
to simply limit the depth of nodes, although this solution does not scale very
well.

Concerning the problem of diversity, there are usually a lot of possible gen-
eralizations of a configuration, and if we take all of them, even the overgraph
representation won’t help us fight combinatorial explosion. If we pick few of them,
we risk missing some good opportunities. Obviously heuristics are unavoidable.
Limiting the number of unbound variables appeared to be a good one for pre-
venting overgeneralization. Good heuristics for multi-result supercompilation are
yet to be found and researched.

A problem of rules application order may arise when there are rules with
non-monotonic preconditions, i.e. a rule precondition can change its value from
true to false when certain nodes or edges are added to the graph. For example
consider the following rule:

—3Im:m € V A whistle(n, m)
n — drive(n)

where V' is the set of nodes of the graph. It prescribes a drive step for a node n
if there is no node m in the graph which makes a binary whistle blow. If there
is another rule that adds such a node m then these two rules won’t commute.
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Since we agreed not to remove edges and nodes on the graph construction
step, there won’t be any problem if all the preconditions are monotonic. For
example it is possible to use a whistle this way: let’s allow driving if there s
another node that does not make the binary whistle blow.

4.2 Graph Truncation

This step is dual to the previous. Its purpose is to reduce the number of nodes
by removing useless ones. Useless nodes are those which are unreachable from
the root or have no outcoming edges (remember that we have agreed to consider
terminal nodes as having an outcoming edge without destination nodes). When
a node is deleted, all hyperedges incident with it must be deleted as well, leading
to new useless nodes. That’s why this procedure should be repeated until there
are no useless nodes left. It can be also described with the following rules:

3, dy, . dy s S (dy, . dy)

remove(s)

—dp : p is a path from the root to s

remove(s)

In this step it is also possible to apply a whistle. On the one hand it may
seem a bit too late: the graph has already been built by now, so we don’t need
to ensure termination on this step. Moreover, we can’t return consumed CPU
time by removing parts of the graph (we can return some memory though). But
on the other hand experiments show that most time is being consumed later
on the residualization step, so reducing the number of nodes and edges of the
graph is a good thing to do. However it is still impossible to use a binary whistle
in a traditional way for the same reason: the traditional usage may lead to
noncommutativity of rules. At this stage to ensure commutativity preconditions
should be monotonically decreasing, and actually it is possible to use rules from
the previous step by negating their preconditions, i.e. “if the whistle doesn’t
blow, add a node” becomes “if the whistle blows, remove a node”. The only
advantage of using whistles in this step seems that now it is possible to look at
the graph as a whole and extract some useful information to adjust the whistle.

Note also that although commutativity of rules makes a supercompiler a
bit cleaner and more predictable, this property is not obligatory and can be
discarded in practice.

5 Residualization

The residualization step is special because it transforms a set of graphs repre-
sented as one graph into an actual set of graphs (or programs which are a special
case of graphs), and here the danger of explosion threatens again.

Firstly we should agree upon what graphs we will consider residual. In this
section we will study the case of trees with back edges (but without cross edges),
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i.e. we won’t identify equivalent subprograms in different contexts. This choice
was initially determined by the structure of the language for which the overtree
representation had been initially implemented (it will be dicussed in the next sec-
tion). It may look a bit inconsistent: why not go further and represent programs
as graphs (especially recalling that it is a traditional program representation)?
We will return to this question later in Section [6.2

R[n,h] = {n} if n is terminal
R[n, h] = {Call(n)} ifneh
Rln, h] = {Def(m)[f (r1,...,r)] | n 5 (di, ..., d),

ri € R[di,hU{n}]} otherwise

Fig. 6. Naive residualization algorithm

Consider a naive residualization algorithm (Fig. @ It takes a node and a
history and returns a set of residual programs. It is usually applied to the root
node and the empty history: R[root, }]. The algorithm recursively traverses the
graph memorizing visited nodes in the history h. If it encounters a node that is
already in the history, it creates a function call which is designated as Call(n).
If a node is not in the history and has successors, a function definition should be
created with the construction Def(n)[body], so as it can be called with a Call(n)
construction from within the body. The implementation of Call and Def depends
on the output language, for example the Def construction can be implemented
with letrec expressions:

Def(n)[body] = letrec n = body in n

Usually it is a bit more complex because of unbound variables. Note also that
practical implementations of the algorithm should create a new function defini-
tion only if there is a corresponding function call in the body, we just create a
function definition for each node for simplicity.

When applied, this residualization algorithm will visit each node the number
of times equal to the number of computation paths from the root to it. So the
problem reappeared: we need to compute (almost) the same thing many times.

5.1 Enhanced Residualization Algorithm

The solution to the problem is quite obvious — cache residual programs for inter-
mediate nodes. It cannot be applied directly though because the naive residual-
ization algorithm takes a history of computation besides a node. However, resid-
ualization doesn’t need full information contained in a history, i.e. the residual
program for a node may be the same for different histories. So if we can do with
less information, the algorithm will be feasible to memoize.
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To do this we need analyze the structure of a computation history for a given
node. Let’s first give a couple of definitions.

Definition A node m is a successor of a node n, n —* m, if there is a directed
path from n to m (possibly with zero length). A set of successors will be denoted
as suces(n).

Definition A node m is a predecessor of a node n if n is a successor of m. A
set of predecessors will be denoted as preds(n).

Definition A node n dominates a node m, n dom m, if every path from the
root to m contains n.

1
|
|
|

Fig. 7. Nodes whose presence in a history can influence residualization process are in
the intersection of the set of all predecessors and the set of all successors

Given a node n, the nodes that are not its predecessors are not interesting as
they won’t be in a history. The nodes that are not successors are not interesting
either because they don’t influence the residualization process (they can be in a
history but they won’t be encountered again). Thus we care only about nodes
which are successors and predecessors of n at the same time (i.e. those which are
in the same strongly connected component with n, Fig. [7]), so we just need to re-
move nodes that are not successors from history when calling the residualization
function:

Rln, k] = {Def(n)[f(r1,..,r)] | n L (dr, ..., dy),
r; € R[d;, (hU {n}) N suces(d;)]}

This small modification to the last equation of the residualization algorithm is
sufficient to make it ready for memoization. An interesting side-effect of the
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memoization is that we get residual programs for intermediate nodes for free.
These programs can then be used to enable two-level supercompilation (although
the topic of two-level supercompilation in context of overgraph representation is
yet to be researched as few results have been obtained so far). Note though that
the residual programs for intermediate nodes are likely to be defined in terms of
other nodes, being used as if they were built-in functions.

Let’s look at the structure of a history in more detail. It can contain only
nodes from S(n) = preds(n) N succs(n). The elements of this set fall into the
following groups:

— Dominators of n except n. These elements are always in a history.

— Dominatees of n except n. If there is such a node in a history then the history
must also contain the node n and this falls into the second equation of the
algorithm.

— Neither dominators nor dominatees of n. These nodes are responsible for the
diversity of possible histories.

— n itself.

We believe that the information about the history structure can be used somehow
to develop more sophisticated residualization algorithms.

6 Implementation and Experimental Results

The described overgraph representation has been implemented as a part of
MRSC. The implementation is experimental and not language-independent yet.
The language being used is higher-order although it is meant to be used primarily
as first-order.

en=v variable
| Av.e A-abstraction
| e1 e application
| fixe fixed point
| cer...en constructor
| caseepof {c;v1...v5, —€1; ...} case-expression

The explicit fixed point operator is meant to be the only source of nontermina-
tion. There are no let-expressions, so there is no possibility of expressing sharing.
This was done for the sake of simplicity.

Configurations are just expressions. They may contain unbound variables
which are named in some canonical way (e.g. numbered from left to right), so as
to make expressions, equal up to a renaming, syntactically equal. Configurations
are self-contained, i.e. we don’t need some external set of function definitions
to understand their meaning (this is necessary for higher-level supercompila-
tion [4]).
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The following rules are used for graph construction:

depth(n) = min {|p| | p is a path from the root to n}

depth(n) < MaxDepth  (f,d) = drive(n)

ni>d

depth(n) < MaxDepth  (f,g,h) € rebuildings(n)  |FV(g)| < MazFree

n L (g,h)

The drive function performs a drive step and returns a pair (f,d) where d is a
reduced expression, or a tuple of expressions if it is a case analysis step, and f
is a function such that f(d) = n. The function rebuildings(n) returns a set of
triples (fy, g, h) where f, is a substitution function such that for all expressions
x and y

folz,y) = z[v:=y]
and expressions g and h are such that
folg,h) =glv:=h]=n

where v appears in g exactly once. In theory, the latter restriction can be
lifted leading to the ability of introducing sharing (note that we don’t need
let-expressions as the configuration is being immediately split).

The constants MazDepth and MazFree limit the depth of nodes and the
maximum number of free variables in configurations respectively.

The functions Call and Def for this language look like this:

Call(n) = v, 7
Def(n)[b] = fix (A\v, AT )

where the variable v,, has a unique name corresponding to the configuration n
and @ is a vector of n’s free variables.

6.1 Results

The graph representations and the residualization algorithms have been assessed
on the following programs:

add = fix A\fazy.casex of {Sax— S (fzy); Z—=vy;}
mul = fix Afzy.casez of {Sz —addy (fzy); Z— Z;}
fict = fix Afzry.casex of {Sx — fa (Sy); Z— Z;}
idle = fix Afz.casezof {Sz— f (fx); Z— Z;}
evenBad = fix Afz.case z of {Sx — case (fz)of {T - F; F = 1T;};
Z—=T;}
nrev = fix Afz.case x of {Sx — add (f z) (S 2); Z — Z;}
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At this stage of research some numerical characteristics of the described ideas
were measured rather than their ability to solve problems. It can be seen that
the overgraph representation leads to much fewer nodes even in comparison with
the overtree representation which enables full sharing of initial subtrees (Fig. .

overtree|overgraph
add 7 6
mul 379 77
fict 132 30
idle 5237 139
evenBad| 27307 242
nrev 46320 277

Fig. 8. Comparison of graph representations: the number of nodes created by the
supercompiler, MaxDepth = 10

At the same time the results of the caching residualization algorithm look
much more modest (Fig. [9). Note that in this case the MazDepth constant was
chosen to be 6, so the residualization could terminate in a reasonable amount of
time. The number of nodes left after truncation are shown to compare with the
number of node visits each algorithm makes. Although the caching algorithm
performs much better than the naive one, the growth of the node visits is too
rapid.

nodes after || nodes visited .
. . - residuals
truncation || naive|caching
add 6 9 8 1
mul 19 81 53 4
fict 13 52 48 4
idle 33|| 2413 682 112
evenBad 76(|33223 2751 229
nrev 30(| 4269 402 19

Fig. 9. Comparison of residualization algorithms, MaxDepth = 6

6.2 Application to Counter Systems

There was a hypothesis that the overgraph representation would be advantageous
for other domains. It was checked on the domain of counter transition systems.
This choice was quite obvious as a considerable work had been done to implement
and evaluate a supercompiler for counter systems within MRSC [5], so we had
to simply replace the core of this supercompiler and compare it with the original
one.
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Let’s briefly describe the domain. Counter systems are similar to programs
but much simpler. A system can be in some state represented by a tuple of
integers. The system can nondeterministically move from one state to another
according to certain rules. Configurations represent sets of states and are ac-
tually tuples of integers and wildcards, wildcard meaning “any number”. So a
configuration can be driven by applying rules, or generalized by replacing a num-
ber with the wildcard. The task is to find a minimal correctness proof for some
protocol modelled by a counter system. For each protocol certain states are un-
safe, so a protocol is correct if the corresponding counter system can’t turn out
in an unsafe state. A proof is actually a completed graph (i.e. each node has an
outcoming edge) without unsafe configurations. The whistle used in MRSC for
this task was a unary one, so it was used with the overgraph-based core without
any problem.

The results of applying the overgraph representation with the residualization
algorithm described above were disappointing. The supercompiler with over-
graph core not only spent much more time than the original one, but also failed
to find the minimal proofs. It is easy to see why this happened — our residual-
ization algorithm was designed to find trees with back edges, not graphs, and
thus equivalent proof parts were duplicated. On the other hand, the original
implementation of supercompiler had the ability to introduce cross edges which
made it almost as powerful as the overgraph supercompiler.

original|overgraph

truncation
Synapse 12 12
MSI 10 10
MOSI 36 34
MESI 46 18
MOESI 156 57
Illinois 58 19
Berkley 50 33
Firefly 18 15
Futurebus 476106 1715
Xerox 94 43
Java 109410 12165
ReaderWriter| 2540 154
DataRace 21 12

Fig. 10. Number of nodes visited by the supercompilers for each protocol

So the residualization algorithm must have been replaced with some different
algorithm. We have tried a depth-first search with pruning of too large graphs
which is exactly what MRSC was doing. So the only important difference left
was that our implementation built an overgraph explicitly. Actually there is an
advantage of explicit overgraph building: an overgraph can be truncated and thus
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we can avoid obviously useless branches. It was quite difficult to compare the
implementations fairly because of multiple subtle differences affecting the results.
The comparison of the number of nodes visited during the supercompilation
by the original supercompiler and the supercompiler with overgraph truncation
enabled is shown on Figure As can be seen, truncation turned out to be quite
advantageous on complex protocols.

This unsuccessful application of the presented earlier residualization algo-
rithm to another domain doesn’t mean that it is useless. It was just applied to
the kind of tasks it hadn’t been designed for, namely to the task of optimiz-
ing for size (in this case a proof size). It is very hard to divide a task of graph
minimization into subtasks of subgraph minimization because these subgraphs
may have intersections, i.e. the minimal size of the whole doesn’t equal to the
sum of the minimal sizes of the parts. However if we want the same node to be
residualized differently in different contexts, our residualization algorithm may
be used.

7 Conclusion

We have presented a more efficient representation of configuration graphs for
multi-result supercompilation and shown that this representation enables a more
efficient residualization algorithm.

The idea of representing the space of configurations as a graph rather than
a tree is quite obvious. The process of supercompilation can be viewed as some
kind of graph search similar to finding paths in mazes, and it is natural to use
the graph structure instead of unrolling it into a tree.

The overgraph representation also gives rise to a parallel to the field of opti-
mizing compilers which manifests itself in the similarity of a configuration graph
and a control flow graph. It is not yet obvious if this parallel is fruitful.

One of the closest work to this one seems to be the work on equality satura-
tion [14]. One of the most important difference is that we need to support folding
and thus we work with some directed relations rather than simple equalities to
ensure correctness.

We believe that the new approach leads to many directions of reasearch and
further improvement.

The residualization algorithm is still a bottleneck. There are many possible
solutions. It may be useful to do without residualization if the task doesn’t
actually consist in producing a program, e.g. there should be some algorithm for
proving programs equality which works directly on configuration graphs rather
than on sets of residual programs. Another way is to reduce the number of nodes
using some heuristics, especially interesting are methods that make possible to
tune how long the supercompilation will run.

As it has been seen, there should be different residualization algorithms for
different tasks. In the case of optimizing for size its goal is to extract a minimal
supgraph. Apparently there may be some residualization algorithm of this sort
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which would take advantage of the overgraph representation but it hasn’t been
found yet. Besides, it may be advantageous to represent programs as graphs.

It also seems interesting to apply the new approach to different domains.
We also plan to add support for higher-level supercompilation [7] which may
benefit from sharing information among multiple lower-level supercompilation
instances.
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