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Program Transformation: Why?

• Functional programming typically makes heavy use of
intermediate data, higher order functions and lazy
evaluation.

• Often results in more readable, elegant solutions to
problems1.

reduce (+) (map square xs)
• However, these features can often lead to inefficiencies in

the final program.
• Heavy use of intermediate data, resulting in a negative

impact on both execution time and memory usage.
• How can we remove these inefficiencies?

• Transform initial program into an equivalent program, with
these inefficiencies removed.

1Hughes, J.: Why Functional Programming Matters. Computer Journal
(1989)
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Program Transformation: How?

• Fold/Unfold transformation techniques, first introduced by
Burstall & Darlington2

Folding Replacing an instance of a function body with
its corresponding function call.

Unfolding Replacing a function call with a corresponding
instance of its function body.

2Burstall, R.M., Darlington, J.: A transformation system for developing
recursive programs. Journal of the Association for Computing Machinery
(1977)
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Program Transformation: How?

• A popular transformation technique that is used in many
transformation systems

• Partial Evaluation
• Deforestation
• Supercompilation
• Distillation
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Language Syntax

e ::= x Variable
| c e1 . . . ek Constructor Application
| f Function Call
| λx .e λ-Abstraction
| e0 e1 Application
| case e0 of p1 ñ e1 | ¨ ¨ ¨ | pk ñ ek Case Expression
| e0 where f1 “ e1 . . . fk “ ek Local Function Definition

p ::= c x1 . . . xk Pattern
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Example Program

loop n SuccpZeroq
where
loop = λn.λsum.case n of

Zero ñ sum
| Succpn1q ñ loop1 n SuccpZeroq n1 sum

loop1 = λi .λprod .λn.λsum.case i of
Zero ñ loop n padd sum prodq
| Succpi 1q ñ loop1 i 1pmult i prodq n sum

add = λm.λn.case m of
Zero ñ n
| Succpmq ñ Succpadd m nq

mult = λm.λn.case m of
Zero ñ Zero
| Succpmq ñ add n pmult m nq
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Reduction Rules

f “ e

f f
❀ e
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Labelled Transition Systems

s0 s1 s2 s3

States s0, s1, s2, s3 (start state: s0)
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Actions α1, α2, α3, α4
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Labelled Transition Systems

s0 s1
α1 s2

α2 s3
α3

α4

States s0, s1, s2, s3 (start state: s0)

Actions α1, α2, α3, α4

Transitions s0
α1ÝÑ s1, s1

α2ÝÑ s2, s2
α3ÝÑ s3, s3

α4ÝÑ s0
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Labelled Transition Systems for Language
Labelled Transition System Actions

x Variable
c Constructor
#i i th argument in an application
λx Abstraction over variable x
case Case selector
p Case branch pattern
τf Function unfolding
τβ β-reduction
τc Constructor elimination
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Labelled Transition Systems for Language
Labelled Transition System States

0 Stop State
Exp Expression
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Labelled Transition Systems for Language

x e1 . . . ek

0

x

e1

#1

¨ ¨ ¨ ek

#k
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Supercompilation

• Introduced by Turchin3 but not really known outside Russia
until later.

• Became more well known via positive supercompilation4.
• A simplified algorithm retaining positive information

propagation.
• Defined using a more common functional language.

3Turchin, V.F.: The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (1986)

4Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)
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Positive Supercompilation: How?

Driving is performed on the input program to construct a
labelled transition system, representing the symbolic
computation of the program by normal order reduction.

Positive information propagation
maintains known information about variables.

Folding is performed on encountering a renaming of a
previously encountered term .

Generalization
is performed on encountering an embedding of a
previously encountered term to ensure termination of
the transformation.

Residualization
is performed to extract a (hopefully) more efficient
program from the folded and generalized labelled
transition system.
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Termination

• An important issue associated with positive
supercompilation is that of termination.

• The size of terms encountered during reduction can
diverge , in which case a renaming will never be
encountered and the transformation will not terminate .

• Termination can be ensured through the use of
generalization .

• To represent the result of generalization, LTS’s can
represent the result of generalization via generalized
states which have the following form:

e

e1

let

e0

x
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Generalization: When?

• A whistle is required to stop driving due to potential
divergence, and to indicate that generalization should be
performed.

• The homeomorphic embedding relation provides a
suitable such whistle:

Variable x Ĳ y

Diving
e Ĳ ei for some i P t1..nu

e Ĳ φpe1 . . . enq

Coupling

ei Ĳ e1

i for all i P t1..nu

φpe1 . . . enq Ĳ φpe1

1 . . . e
1

nq
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Generalization: How?

• A generalization of expressions e and e1 is a triple
peg , θ, θ

1q where θ and θ1 are substitutions such that
egθ ” e and egθ

1 ” e1.

• A most specific generalization of expressions e and e1 is
a generalization peg , θ, θ

1q such that for every other
generalization pe1

g , θ
2, θ3q of e and e1, eg is an instance of

e1

g .
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Positive Supercompilation: Summary

• Strictly more powerful , according to Sørensen5, than both
partial evaluation and deforestation.

5Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)
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Positive Supercompilation: Summary

• Strictly more powerful , according to Sørensen5, than both
partial evaluation and deforestation.

• Performs both specialization and symbolic
computation .

• Can specialize a naive pattern matcher to give a KMP
pattern matcher.

• This relies on positive information propagation, which is not
done in partial evaluation or deforestation.

5Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)
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Positive Supercompilation: Summary

• Strictly more powerful , according to Sørensen5, than both
partial evaluation and deforestation.

• Performs both specialization and symbolic
computation .

• Can specialize a naive pattern matcher to give a KMP
pattern matcher.

• This relies on positive information propagation, which is not
done in partial evaluation or deforestation.

• Positive supercompilation can only produce a linear
speedup 6 in programs

5Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)
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Distillation

• Distillation, introduced by Hamilton7, is another program
transformation technique

• Like positive supercompilation, driving is used to perform a
symbolic computation of a program, which constructs a
potentially infinite labelled transition system.

• Positive information propagation is also performed
during driving.

• Generalization and folding are performed with respect to
the labelled transition system at each node, rather than
just the expression it contains.

7Hamilton, G.W.: Distillation: Extracting the essence of programs.
Proceedings of the ACM Workshop on Partial Evaluation and Program
Manipulation (2007)
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Distillation

• Generalization is performed on encountering an
embedding of a previously encountered labelled
transition system to ensure termination of the
transformation.

• Folding is performed on encountering a renaming of a
previously encountered labelled transition system.
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Termination

• As with positive supercompilation, termination is an
important issue associated with distillation.

• Distillation has an alternate approach to termination.
• Distillation compares LTSs to determine whether to fold or

generalize .
• There is an obviously difficulty in this as an LTS may be

infinite
• However, it is acceptable to compare just the core

component of an LTS from its root to where an unfolding of
a previously encountered function is detected.

• This core component will always be finite
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Generalization: How?
• Performed incrementally from roots of two LTSs.
• Increment is interval between function unfoldings .
• Corresponding states with different transitions are

extracted using lets.
• Identical extractions are identified .
• These lets will be distributed through the generalized LTS:

let v

let v 1

τf

τf



Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

Result of Distillation on Example Program

f n Zero
where
f = λn.λx .case n of

Zero ñ Succpxq
Succpn1q ñ f n1 Succpadd x pmult n1 Succpxqqq

add = λm.λn.case m of
Zero ñ n
| Succpmq ñ Succpadd m nq

mult = λm.λn.case m of
Zero ñ Zero
| Succpmq ñ add n pmult m nq
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Distillation: Summary

• Strictly more powerful than positive supercompilation.
• Therefore strictly more powerful, via Sørensen8, than partial

evaluation and deforestation.

8Sørensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)
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Distillation: Summary

• Strictly more powerful than positive supercompilation.
• Therefore strictly more powerful, via Sørensen8, than partial

evaluation and deforestation.

• Performs all optimizations that positive supercompilation
performs.

8Sørensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)
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Distillation: Summary

• Strictly more powerful than positive supercompilation.
• Therefore strictly more powerful, via Sørensen8, than partial

evaluation and deforestation.

• Performs all optimizations that positive supercompilation
performs.

• Distillation is capable of obtaining a superlinear speedup
in programs.

8Sørensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)
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Correctness

• Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.
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• Total correctness of both positive supercompilation and
distillation also requires showing that they terminate .
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bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.
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distillation also requires showing that they terminate .

• This involves showing that there is a size bound on the
core components which are encountered during
transformation (expressions in supercompilation and LTSs
in distillation).
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Correctness

• Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.

• Total correctness of both positive supercompilation and
distillation also requires showing that they terminate .

• This involves showing that there is a size bound on the
core components which are encountered during
transformation (expressions in supercompilation and LTSs
in distillation).

• If there is such a bound, then a renaming must eventually
be encountered, and folding can be performed.
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Bisimulation

Strong Bisimulation

e0 e1
α1 e2τ e3

α2

τ

e4 e5
α1 e6τ e7

α2

τ
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Bisimulation

Weak Bisimulation

e0 e1
α1 e2τ e3

α2

τ

e4 e5τ e6
α1 e7τ
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Efficiency

• In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.
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number of silent transitions between each recursive call of
a function.
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Efficiency

• In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.
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• In distillation, the number of silent transitions between each
recursive call of a function can be increasing .
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a function.
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recursive call of a function can be increasing .

• These can still be collapsed down and identified, thus
giving a superlinear speedup.
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Efficiency

• In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.

• Removing these will therefore only give a linear speedup.

• In distillation, the number of silent transitions between each
recursive call of a function can be increasing .

• These can still be collapsed down and identified, thus
giving a superlinear speedup.

• Essentially, the key difference between the two is that
positive supercompilation looks at code fragments before
they have been evaluated, and distillation looks at them
after.



Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

How do these transformation systems compare?

• As we have seen, these are both theoretically powerful
transformation systems

• Part of the focus of this paper is on seeing whether reality
lives up to the theory.

• There are a number of things we need to compare these
transformation systems:

• A suite of programs to benchmark and evaluate
• A means to obtain necessary benchmark information about

the runtime of benchmarked programs
• For good measure, another transformation system, not

implemented by us
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What are we going to benchmark?

sumsquares
A program that calculates the sum of the squares
of two lists

(word|line|char)count
Programs that respectively count the number of
words, lines and characters in a given input

exp3_8
A program that calculates 3 raised to the power of
a given number

nrev
A program that performs a naive list reversal

Other programs from previous9 works and the nofib benchmark
suite

9Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: IFL 2007
(2008)
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How do we obtain benchmark information?
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HOSC: Another Supercompiler

• We had intended on benchmarking against two-level
supercompilation10

• Like distillation, capable of obtaining a superlinear speed up

• However, we had difficulties getting this supercompiler
working

• We opted to benchmark against the HOSC single level
supercompiler instead

10Klyuchnikov, I.G.: Towards effective two-level supercompilation (2010)
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Execution Time Comparisons

Name Unoptimized Supercompilation HOSC Distillation
nrev 62.5 53.3 68.7 0.1
charcount 0.01 0.01 0.01 0.01
exp3_8 45.9 32.4 52.1 -
factorial 2.6 2.5 2.8 -
linecount 28.7 0.01 0.01 0.01
primes 79.2 75.9 104.5 -
raytracer 12.7 10.0 10.4 10.0
rfib 57.7 35.3 37.7 -
sumsquare 81.9 72.7 76.9 -
treeflip 51.2 29.9 32.2 -
wordcount 29.8 0.01 0.01 0.01
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Execution Time Comparisions

• Perhaps most interesting is the naive list reversal program.
• Original: 62.5 seconds
• Supercompiled: 53.3 seconds - 14.72% decrease in

execution time
• HOSC: 68.7 seconds - 9.92% increase in execution time
• Distillation: 0.1 seconds - 99.84% decrease in execution

time
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Memory Usage Comparisons

Name Unoptimized Supercompilation HOSC Distillation
nrev 8 6 11 3
charcount 3 3 3 3
exp3_8 6 4 6 -
factorial 3 3 3 -
linecount 6 1 1 1
primes 2 2 2 -
raytracer 1011 730 732 732
rfib 2073 1061 1047 -
sumsquare 2313 2391 2221 -
treeflip 2176 1083 1069 -
wordcount 6 1 1 1
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Memory Usage Comparisons

• Again, perhaps most interesting is the naive list reversal
program.

• Original: 8 MB
• Supercompiled: 6 MB - 25% decrease in memory usage
• HOSC: 11 MB - 11% increase in memory usage
• Distillation: 3 MB - 62.5% decrease in memory usage



Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

Automating Benchmarking

• One of the tedious and time consuming tasks associated
with implementing program transformers is that of
benchmarking.

• Automating program transformation is obviously very
important, but what about implementing the benchmarking
of such transformations?
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A (somewhat) automatic benchmarking system

• Upload two files: an input file to be transformed, and an
arguments file to be used during benchmarking.

• Files are tested for compilation, if this fails then receive the
compilation error.

• If the files compile, then:
• They are saved to a database.
• A task is sent to a benchmarking machine.
• Input program is transformed (currently only positive

supercompilation).
• Input and transformed programs are then benchmarked.
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A (somewhat) automatic benchmarking system

• How are these programs benchmarked?
• Via three user inputs, a number indicating the amount of

benchmark points, a number indicating the number of runs
and the arguments file.

• For each benchmark point, each program is run the
specified number of times.

• Benchmark data for each point is saved, and averages for
each point are displayed for each program.
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A (somewhat) automatic benchmarking system

• This benchmark data is publicly viewable

• As are the input program, and each transformation result

• Users have ability to view benchmark data via benchmark
point or transformation technique
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Some Links

http://github.com/distillation/distiller -
Distillation Source code

http://github.com/distillation/distill_web -
Benchmarking Website Source

http://github.com/distillation/distiller
http://github.com/distillation/distill_web
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Future Work

• Automate the parallelization of functional programs:
• Aim to target Nvidia GPGPU architecture initially
• Use skeletons to guide parallelization process

• Finish and expand the benchmarking site:
• We welcome any collaboration and/or suggestions
• Having somewhere to run benchmarks against many

transformation tools would be quite beneficial
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