Background Supercompilation Distillation

Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] 0000
0000000 0000 0000 [e]e]ele]
000000

A Comparison of Program Transformation
Systems

M. Dever & G. W. Hamilton
{mdever, hamilton}@onputing.dcu.ie

Dublin City University

July 8, 2012

Background Supercompilation Distillation Correctness & Efficiency

000

oo [e]e]

0000000 0000 0000

Outline

Background

Program Transformation

Language
Supercompilation

Overview

Termination
Distillation

Overview

Termination
Correctness & Efficiency
Benchmarking

Overview

Results

Automating Benchmarking
Future Work

Benchmarking
0000

[e]e]ele]
000000

Future Work

Background
@00

Program Transformation: Why?

e Functional programming typically makes heavy use of
intermediate data, higher order functions and lazy
evaluation.

e Often results in more readable, elegant solutions to
problems?.

reduce (+) (map square xs)
e However, these features can often lead to inefficiencies in
the final program.
e Heavy use of intermediate data, resulting in a negative
impact on both execution time and memory usage.
e How can we remove these inefficiencies?

e Transform initial program into an equivalent program, with
these inefficiencies removed.

Hughes, J.: Why Functional Programming Matters. Computer Journal
(1989)

Background
oeo

Program Transformation: How?

e Fold/Unfold transformation technigues, first introduced by
Burstall & Darlington?

Folding Replacing an instance of a function body with
its corresponding function call.
Unfolding Replacing a function call with a corresponding
instance of its function body.

2Burstall, R.M., Darlington, J.: A transformation system for developing
recursive programs. Journal of the Association for Computing Machinery
(1977)

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

ooe oo [e]e] 0000
0000000 0000 0000 [e]e]ele]

Program Transformation: How?

e A popular transformation technique that is used in many
transformation systems
¢ Partial Evaluation
o Deforestation
e Supercompilation
o Distillation

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

P

000000

Language Syntax
e =X Variable
|cep... e Constructor Application
| f Function Call
| Ax.e A-Abstraction
| eo er Application
| case eg of pp = €1 |---| px = ex Case Expression
| eowhere f; = e;... fx = e Local Function Definition

pi=CXp... Xk Pattern

Background

0800000

loop n Succ(Zero)
where
loop

loop’

add

mult

Example Program

An.Asum.case n of
Zero = sum
| Succ(n’) = loop’ n Succ(Zero) n” sum

Ai.Aprod.An.Asum.case i of
Zero = loop n (add sum prod)
| Succ(i’) = loop’ iI’(mult i prod) n sum

am.An.case m of
Zero = n
| Succ(m) = Succ(add m n)

am.An.case m of
Zero = Zero
| Succ(m) = add n (mult m n)

Background

Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] 0000
00@0000 0000 0000 [e]e]ele]
000000

Reduction Rules

—

(0]

—
¢
@

u]
|
ul

Background Supercompilation

Distillation Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
0080000 oooo 0000 0000
000000

Reduction Rules

-
I
®

—
¢
@

(Ax.e0) €1) & (eofx := e1})

Future Work

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

000 oo [e]e] 0000
00@0000 0000 0000 [e]e]ele]
000000

Reduction Rules

f=e

fie ((Ax.ep) e1) L (eo{X :=e1})

Pi =CX1...Xn

(case (Ce1...en) Of p1:€f]...|pk:€}) ~> (€/{X1 :=€1,...,%n = €n})

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

000 oo [e]e] 0000
00@0000 0000 0000 [e]e]ele]
000000

Reduction Rules

f=e e - €}

fle ((\xeo) e (eofx i=e1}) (e0 €1) - (e €1)

Pi =CX1...Xn

(case (Ce1...en) Of p1:€f]...|pk:€}) ~> (€/{X1 :=€1,...,%n = €n})

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work
000 oo [e]e]
00@0000 0000 0000

Reduction Rules

f=e e - €}

fle ((\xeo) e (eofx i=e1}) (e0 €1) - (e €1)

Pi =CX1...Xn

(case (Ce1...en) Of p1:€f]...|pk:€}) ~> (€/{X1 :=€1,...,%n = €n})

oA
€0 ~ €

(case eg of p1 :eq]...pxk :ek)«r» (case ej of py:eq|...pk : €)

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] 0000
0008000 0000 0000 [e]e]ele]
000000
Labelled Transition Systems
So S1 S2 S3

States sg, S1, S», S3 (Start state: sg)

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
0008000 0000 0000 [e]e]ele]
000000

Labelled Transition Systems

o

So| M |s1| @ |s;| M |sg

States sg, S1, S», S3 (Start state: sg)
Actions a1, O, O3, 04

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
0008000 0000 0000 [e]e]ele]
000000

Labelled Transition Systems

o

So a1 S1 o S5 a3

S3

States sg, S1, S», S3 (Start state: sg)
Actions a1, O, (3, Oy

Transitions Sp —% Sy, S; —2> Sy, Sp —3 S3, S3 — S

Future Work

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] O
0000800 0000 0000

Labelled Transition Systems for Language

Labelled Transition System Actions

X Variable
c Constructor
i it argument in an application
AX Abstraction over variable x
case Case selector
p Case branch pattern
Tt Function unfolding
T8 B-reduction

Te Constructor elimination

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] 0000
0000080 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Labelled Transition System States

0 Stop State
Exp Expression

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking Future Work
000 oo [e]e] 0000
000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
O000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
O000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

AXx.e

i (f=e) x T
o]
casexofplﬁel\-ulpk:ek‘
casé ‘il \B‘\
euti=pi} || et |

Future Work

Background Supercompilation Distillation

Correctness & Efficiency Benchmarking
000 oo [e]e] 0000
O000000e 0000 0000 [e]e]ele]
000000

Labelled Transition Systems for Language

AXx.e

t (f=e) X ™
o B
case x of p; = eq]...|px = e ‘ case (Cep...en)of py = ef|...px = e
casé ’il \B‘\ Tlf (Pi =CXp...Xn)
euti=pi} || et | e/ ixs = o1, ¥ = en)

Future Work

Supercompilation
[Je}

Supercompilation

« Introduced by Turchin® but not really known outside Russia
until later.
« Became more well known via positive supercompilation?.

o A simplified algorithm retaining positive information
propagation.
e Defined using a more common functional language.

3Turchin, V.F.: The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (1986)

4Sgrensen, M., Gliick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

Supercompilation
oe

Positive Supercompilation: How?

Driving is performed on the input program to construct a
labelled transition system, representing the symbolic
computation of the program by normal order reduction.

Positive information propagation
maintains known information about variables.

Folding is performed on encountering a renaming of a
previously encountered term.

Generalization
is performed on encountering an embedding of a
previously encountered term to ensure termination of
the transformation.

Residualization
is performed to extract a (hopefully) more efficient
program from the folded and generalized labelled
transition system.

Supercompilation

@000

Termination

An important issue associated with positive
supercompilation is that of termination.

The size of terms encountered during reduction can
diverge , in which case a renaming will never be
encountered and the transformation will not terminate .

Termination can be ensured through the use of
generalization .

To represent the result of generalization, LTS’s can
represent the result of generalization via generalized
states which have the following form:

Supercompilation

[e] lele]

Generalization: When?

e A whistle is required to stop driving due to potential
divergence, and to indicate that generalization should be
performed.

e The homeomorphic embedding relation provides a
suitable such whistle:

Variable x 2y

e < e forsomei e {1..n}
Diving e<¢(e;...en)

g < e/ forallie{l.n}
Coupling ¢(e1...en) < ¢(e]...€y)

Supercompilation

ooeo

Generalization: How?

e A generalization of expressions e and €’ is a triple
(eg,0,0") where 6 and ¢’ are substitutions such that
egf = e and ey’ =€,

e A most specific generalization of expressions e and €’ is
a generalization (eg, ¢,6’) such that for every other
generalization (g4, 0”,6") of e and €’, eq is an instance of

/
eg.

Supercompilation

[e]ele])

Positive Supercompilation: Summary

e Strictly more powerful , according to Sgrensen®, than both
partial evaluation and deforestation.

5Sgrensen, M., Gliick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sgrensen, M., Gliick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

Supercompilation

[e]ele])

Positive Supercompilation: Summary

e Strictly more powerful , according to Sgrensen®, than both
partial evaluation and deforestation.
e Performs both specialization and symbolic
computation .
e Can specialize a naive pattern matcher to give a KMP
pattern matcher.

e This relies on positive information propagation, which is not
done in partial evaluation or deforestation.

5Sgrensen, M., Glick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sgrensen, M., Gliick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

Supercompilation

[e]ele])

Positive Supercompilation: Summary

e Strictly more powerful , according to Sgrensen®, than both
partial evaluation and deforestation.

e Performs both specialization and symbolic
computation .

e Can specialize a naive pattern matcher to give a KMP
pattern matcher.

e This relies on positive information propagation, which is not
done in partial evaluation or deforestation.

e Positive supercompilation can only produce a linear
speedup © in programs

5Sgrensen, M., Glick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

6Sgrensen, M., Gliick, R., Jones, N.: A positive supercompiler. Journal of
Functional Programming (1993)

Distillation
0

Distillation

« Distillation, introduced by Hamilton’, is another program
transformation technique

o Like positive supercompilation, driving is used to perform a
symbolic computation of a program, which constructs a
potentially infinite labelled transition system.

e Positive information propagation is also performed
during driving.

¢ Generalization and folding are performed with respect to
the labelled transition system at each node, rather than
just the expression it contains.

"Hamilton, G.W.: Distillation: Extracting the essence of programs.
Proceedings of the ACM Workshop on Partial Evaluation and Program
Manipulation (2007)

Distillation
oe

Distillation

e Generalization is performed on encountering an
embedding of a previously encountered labelled
transition system to ensure termination of the
transformation.

e Folding is performed on encountering a renaming of a
previously encountered labelled transition system.

Distillation

@000

Termination

¢ As with positive supercompilation, termination is an
important issue associated with distillation.
¢ Distillation has an alternate approach to termination.
¢ Distillation compares LTSs to determine whether to fold or
generalize .
e There is an obviously difficulty in this as an LTS may be
infinite
e However, it is acceptable to compare just the core
component of an LTS from its root to where an unfolding of
a previously encountered function is detected.
e This core component will always be finite

Distillation

[e] lele}

Generalization: How?

Performed incrementally from roots of two LTSs.
Increment is interval between function unfoldings
Corresponding states with different transitions are
extracted using lets.

Identical extractions are identified .

These lets will be distributed through the generalized LTS:

Background Supercompilation Distillation Correctness & Efficiency
000 oo [e]e]
0000000 0000 ooeo

marking Future Work

Result of Distillation on Example Program

f nZero
where
f = An.)\x.case n of
Zero = Succ(x)
Succ(n’) = f n’ Succ(add x (mult n” Succ(x)))
add = Am.\n.case m of
Zero =n
| Succ(m) = Succ(add m n)
mult = Am.\n.case m of

Zero = Zero
| Succ(m) = add n (mult m n)

Distillation

oooe

Distillation: Summary

e Strictly more powerful than positive supercompilation.

e Therefore strictly more powerful, via Sgrensen®, than partial
evaluation and deforestation.

8Sgrensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)

Distillation

oooe

Distillation: Summary

e Strictly more powerful than positive supercompilation.
e Therefore strictly more powerful, via Sgrensen®, than partial
evaluation and deforestation.
e Performs all optimizations that positive supercompilation
performs.

8Sgrensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)

Distillation

oooe

Distillation: Summary

e Strictly more powerful than positive supercompilation.
e Therefore strictly more powerful, via Sgrensen®, than partial
evaluation and deforestation.
e Performs all optimizations that positive supercompilation
performs.

e Distillation is capable of obtaining a superlinear speedup
in programs.

8Sgrensen, M.H.: Turchin’s supercompiler revisited - an operational theory
of positive information propagation (1996)

Correctness & Efficiency

Correctness

e Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.

Correctness & Efficiency

Correctness

e Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.

e Total correctness of both positive supercompilation and
distillation also requires showing that they terminate .

Correctness & Efficiency

Correctness

e Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.

e Total correctness of both positive supercompilation and
distillation also requires showing that they terminate .

e This involves showing that there is a size bound on the
core components which are encountered during
transformation (expressions in supercompilation and LTSs
in distillation).

Correctness & Efficiency

Correctness

e Partial correctness of both positive supercompilation and
distillation can be proved by showing that there is a
bisimulation between the LTS corresponding to a program
before transformation, and the LTS resulting from
transformation.

e Total correctness of both positive supercompilation and
distillation also requires showing that they terminate .

e This involves showing that there is a size bound on the
core components which are encountered during
transformation (expressions in supercompilation and LTSs
in distillation).

e [f there is such a bound, then a renaming must eventually
be encountered, and folding can be performed.

Background
000 oo
0000000 0000

Supercompilation

Distillation

[e]e]

0000

Correctness & Efficiency

Bisimulation

Strong Bisimulation

Benchmarking
0000

[e]e]ele]
000000

€3

,

€o (0% 1 er T es a2
T

ey —M Jdes —T feg —2

€7

Future Work

Background
000
0000000

Supercompilation Distillation Correctness & Efficiency
oo [e]e]
0000 0000

Bisimulation

Strong Bisimulation

T

€M e —T e -2 e

g4 jes —T eg X2 e

Benchmarking
0000

[e]e]ele]
000000

Future Work

Background
000
0000000

Supercompilation Distillation Correctness & Efficiency
oo [e]e]
0000 0000

Bisimulation

Strong Bisimulation

T

Benchmarking
0000

[e]e]ele]
000000

€0 ay ey T €o Qa2 €3

eg —Y Jes T eg X2 e

Future Work

Background
000
0000000

€3

Supercompilation Distillation Correctness & Efficiency
[e]e] [e]e)
0000 0000
Bisimulation
Strong Bisimulation
T
€0 aq er T es Qo
T

Benchmarking
0000

[e]e]ele]
000000

Future Work

Background
000 oo
0000000 0000

Supercompilation

Distillation

[e]e]

0000

Correctness & Efficiency

Bisimulation

Strong Bisimulation

Benchmarking
0000

[e]e]ele]
000000

€3

.

€o (0% 1 er T es a2
T

ey —M Jdes —T feg —2

€7

Future Work

Background
000 oo
0000000 0000

Supercompilation

Distillation

[e]e]

0000

Correctness & Efficiency

Bisimulation

Weak Bisimulation

Benchmarking
0000

[e]e]ele]
000000

-

€o a1 e T es Qap
a2

ey T eg a1 €6 T

€3

€7

Future Work

Background
000
0000000

Supercompilation Distillation Correctness & Efficiency
oo [e]e]
0000 0000

Bisimulation

Weak Bisimulation

T

e Y e —T e

a

Benchmarking
0000

[e]e]ele]
000000

a2

ey T es <& €6

€3

€7

Future Work

Background Supercompilation Distillation
000 oo [e]e]
0000000 0000 0000

Correctness & Efficiency

Bisimulation

Weak Bisimulation

T

Benchmarking
0000

[e]e]ele]
000000

e 1 4 e T e, 22 |e;

a2

Future Work

Background
000
0000000

Benchmarking
0000

[e]e]ele]
000000

Supercompilation Distillation Correctness & Efficiency
[e]e] [e]e)
0000 0000
Bisimulation
Weak Bisimulation
T
€o a1 e T es Qap
a2
(I T eg a1 €6 T

€3

€7

Future Work

Correctness & Efficiency

Efficiency

e In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.

Correctness & Efficiency

Efficiency

e In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.

e Removing these will therefore only give a linear speedup.

Correctness & Efficiency

Efficiency

e In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.
e Removing these will therefore only give a linear speedup.
¢ In distillation, the number of silent transitions between each
recursive call of a function can be increasing .

Correctness & Efficiency

Efficiency

e In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.
e Removing these will therefore only give a linear speedup.
¢ In distillation, the number of silent transitions between each
recursive call of a function can be increasing .
e These can still be collapsed down and identified, thus
giving a superlinear speedup.

Correctness & Efficiency

Efficiency

e In positive supercompilation, there can only be a constant
number of silent transitions between each recursive call of
a function.

e Removing these will therefore only give a linear speedup.

¢ In distillation, the number of silent transitions between each
recursive call of a function can be increasing .

e These can still be collapsed down and identified, thus
giving a superlinear speedup.

e Essentially, the key difference between the two is that
positive supercompilation looks at code fragments before
they have been evaluated, and distillation looks at them
after.

Benchmarking
@000

How do these transformation systems compare?

e As we have seen, these are both theoretically powerful
transformation systems

e Part of the focus of this paper is on seeing whether reality
lives up to the theory.

e There are a number of things we need to compare these
transformation systems:
e A suite of programs to benchmark and evaluate
e A means to obtain necessary benchmark information about
the runtime of benchmarked programs
¢ For good measure, another transformation system, not
implemented by us

Benchmarking
lo] Jele}

What are we going to benchmark?

sumsquares
A program that calculates the sum of the squares

of two lists
(word|line|char)count
Programs that respectively count the number of
words, lines and characters in a given input
exp3_8
A program that calculates 3 raised to the power of
a given number

nrev
A program that performs a naive list reversal

Other programs from previous® works and the nofib benchmark
suite

SMitchell, N., Runciman, C.: A supercompiler for core Haskell. In: IFL 2007
(2008)

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

000 oo [ole] [ele] o)
0000000 0000 0000 [e]e]ele]
000000

How do we obtain benchmark information?

65,896 bytes allocated in the heap
3,512 bytes copied during GC
44,416 bytes maximum residency (1 sample(s))
17,024 bytes maximum slop
1 MB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen © ® colls, @ par 9.00s 0.00s 0.0000s 0.0000s
Gen 1 1 colls, @ par 9.00s 0.00s 0.0002s 0.0002s
INIT time 0.00s (0.00s elapsed)
MUT time 0.00s (0.00s elapsed)
GC time 0.00s (©0.00s elapsed)
EXIT time 0.00s (©0.00s elapsed)
Total time 0.00s (©0.00s elapsed)
%GC time 9.6% (23.8% elapsed)

Alloc rate 47,135,908 bytes per MUT second

Productivity 82.3% of total user, 137.8% of total elapsed

Benchmarking
oooe

HOSC: Another Supercompiler

e We had intended on benchmarking against two-level
supercompilation?
o Like distillation, capable of obtaining a superlinear speed up
e However, we had difficulties getting this supercompiler
working
¢ We opted to benchmark against the HOSC single level
supercompiler instead

10Klyuchnikov, I.G.: Towards effective two-level supercompilation (2010)

Benchmarking

0000

Execution Time Comparisons

Name Unoptimized | Supercompilation | HOSC | Distillation
nrev 62.5 53.3 68.7 0.1
charcount 0.01 0.01 0.01 0.01
exp3_8 45.9 32.4 52.1 -
factorial 2.6 25 2.8 -
linecount 28.7 0.01 0.01 0.01
primes 79.2 75.9 104.5 -
raytracer 12.7 10.0 104 10.0
rfib 57.7 35.3 37.7 -
sumsquare 81.9 72.7 76.9 -
treeflip 51.2 29.9 32.2 -
wordcount 290.8 0.01 0.01 0.01

Benchmarking

[e] lele}

Execution Time Comparisions

e Perhaps most interesting is the naive list reversal program.
e Original: 62.5 seconds
e Supercompiled: 53.3 seconds - 14.72% decrease in
execution time
e HOSC: 68.7 seconds - 9.92% increase in execution time

e Distillation: 0.1 seconds - 99.84% decrease in execution
time

Benchmarking

ooeo

Memory Usage Comparisons

Name Unoptimized | Supercompilation | HOSC | Distillation
nrev 8 6 11 3
charcount 3 3 3 3
exp3_8 6 4 6 -
factorial 3 3 3 -
linecount 6 1 1 1
primes 2 2 2 -
raytracer 1011 730 732 732
rfib 2073 1061 1047 -
sumsquare 2313 2391 2221 -
treeflip 2176 1083 1069 -
wordcount 6 1 1 1

Benchmarking

oooe

Memory Usage Comparisons

e Again, perhaps most interesting is the naive list reversal
program.
¢ Original: 8 MB
e Supercompiled: 6 MB - 25% decrease in memory usage
e HOSC: 11 MB - 11% increase in memory usage
e Distillation: 3 MB - 62.5% decrease in memory usage

Benchmarking

000000

Automating Benchmarking

e One of the tedious and time consuming tasks associated
with implementing program transformers is that of
benchmarking.

e Automating program transformation is obviously very

important, but what about implementing the benchmarking
of such transformations?

Benchmarking

O@0000

A (somewhat) automatic benchmarking system

e Upload two files: an input file to be transformed, and an
arguments file to be used during benchmarking.

e Files are tested for compilation, if this fails then receive the
compilation error.
e If the files compile, then:
e They are saved to a database.
e Atask is sent to a benchmarking machine.
e Input program is transformed (currently only positive
supercompilation).
¢ Input and transformed programs are then benchmarked.

Benchmarking

[e]e] le]ele]

A (somewhat) automatic benchmarking system

e How are these programs benchmarked?

¢ Via three user inputs, a number indicating the amount of
benchmark points, a number indicating the number of runs
and the arguments file.

e For each benchmark point, each program is run the
specified number of times.

e Benchmark data for each point is saved, and averages for
each point are displayed for each program.

Background Supercompilation Distillation Correctness & Efficiency Benchmarking Future Work

0000
0000

[e]e]e] Jele]

0000 0000

A (somewhat) automatic benchmarking system

¢ This benchmark data is publicly viewable
e As are the input program, and each transformation result

e Users have ability to view benchmark data via benchmark
point or transformation technique

Background Supercompilation Distillation Correctness & Efficiency
000 00 oo
0000000 0000 0000

Arguments

module

onment (getArgs)
do
rgs <- getArgs
let level - read (head args) Integer

print $ root (randomXS level)

\xs -> nrev xs

nrev \xs -> case xs of

0 ->0

(y:ys) -> app (nrev ys) [yl
\xs ys -> case xs of

0 ->ys
(2z:25) -> (2:app 25 ys)

Run Information

Time = Memory

Level Number GHC GHC-02 Super
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0

Benchmarking Future Work
0000

0000

[e]e]ele] le]

Super -02

Benchmarking

[e]e]ele]e])

Some Links

http://github.conidistillation/distiller -

Distillation Source code

http://github.confdistillation/distill_web -
Benchmarking Website Source

http://github.com/distillation/distiller
http://github.com/distillation/distill_web

Future Work

Future Work

e Automate the parallelization of functional programs:
e Aim to target Nvidia GPGPU architecture initially
o Use skeletons to guide parallelization process

e Finish and expand the benchmarking site:

e We welcome any collaboration and/or suggestions
e Having somewhere to run benchmarks against many
transformation tools would be quite beneficial

	Background
	Program Transformation
	Language

	Supercompilation
	Overview
	Termination

	Distillation
	Overview
	Termination

	Correctness & Efficiency
	Benchmarking
	Overview
	Results
	Automating Benchmarking

	Future Work

