
A Comparison of Program Transformation
Systems

Michael Dever and G.W. Hamilton

Dublin City University
{mdever, hamilton}@computing.dcu.ie

Abstract. Program transformation is a popular technique for attempt-
ing to improve the efficiency of a program. At a high level, program
transformation is the process of taking an input program and trans-
forming it into an improved version of the original, bearing the same
constraints as the original, e.g. termination constraints. In this paper,
we focus on three fold/unfold [3] based transformation systems, positive
supercompilation [26,25,21,2,12] and distillation [8,9,10,11] and HOSC
[19,18]. We focus on derivatives of both that use labelled transition sys-
tems [12,11] and we present these systems, their underlying theory, and
implementations. Based upon these implementations we will present an
analysis of how they compare to each other, and another transformation
system, HOSC[19], when applied to a sample of real-world programs.

1 Introduction

Program transformation describes the process of taking an input program and
transforming it via various methodologies, discussed below, to a semantically
equivalent program [23] that is bounded by the same constraints as the original
program. The goal of such a transformation is to enhance and improve the orig-
inal program, whether the improvements be scalability, efficiency, concurrency
or other measures of improvement. This goal exists as programming, in any lan-
guage, can be an arduous task, with many aspects that have to be taken in to
consideration by the developer.

As skill, knowledge and experience can vary greatly from programmer to
programmer, program transformation has the potential to prove an immense
aid to developers. If a developer can write a version of software, and have it
improved for them by another program (the transformer), this will result in
better software coming from that developer. There are, however, downsides to
applications of program transformation in the field. Program transformers don’t
always produce intuitive, comprehendible output; if they did, and the results
were intuitive, there would not be a need for the transformer.

There exist many different techniques for the application of program transfor-
mation techniques to functional programs; Burstall & Darlington’s fold/unfold
algorithms [3], which are the cornerstones of the other transformations de-
tailed here; Pettorossi and Proietti’s transformation rules (fold/unfold based)

34 M. Dever, G.W. Hamilton

[23], which further the techniques of Burstall & Darlington; Wadler’s defor-
estation [31] and its derivatives [5,7], Turchin’s supercompilation [28], and its
derivatives in the form of positive supercompilation [26,25,21,2], two-level super-
compilation[19,18], Hamilton’s distillation [8,9,10,11] and many others.

While we focus on program transformation applied to functional languages
in this paper, it is worth noting that program transformation is applicable to
other types of language, such as logic languages [20], and sequential languages
[17]. There are a number of reasons why we focus on functional languages, but
the most important reasons are that functional languages are easier to analyze,
reason about, and to manipulate using program transformation techniques. The
lack of side-effects in pure functional languages is a major benefit, as these do
not have to be taken into consideration during the transformation process.

A key note to be made about functional languages is that due to their na-
ture, a lot of functions use intermediate data structures to generate results. As
an example, the naive definition of reverse below relies heavily upon using in-
termediate lists, in its call to append. Another key feature of some functional
languages is the ability to use lazy evaluation, where results are evaluated as
they are needed. Even within this context, the use of intermediate structures
can be a hindrance, as each allocation requires space and time for allocation etc.
[31], and the transformations examined here are aimed at reducing/eliminating
usage of intermediate data. To show these reductions, we will present our imple-
mentations of the transformation systems, and an analysis of how they compare
to each other.

reverse = λxs.case xs of
[] → []
(x : xs)→ append (reverse xs) [x]

append = λxs ys.case xs of
[] → ys
(x : xs)→ (x : append xs ys)

In this paper, we focus on fold/unfold based transformations using labelled
transition systems [12,11], that depict a programs run-time behavior, and use
weak bisimulation to prove correctness. The remainder of this paper is structured
as follows: in Section 2 we define the higher-order language to be used, and some
constraints on it. In Section 3, we define a labelled transition system, and weak
bisimilarity. In Section 4 we define both supercompilation and distillation using
a labelled transition system, and in Section 5 we present the results of using
these to optimize a sample of programs.

2 Language

The simple higher-order language to be used throughout this paper is shown
below:

Within this language, a program consists of an expression to be evaluated, e0,
and a set of function definitions, ∆ = f1 = e1 . . . fk = ek. Constructors must be

A Comparison of Program Transformation Systems 35

prog ::= e0 where f1 = e1 . . . fk = ek Program

e ::= x Variable
| c e1 . . . ek Constructor
| f Function
| λx.e Lambda Abstraction
| e0 e1 Application
| case e0 of p1 ⇒ e1 | . . . |pk ⇒ ek Case Expression

p ::= c x1 . . . xk Pattern

Fig. 1. Language Definition

of a fixed arity, and within c e1 . . . ek, k must be equal to constructor c’s arity.
Bound variables are those introduced by λ-abstraction or case patterns, and
all other variables are free. Two expressions, e1 and e2, are equivalent, e1 ≡ e2,
if the only difference between the two is the naming of their bound variables.
Case expressions may only have non-nested patterns, and if nested patterns are
present, they must be transformed into equivalent non-nested versions [1,30].

The language shown uses a standard call-by-name operational semantics, in
which there exists an evaluation relation ⇓ between closed expressions and values
(expressions in weak head normal form [14]). The one-step reduction relation,

r
;,

is shown in Figure 2, and defines three reductions, f , c and β, where f represents
an unfolding of function f , c represents a constructor elimination of constructor
c and β represents β-substitution.

(f = e) ∈ ∆

f
f
; e ((λx.e0) e1)

β
; (e0{x 7→ e1})

e0
r
; e′0

(e0 e1)
r
; (e′0 e1)

pi = c x1 . . . xn

(case (c e1 . . . en) of p1 : e′1| . . . |pk : e′k)
c
; (ei{x1 7→ e1, . . . , xn 7→ en})

e0
r
; e′0

(case e0 of p1 : e1| . . . pk : ek)
r
; (case e′0 of p1 : e1| . . . pk : ek)

Fig. 2. One-Step Reduction Relation

e
r
; denotes the reduction of an expression, e, by rule r, e ⇑ denotes e diverg-

ing, and e ⇓ denotes e converging. e ⇓ v can be used to denote e evaluating to

the value v. These notations are defined in below, where
r
;
∗

denotes the reflexive
transitive closure of

r
;.

36 M. Dever, G.W. Hamilton

e
r
;, iff ∃e′.e r

; e′ e ⇓, iff ∃v.e ⇓ v
e ⇓ v, iff e

r
;
∗
v ∧ ¬(v

r
;) e ⇑, iff ∀e′.e r

;
∗
e′ ⇒ e′

r
;

Definition (Substitution) If e is an expression, and there exists a substitu-
tion, θ = {x1 → e1, . . . xn → en}, then eθ = e{x1 → e1, . . . xn → en} denotes the
simultaneous substitution of ei for the variable xi in e, while ensuring name cap-
ture cannot happen. �

Definition (Renaming) If there exists a bijective mapping, σ, such
that σ = {x1 → x′1, . . . , xn → x′n}, and there exists an expression e, then
e{x1 → x′1, . . . , xn → x′n} denotes the simultaneous substitution of the variable
xi for x′i in e. �

Definition (Context) A context, C, is an expression that contains a hole [],
where one sub-expression should be, and C[e] denotes the replacing the hole in
C with the sub-expression e. �

Definition (Evaluation Context, Redex and Observable) Evaluation con-
texts, E , redexes, R, and observables, O are as defined below.

E ::= []
| E e
| case E of p1 ⇒ e1 | . . . |pk ⇒ ek

R ::= f
| (λx.e0) e1
| case (x e1 . . . en) of p1 ⇒ e′1 | . . . |pk ⇒ e′k
| case (c e1 . . . en) of p1 ⇒ e′1 | . . . |pk ⇒ e′k

O ::= x e1 . . . en
| c e1 . . . en
| λx.e

�

Definition (Observational Equivalence) Observational equivalence,', equates
two expressions if and only if they exhibit the same termination behavior in all
closing contexts, i.e. e1 ' e2 iff ∀C.C[e1] ⇓ iff C[e2] ⇓. �

3 Labelled Transition Systems

As per Gordon [6], Hamilton and Jones [12,11], define and extend a labelled
transition system, that depicts immediate observations that can be made on ex-
pressions to determine their equivalence. Their extension is to allow free variables
in both expressions and actions, and a knock on effect of this is that observa-
tional equivalence will now require that both free and bound variables in actions
match.

A Comparison of Program Transformation Systems 37

Definition (Labelled Transition System) A driven LTS associated with the
program e0 is represented by t = (E , e0,→, Act) where:

– E represents the set of states of the LTS. Each state can be either an expres-
sion or the end-of-action state 0.

– t contains as root the expression e0, denoted root(t).
– →⊆ E X Act X E is a transition relation relating pairs of states by actions

according to the driving rules.
– If e ∈ E and e

α→ e′ then e′ ∈ E .
– Act is a set of actions, α, each of which can either be silent or non-silent.

Non-silent actions are one of: a variable, a constructor, the ith argument of
an application, a λ-abstraction over a variable x, case selector, a case branch
pattern or a let abstraction. Silent actions are one of: τf , the unfolding of a
function f , τc, the elimination of a constructor c or τβ , β-substitution.

�

λ-abstractions, case pattern variables and let variables that are within the
actions of an LTS, t, are bound, denoted by bv(t), while all other variables are
free, denoted by fv(t). let transitions do not appear in a driven LTS, and are only
introduced later on due to generalization, via let transitions. The authors note
that the LTS notation allows for identifying program behavior just by looking at
the labels on the transitions, and that transitions from constructors or variables
lead to the end-of-action state, 0. In addition to the above notation, Hamilton
et. al. provide some additional notation for working with an LTS:

– e
α→ e′ represents (e, α, e′) ∈→.

– e→ (α1, t1), ..., (αn, tn) represents an LTS containing root state e where
t1, ..., tn are LTSs obtained by following transitions labelled α1, ..., αn from
e.

– e⇒ e′ can be used if and only if there exists a potentially empty set of silent
transitions from e to e′.

– In the case of a non-silent action α, e1
α⇒ e2 can be used if and only if there

exists e1 and e2 such that e1 ⇒ e′1
α→ e′2 ⇒ e2

Comparisons of program behavior can be completed using by using weak
bisimilarity, defined below:

Definition (Weak Simulation) The binary relation R ⊆ E1XE2 is a weak
simulation of a pure LTS (E1, e10,→1, Act1) by another pure LTS (E2, e20,→2, Act2)
if (e10, e

2
0) ∈ R and for every pair (e1, e2) ∈ R, α ∈ Act1, e′1 ∈ E1 it holds that if

e1
α⇒ e′1 then

∃e′2 ∈ E2.e2
α⇒ e′2 ∧ (e′1, e

′
2) ∈ R �

Definition (Weak Bisimulation) A weak bisimulation is a binary relation R
such that itself and its inverse are weak simulations. �

Definition (Weak Bisimilarity) If a weak bisimulation R exists between two
pure LTSs, then there exists a unique maximal one, denoted ∼. �

38 M. Dever, G.W. Hamilton

4 Transformation Techniques using Labelled
Transformation Systems

Supercompilation, [12], and distillation [11], are both program transformation
techniques aimed at reducing the use of intermediate data during the evaluation
of programs. The goal of the present paper is to compare distillation with positive
supercompilation. For this purpose the paper presents a formulation of positive
supercompilation in LTS terms, shown in Figure 4, and compares it with an
LTS formulation of distillation, shown in Figure 5. At the core of both of these
techniques, is a process known as driving, which is essentially a forced unfolding,
applied in a top-down fashion, to construct potentially infinite trees of states and
transitions. Within driving, all function applications are removed, and will only
be re-introduced due to generalization, G, via let transitions at a later point.
These driving rules, D, are the transformation rules that define the technique,
and are applicable to all terms that satisfy the language definition above.

DJeK = D′JeK ∅

D′Je = x e1 . . . enK θ

=

{
e→ (τ↓θ(x),D′Jθ(x) e1 . . . enK θ), if x ∈ dom(θ)
e→ (x,0), (#1,D′Je1 K θ), . . . , (#n,D′JenK θ), otherwise

D′Je = c e1 . . . enK θ = e→ (c,0), (#1,D′Je1 K θ), . . . , (#n,D′JenK θ)
D′Je = λx .eK θ = e→ (λx,D′JeK θ)
D′Je = E [f]K θ = e→ (τf ,D′JE [e]K θ)

where (f = e) ∈ ∆
D′Je = E [(λx .e0) e1]K θ = D′JE [e0]K (θ ∪ {x 7→ e1})
D′Je = E [case x of p1 ⇒ e1 | · · · | pk ⇒ ek]K θ

=


e→ (τβ ,D′JE [case θ(x) of p1 ⇒ e1 | · · · | pk ⇒ ek]K θ), if x ∈ dom(θ)
e→ (case,D′JxK θ), (p1,D′JE [e1]K (θ ∪ {x 7→ p1})),

. . . ,
(pk,D′JE [ek]K (θ ∪ {x 7→ pk})), otherwise

D′Je = E [case (x e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k]K θ
= e→ (case,D′Jx e1 . . . enK θ), (p1,D′JE [e ′

1]K θ),
. . . ,

(pk,D′JE [e ′
k]K θ)

D′Je = E [case (c e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k]K θ
= e→ (τc,D′JE [e ′

i]K (θ ∪ {x1 7→ e1, . . . , xn 7→ en}))
where pi = c x1 . . . xn

Fig. 3. Driving Rules

Within both of these transformation systems, driving is performed on an
input expression, performing a normal order reduction, in which wherever possi-
ble, silent transitions are generated. Whenever an expression without a reduction
is encountered, a non-silent transition is generated. If case expressions cannot
be evaluated, then LTS transitions are generated for their branches with infor-

A Comparison of Program Transformation Systems 39

mation propagated according to each branches pattern. As driving results in
a potentially infinite labelled transition system, obviously the transformation
process cannot stop here, as its results so far may be infinite, and as such, an
important issue in both systems is that of termination. Each system approaches
this in a similar, but importantly, different manner.

Both make use of both folding and generalization to guide termination. Gen-
eralization is performed when the risk of there being a potentially infinite unfold-
ing has been detected. The distinction between the approach of the two systems
is that supercompilation performs both of these on previously encountered ex-
pressions, while distillation performs these on previously encountered labelled
transition systems. This difference is quite significant as an LTS obviously con-
tains a lot more information than just a sole expression.

In supercompilation, folding, Fs, is performed upon encountering a renam-
ing of a previously encountered expression, and generalization, Gs, is performed
upon encountering an embedding of a previously encountered expression. In dis-
tillation, folding, Fd, is performed upon encountering a renaming of a previously
encountered LTS, and generalization, Gd, is performed upon encountering an
embedding of a previously encountered LTS. In both cases, an embedding is
defined by a homeomorphic embedding relation.

In both systems, given an input expression, e, the driving rules above, D
are applied resulting in an LTS, DJeK. Next, transformation rules, T , for which
distillation is shown in Figure 5 and supercompilation in Figure 4, are applied
resulting in an LTS, T JDJeKK. Finally, once termination has been guaranteed via
generalization, residualization rules R, shown in Figure 6 are applied, resulting
in a residualized program, RJT JDJeKKK.

TsJeK = T ′
s JeK ∅

T ′
s Je→ (τf , e

′)K ρ =


FsJe′′K ρ, if ∃e′′ ∈ ρ.e′′ ≡ e
T ′
s JGsJe′′K JeK σK ρ , if ∃e′′ ∈ ρ.e′′ ./s e
e→ (τf , T ′

s Je′K (ρ ∪ {e})), otherwise

T ′
s Je→ (τβ , e

′)K ρ =


FsJe′′K ρ, if ∃e′′ ∈ ρ.e′′ ≡ e
T ′
s JGsJe′′K JeK σK ρ , if ∃e′′ ∈ ρ.e′′ ./s e
e→ (τβ , T ′

s Je′K (ρ ∪ {e})), otherwise
T ′
s Je → (α1 , e1), . . . , (αn , en)K ρ = e → (α1 , T ′

s Je1 K ρ), . . . , (αn , T ′
s JenK ρ)

T ′
s Je→ (let, e0), (x, e1)K ρ = e→ (let, T ′

s Je0K ρ), (x, T ′
s Je1K ρ)

Fig. 4. Transformation Rules for Supercompilation

The supercompilation transformation system takes the results of DJeK which
is a labelled transition system. As DJeK can be infinite, the transformation rules
Ts only traverse a finite portion lazily from the root. Generalization rules Gs are
applied if the danger of an infinite unfolding (due to recursive function calls)
is detected, and a “whistle is blown”. When a whistle is blown it indicates the
detection of a homeomorphic embedding of a previously encountered expression,

40 M. Dever, G.W. Hamilton

and application of these rules results in an LTS with no danger of infinite folding,
and a finite set of expressions on any path from it’s root. Once the system has
been generalized, folding rules, Fs are applied. Folding takes a generalized LTS
and produces a bisimilar LTS, one with a finite number of states that can be
residualized into an expression using the residualization rules R.

TdJeK = T ′
d JeK ∅ ∅

T ′
d Jt = e→ (τf , t

′)K ρ θ =


FsJt′′K σ, if ∃t′′ ∈ ρ, σ.t′′ h tσ
T ′
d JGdJt′′K JtK θ σK ρ φ, if ∃t′′ ∈ ρ, σ.t′′ ./d tσ
e→ (τf , T ′

d Jt′K (ρ ∪ {t}) θ), otherwise

T ′
d Jt = e→ (τβ , t

′)K ρ θ =


FsJt′′K σ, if ∃t′′ ∈ ρ, σ.t′′ h tσ
T ′
d JGdJt′′K JtK θ σK ρ φ, if ∃t′′ ∈ ρ, σ.t′′ ./d tσ
e→ (τβ , T ′

d Jt′K (ρ ∪ {t}) θ), otherwise
T ′
d Je → (α1 , t1), . . . , (αn , tn)K ρ θ = e → (α1 , T ′

d Jt1 K ρ θ), . . . , (αn , T ′
d JtnK ρ θ)

T ′
d Jt = e→ (let, t0), (x, t1)K ρ θ

=


T ′
d Jt0{x 7→ x′}K ρ θ, if ∃(x′ 7→ t2) ∈ θ.t1 h t2
e→ (let, T ′

d Jt0K ρ (θ ∪ {x 7→ t1})),
(x, T ′

d Jt1K ρ θ), otherwise

Fig. 5. Transformation Rules for Distillation

The distillation transformation system proceeds in a similar manner, taking
the results of DJeK and applying Td to this LTS resulting in another LTS with a
finite set of states. In distillation however the whistle is blown when an embed-
ding of a previously encountered LTS is detected and generalization, Gd, then
ensures that a renaming of a previously encountered LTS will be found. Folding,
Fd is then applied to the LTS resulting in one with a finite set of states and then
this can be residualized into a program using the residualization rules R. The
main difference between the two systems is that in supercompilation the com-
parisons are performed on expressions, and in distillation they are performed on
LTS ’s.

The questions related to correctness and termination, as well as the details
of folding and generalization, are out of the scope of the present paper, because
they have been earlier addressed in [12,11].

As mentioned previously, both transformation systems aim to remove in-
termediate data from their inputs, resulting in a more efficient output. This is
done through removing silent transitions, defined previously. Briefly, these are
either function unfoldings, β-reductions or constructor eliminations, and these
are strongly linked to how powerful each system is. In the case of supercompi-
lation, as it looks at expressions, there can only be a constant number of silent
transitions between recursive calls of a function, the removal of which leads to
a potentially linear increase in efficiency [27]. Distillation however, allows for
an increasing number of silent transitions between recursive calls of a function,
allowing for a potentially super-linear increase in efficiency [11]. This is more
complex than supercompilation, as the LTS’s used for comparison can be infi-

A Comparison of Program Transformation Systems 41

RJeK = R′JeK ∅

R′Je → (x ,0), (#1 , t1), . . . , (#n, tn)K ε = x (R′Jt1 K ε) . . . (R′JtnK ε)
R′Je → (c,0), (#1 , t1), . . . , (#n, tn)K ε = c (R′Jt1 K ε) . . . (R′JtnK ε)
R′Je → (λx , t)K ε = λx .(R′JtK ε)
R′Je → (case, t0)(p1 , t1), . . . , (pn , tk)K ε = case (R′Jt0Kε) of p1 ⇒ (R′Jt1Kε)

...
pk ⇒ (R′JtkKε)

R′Je → (let, t0), (x , t1)K ε = (R′Jt0 K ε){x 7→ (R′Jt1 K ε)}
R′Je → (τc , t)K ε = R′JtK ε

R′Je → (τf , t)K ε =


f ′ x1 . . . xn , if ∃(f ′ x1 . . . xn = e) ∈ ε
f ′ x1. . . xn where f ′ = λx1 . . . xn.(R′JtK (ε ∪ {f ′ x1 . . . xn = e})),

otherwise (f ′ is fresh, {x1 . . . xn} = fv(t))

R′Je → (τβ , t)K ε =


f x1 . . . xn , if ∃(f x1 . . . xn = e) ∈ ε
f x1. . . xn where f = λx1 . . . xn.(R′JtK (ε ∪ {f x1 . . . xn = e})),

otherwise (f is fresh, {x1 . . . xn} = fv(t))

Fig. 6. Rules For Residualization

nite, whereas the expression compared in supercompilation is not, however dis-
tillation benefits from the fact that as any infinite sequence of transitions must
contain either a function unfolding or substitution, once one of these is detected,
no further comparison needs to be done.

5 Two-Level Supercompilation

There are many other approaches to our supercompilation technique, such as
supero [22,21]. However, we expect such supercompilation systems to be similar
in nature and success as our system. Another more powerful approach to the
removal of intermediate data is that of two-level supercompilation [19,18]. The
authors of this approach supercompilation as a multi-level program transforma-
tion technique, using a lower and an upper level supercompiler to transform an
input program. Like distillation, this technique is capable of obtaining a super-
linear increase in efficiency, but was originally intended as an analysis tool.

Using a multi-level approach is based upon the concept of meta-system transi-
tion presented by Turchin in [29]. Briefly, a meta-system S′ is a system composed
of copies and/or variations of another system S and means of controlling these
copies of S. If there exists another meta-system S′′ composed of copies of S′,
then the hierarchy of control in this system is obvious.

In two-level supercompilation, S′ is a hierarchical meta-system composed of
copies of a ‘classic’ supercompiler S, that each can control each other. Lower
level supercompilers generate improvement lemmas [24] - improved expressions
equivalent to an input expression - guided by the expressions labeling the nodes
of its partial process tree [19]. These improvement lemmas can then be used
to guide the upper level supercompiler in its search for improvement lemmas.

42 M. Dever, G.W. Hamilton

The supercompilers at the different levels of a two-level supercompiler can differ
in behavior, allowing for an upper and lower level supercompiler to produce
different results. Using its hierarchy of possibly differing supercompilers, it, like
distillation is capable of obtaining a super-linear increase in efficiency.

6 Comparison of Techniques

Based upon the fact that distillation is significantly more powerful than super-
compilation, we have implemented both techniques for comparison using the
popular functional language Haskell [15]. As two-level supercompilation is also
more powerful than supercompilation and can obtain results similar to that of
distillation, we would have liked to included it in our comparison, however we
had difficulties getting the tool functioning, so we have included the output of
the HOSC [19] single level supercompiler. To perform these comparisons, we
represent parsed Haskell programs into a simple representation of the language
similar to that shown in Figure 1. It is worth noting that our transformation tool
is still a work in progress, and as such our comparison is on a set of relatively
‘simpler’ programs, that match up pretty closely to the language definition, with
more advanced features of the Haskell language being disallowed.

The benchmarks we used are as follows: sumsquare [4], a function that cal-
culates the sum of the squares of two lists; wordcount, linecount and charcount
[22] are functions that respectively count the number of words, lines and charac-
ters in a file; factorial, treeflip and raytracer are programs used to benchmark
previous supercompilation work [16]; nrev represents a naive list reversal pro-
gram; and a sample of programs from the well known Haskell nofib benchmark
suite[13]. We present the results obtained after supercompiling, distilling and ap-
plying HOSC to our set of benchmarks, with focus on both execution time and
memory usage. The results of the transformation systems are shown as a per-
centage of the measure used for the unoptimized version, and a lower percentage
will obviously indicate an improvement.

6.1 Findings

In Figure 7, we present our findings of the execution time performance of our set
of benchmark programs based on seconds taken to complete execution. From left
to right, the columns describe the name of the sample program, its unoptimized
execution time (in seconds), the time taken by the supercompiled version, the
time taken by the output of HOSC, and finally, the time taken by the distilled
version.

In Figure 8 we present our findings of the memory performance of our set of
benchmark programs based on maximum memory allocated on the heap during
execution time. From left to right, the columns describe the name of the sample
program, its unoptimized total memory usage (in MB), the memory used by the
supercompiled version, the memory used by the output of HOSC, and finally,
the memory used by the distilled version.

A Comparison of Program Transformation Systems 43

Name Unoptimized Supercompilation HOSC Distillation

nrev 62.5 53.3 68.7 0.1

charcount 0.01 0.01 0.01 0.01

exp3 8 45.9 32.4 52.1 -

factorial 2.6 2.5 2.8 -

linecount 28.7 0.01 0.01 0.01

primes 79.2 75.9 104.5 -

raytracer 12.7 10.0 10.4 10.0

rfib 57.7 35.3 37.7 -

sumsquare 81.9 72.7 76.9 -

treeflip 51.2 29.9 32.2 -

wordcount 29.8 0.01 0.01 0.01

Fig. 7. Execution Time

Name Unoptimized Supercompilation HOSC Distillation

nrev 8 6 11 3

charcount 3 3 3 3

exp3 8 6 4 6 -

factorial 3 3 3 -

linecount 6 1 1 1

primes 2 2 2 -

raytracer 1011 730 732 732

rfib 2073 1061 1047 -

sumsquare 2313 2391 2221 -

treeflip 2176 1083 1069 -

wordcount 6 1 1 1

Fig. 8. Memory Usage

There are some interesting conclusions that can be drawn from both Figure
7 and Figure 8. A quick review of our execution time and memory usage find-
ings show that, while the distillation tool is incomplete at this point it in no
case underperforms either of the other two optimization techniques with respect
to execution time. It also reveals that our implementation of supercompilation
fares better than that of HOSC in terms of execution time. In the following
sections we present the following: firstly a comparison of our implementation of
supercompilation and HOSC, and secondly a comparison of the supercompila-
tion techniques and our implementation of distillation. It is worth noting at this
point that, as mentioned above, our implementation of distillation is a work in
progress, and as a result of this there are some programs that we were unable
to optimize.

Supercompilation Techniques With respect to execution time, and the test
cases involved, we find that our implementation of supercompilation results in

44 M. Dever, G.W. Hamilton

more outputs with improved efficiency than that of HOSC. We also find that
our supercompiler results in a reduced execution time, whereas HOSC does not
and in some cases results in a drastic increase in execution time.

This reduction in performance is most pronounced in the case of primes,
where for the same input, the original unoptimized version has an execution
time of 79.2 seconds, our super-compiled version takes 75.9 seconds and HOSC
takes 104.5 seconds. Compared with the original our implementation results in
a 4.16% reduction in execution time, and HOSC results in a 31.94% increase in
execution time over the original and a 37.68% increase in execution time over
our implementation of supercompilation. In the cases of charcount, linecount
and wordcount both implementations resulted in the same decrease of execution
time, with charcount seeing no increase in efficiency, which was expected and
linecount and wordcount seeing a 99.96% increase in execution time.

With respect to memory usage, and the test cases involved, we find that our
implementation of supercompilation often results in more efficient outputs than
that of HOSC. In the cases of nrev, exp3 8 and raytracer our supercompiler
gives a greater reduction in memory usage than that of HOSC, which in the case
of nrev actually has a negative impact on memory usage. The original program
has a maximum allocation of 8 MB, our supercompiled version uses 6 MB, a
reduction of 25%, and the HOSC supercompiled version uses 11 MB, an increase
of 37.5%.

However there are also some cases where HOSC seems to obtain a slight
decrease in memory usage when compared to both the original and our super-
compiler, i.e. rfib, and treeflip. In the case of sumsquare our supercompiled
version results in an output that is less efficient than both the original program
and the output of HOSC with respect to memory usage. The original program
uses 2313 MB, the output of HOSC uses 2221 MB and our supercompiled ver-
sion uses 2391 MB. Our supercompiled version represents a 3.37% increase in
memory usage, and the HOSC supercompiled version represents 3.98% decrease
in memory usage over the original and a 7.65% decrease in memory usage over
our supercompiled version.

Distillation vs. Supercompilation As our sample set of distillable programs
is limited, we have few benchmarks to draw conclusions from, namely nrev,
charcount, linecount, raytracer and wordcount. With respect to execution time
for these test cases, nrev is probably the most interesting example with the
original program taking 62.5 seconds, our supercompiled version taking 53.3
seconds, the HOSC supercompiled version taking 68.7 seconds and our distilled
version taking 0.1 seconds, representing a 14.72% increase, a 9.92% decrease
and a 99.84% increase in efficiency respectively. An increase of this order was
expected for distillation as it is capable of obtaining a super-linear increase in
efficiency.

With respect to memory usage, and the same set of benchmarks, nrev and
raytracer are the most interesting examples. In the case of nrev, the original
program uses 8 MB, our supercompiled version uses 6 MB, the HOSC super-

A Comparison of Program Transformation Systems 45

compiled version uses 11 MB and our distilled version uses 3 MB, representing
a 25% reduction, an 11% increase and a 62.5% reduction in memory usage re-
spectively. Again this is to be expected with supercompilation. In the case of
raytracer, the original program uses 1011 MB, our supercompiled version uses
730 MB, and both the distilled and the HOSC supercompiled versions use 732
MB, representing a 27.79% decrease and a 27.6% reduction respectively. What
is interesting about this is that our supercompiled version is more efficient with
respect to memory usage than our distilled version, when the opposite would be
expected.

7 Future Work

Work is progressing at present on extension of the distillation tool to allow it to
handle some of the more powerful features of the Haskell programming language.
Once it is capable of handling these more advanced features it will be applied to
the benchmarks that weren’t possible for this comparison. The results of these
optimizations will be published, alongside those of the multi-level supercompiler
mentioned previously for comparison. We aim to also support all programs in
the Nofib benchmark suite, and some more real-world programs.

8 Acknowldgements

This work was supported, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero - the Irish Software Engineering Research Centre

References

1. Augustsson, L.: Compiling pattern matching. Functional Programming Languages
and Computer Architecture (1985)

2. Bolingbroke, M., Jones, S.P.: Supercompilation by evalutation. Proceedings of the
2010 ACM SIGPLAN Haskell Symposium (2010)

3. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. Journal of the Association for Computing Machinery 24(1), 44–67 (Jan-
uary 1977)

4. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion. from lists to streams to
nothing at all. In: ICFP’07 (2007)

5. Gill, A., Launchbury, J., Jones, S.P.: A shortcut to deforestation. FPCA: Pro-
ceedings of the conference on Functional programming languages and computer
architecture pp. 223–232 (1993)

6. Gordon, A.D.: Bisimilarity as a theory of functional programming. Electronic Notes
in Theoretical Computer Science 1, 232 – 252 (1995)

7. Hamilton, G.W.: Higher order deforestation. Fundamenta Informaticae 69(1-2),
39–61 (July 2005)

8. Hamilton, G.W.: Distillation: Extracting the essence of programs. Proceedings of
the ACM Workshop on Partial Evaluation and Program Manipulation (2007)

46 M. Dever, G.W. Hamilton

9. Hamilton, G.W.: Extracting the essence of distillation. Proceedings of the Sev-
enth International Andrei Ershov Memorial Conference: Perspectives of System
Informatics (2009)

10. Hamilton, G.W., Mendel-Gleason, G.: A graph-based definition of distillation. Pro-
ceedings of the Second International Workshop on Metacomputation in Russia
(2010)

11. Hamilton, G., Jones, N.: Distillation and labelled transition systems. Proceedings
of the ACM Workshop on Partial Evaluation and Program Manipulation pp. 15–24
(January 2012)

12. Hamilton, G., Jones, N.: Proving the correctness of unfold/fold program trans-
formations using bisimulation. Lecture Notes in Computer Science 7162, 153–169
(2012)

13. Haskell-Community: Nofib benchmarking suite (2012), http://darcs.haskell.

org/nofib/

14. Jones, S.P.: The Implementation of Functional Programming Languages. Prentice-
Hall (1987)

15. Jones, S.P.: Haskell 98 language and libraries - the revised report. Tech. rep. (2002)
16. Jonsson, P.A., Nordlander, J.: Positive supercompilation for a higher order call-

by-value language. SIGPLAN Not. 44(1), 277–288 (Jan 2009)
17. Klimov, A.V.: An approach to supercompilation for object-oriented languages: the

java supercompiler case study (2008)
18. Klyuchnikov, I., Romanenko, S.: Towards higher-level supercompilation. In: Sec-

ond International Valentin Turchin Memorial Workshop on Metacomputation in
Russia. pp. 82–101. Ailamazyan University of Pereslavl (2010)

19. Klyuchnikov, I.G.: Towards effective two-level supercompilation (2010)
20. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.

Program. 11(3-4), 217–242 (1991)
21. Mitchell, N.: Rethinking supercompilation. In: ICFP ’10: Proceedings of the 15th

ACM SIGPLAN Internation Conference on Functional Programming. pp. 309–320.
ACM (September 2010)

22. Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: et al., O.C. (ed.)
IFL 2007. LNCS, vol. 5083, pp. 147–164. Springer-Verlag (May 2008)

23. Pettorossi, A., Proietti, M.: Rules and strategies for transforming functional and
logic programs. ACM Comput. Surv. 28(2), 360–414 (Jun 1996)

24. Sands, D.: Total correctness by local improvement in the transformation of func-
tional programs. ACM Transactions on Programming Languages and Systems 18,
175–234 (1996)

25. Sørensen, M., Glück, R.: An algorithm of generalization in positive supercompila-
tion. International Logic Programming Symposium pp. 465–479 (1995)

26. Sørensen, M., Glück, R., Jones, N.: A positive supercompiler. Journal of Functional
Programming 1(1) (January 1993)

27. Sørensen, M.H.: Turchin’s supercompiler revisited - an operational theory of posi-
tive information propagation (1996)

28. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems 8(3), 292–325 (June 1986)

29. Turchin, V.F.: Metacomputation: Metasystem transitions plus supercompilation.
In: Selected Papers from the Internaltional Seminar on Partial Evaluation. pp.
481–509. Springer-Verlag, London, UK, UK (1996)

30. Wadler, P.: Efficient compilation of pattern matching. In: Jones, S.P. (ed.) The
Implementation of Functional Programming Languages., pp. 78–103. Prentice-Hall
(1987)

http://darcs.haskell.org/nofib/
http://darcs.haskell.org/nofib/

A Comparison of Program Transformation Systems 47

31. Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248 (1990)

	Introduction
	Language
	Labelled Transition Systems
	Transformation Techniques using Labelled Transformation Systems
	Two-Level Supercompilation
	Comparison of Techniques
	Findings
	Supercompilation Techniques
	Distillation vs. Supercompilation

	Future Work
	Acknowldgements

