
Scala Macros

Eugene Burmako Martin Odersky

École Polytechnique Fédérale de Lausanne

09 July 2012 / Meta 2012

What is this talk about?

I Compile-time metaprogramming

I Type-safe AST transformers (called ”macros” in Scala and in several
other languages)

I Road to macros in Scala

2

Behind the scenes

I Advanced features of Scala’s type system w.r.t macros

I Cross-stage path-dependent types

I Type inference in presence of macros

I Implicits in macro declarations and implementations

I Design of the Scala reflection library

I Cake pattern to provide different views into the compiler

I Abstract types that enable virtual classes

I Uniformity of compile-time and runtime reflection

3

Outline

Introduction

Notation

Reification

Wrapping up

4

Project Kepler

The project was started in October 2011 with the following goals in mind:

I To democratize metaprogramming (at the moment there’s a lot of
hype that the future is multicore; along the similar lines my belief is
that the future is meta).

I To solve several hot problems in Scala: insufficient control over
inlining, need for reification in domain-specific languages.

Since April 2012 (milestone pre-release 2.10.0-M3) macros are a part of
Scala. Several practical (data access facility, unit testing framework,
library for numeric computations) and research projects are already using
macros.

5

Macros in Scala

def assert(cond: Boolean, msg: Any) = macro impl

def impl(c: Context)(cond: c.Expr[Boolean], msg: c.Expr[Any]) =

if (assertionsEnabled)

// if (!cond) raise(msg)

If(Select(cond.tree, newTermName("$unary_bang")),

Apply(Ident(newTermName("raise")), List(msg.tree)),

Literal(Constant(())))

else

Literal(Constant(())

import assert

assert(2 + 2 == 4, "weird arithmetic")

I Metalanguage = target language

I Macros work with ASTs rather than with text

I Type awareness and type-safety

6

Putting macros in perspective

I Text generators (C/C++ preprocessor, M4). No integration into
grammar or semantics of the target language.

I Syntax extenders (CamlP4, SugarHaskell, Marco). Define new
productions and non-terminals for the original grammar. Rely on
ad-hoc tricks to get semantic information (bindings, types, etc).

I Deeply embedded DSLs (Virtualized Scala, LMS). Reuse host parser
and typechecker, yet can override semantics.

I Macros (LISP, Scheme, MacroML, Template Haskell, Nemerle, etc).
Integrated into the compiler, expand during compilation, typically
have access to the compiler API.

I Metalanguages (N2). Every aspect of a language (parser, type
checker, code generation, IDE integration) is customizable.

7

Why this talk is interesting

I Metacomputations (because metaprogramming is cool)

I Linguistics (several notational problems and solutions w.r.t
metaprogramming)

I Metamacros (macro-generating macros, notation macros,
self-cleaning macros)

8

Outline

Introduction

Notation

Reification

Wrapping up

9

Notation for macro triggers

Function application (very traditional, implemented):

macro def assert(cond: Boolean, msg: Any) = ...

assert(2 + 2 == 4, "weird arithmetic")

Type construction (a natural desire for a typed language, planned):

macro type MySqlDb(connString: String) = ...

type MyDb = Base with MySqlDb("Server=127.0.0.1")

Declaration of program elements (tentative):

macro annotation Serializable = ...

@Serializable class Person(...)

Choice of macro triggers is arbitrary and ad-hoc. To do better we need
integration with the parser (Nemerle, SugarHaskell).

10

Notation for metacode

The first approach (similar to Template Haskell and Nemerle):

macro def assert(cond: Boolean, msg: Any) =

if (assertionsEnabled)

If(Select(cond, newTermName("$unary_bang")),

Apply(Ident(newTermName("raise")), List(msg)),

Literal(Constant(())))

else

Literal(Constant(())

I Minimalistic and appealing at a glance

I Transparent to the user, as the signature doesn’t reveal the
underlying magic

I Cross-stage lexical scoping is very potent

I Too potent to be robust

11

Problem with the first approach

class Queryable[T, Repr](query: Query) {

macro def filter(p: T => Boolean): Repr =

Apply(Ident(newTermName("Query")),

List(Apply(Ident(newTermName("Filter")),

List(query, reify(p)))))

}

I p being used in a macro expansion is okay, since it comes from the
same metalevel.

I But what about query? This is a runtime value, so we cannot splice it
into the result of macro expansion.

I Adapting closure conversion we could make it work, but that would
bring significant technical and cognitive problems.

I To avoid this problem Template Haskell and Nemerle only allow
macros in top-level definitions!

12

Notation for metacode

The second approach:

def assert(cond: Boolean, msg: Any) = macro impl

def impl(c: Context)(cond: c.Expr[Boolean], msg: c.Expr[Any]) =

if (assertionsEnabled)

If(Select(cond.tree, newTermName("$unary_bang")),

Apply(Ident(newTermName("raise")), List(msg.tree)),

Literal(Constant(())))

else

Literal(Constant(())

I Splits macro definitions and macro implementations. The latter are
only allowed in static contexts.

I As a pleasant side effect, macro parameter magic is gone, and macro
implementations are now first-class.

13

Notation for quasiquoting

An obvious approach is to introduce new syntax, following multiple
languages which have done that:

<[if (!$cond) raise($msg)]>

Being obvious this design decision is also suboptimal:

I Adds extra burden on the language spec

I Complicates parsing

I Is opaque to existing tools

14

Notation for quasiquoting

When macros started brewing, Scala got string interpolation. We
generalized the interpolation proposal to accomodate a wide range of
syntaxes:

scala"if (!$cond) raise($msg)"

gets desugared by the parser into the following snippet:

StringContext("if (!", ") raise (", ")").scala(cond, msg)

I No changes to the compiler

I Modularity and extensibility (anyone can ”pimp” the scala method
onto StringContext with implicit conversions)

I Partial amenability to automatic analysis

15

Outline

Introduction

Notation

Reification

Wrapping up

16

A discovery

Macro-based string interpolation expressing quasiquotes is nice, being
minimalistic, expressive and performant. What’s even more important, it’s
conventional.

scala"if (!$cond) raise($msg)"

A key insight however was to explore the design space further, which gave
us this marvel:

reify(if (!cond.eval) raise(msg.eval))

17

Notation for quasiquoting

The final solution:

reify(if (!cond.eval) raise(msg.eval))

reify is a library macro (but could be implemented by a
programmer).

It takes an AST that represents an expression (which in Scala can be even
a declaration or a sequence of declarations) and generates a tree that will
re-create that AST at runtime.

eval method is a marker that tells reify to splice the target expression into
the resulting AST.

18

Hygiene

def raise(msg: Any) = throw new AssertionError(msg)

def assert(cond: Boolean, msg: Any) = macro impl

def impl(c: Context)(cond: c.Expr[Boolean], msg: c.Expr[Any]) =

c.reify(if (!cond.eval) raise(msg))

object Test extends App {

def raise(msg: Any) = { /* haha, tricked you */ }

assert(2 + 2 == 3, "no way")

}

I reify solves the problem of inadvertent name captures

I For example raise in the AST produced will bind to the original raise
no matter where it ends up after macro expansion

19

Staging

reify can also express staging:

I Brackets are implemented by reify itself

I Escape is implemented inside reify by treating eval functions in a
special way

I Run is implicitly carried out by compilation and macro expansion (for
nested reify calls)

20

Related work

Taha et al. build a macro system atop a staged language:

I Macros as Multi-Stage Computations Ganz, Sabry & Taha, ICFP’01

I Staged Notational Definitions Taha & Johann, GPCE’03

We build a staged system atop a macro language.

21

Reified types

reify saves syntax trees and transfers them to the next metalevel. Exactly
the same can be done for types!

With reify it becomes possible to inspect type arguments of polymorphic
functions and type constructors.

22

Outline

Introduction

Notation

Reification

Wrapping up

23

Summary

I Language = metalanguage

I Macro-enabled Scala = Scala + macro keyword + a trigger in typer

I This minimalistic core is enough to express reify, which can
implement quasiquoting, hygiene and staging

I Reification makes Scala homoiconic

I This is officially a part of Scala

24

