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• high-performance parallel

computers (clusters)

• multicore desktops

• many-core accelerators

They are already here:

Are we prepared?
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• Is under development since early 90-th in the Research 
Centre for Multiprocessor Systems of Program Systems 
Institute in Pereslavl-Zalessky under the leadership of 
Sergei Mikhailovich Abramov

• Can be viewed as a particular implementation of the 
Parallel Functional Programming paradigm 

• Several different successful implementations were 
available for the computational clusters and SMP 
servers/desktops
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• Capitalizes on the inherent  properties of the functional 
programming: the independent calls of pure functions (the T-
functions in case of T-System) can be computed in parallel, e.g.:

F(G(x),H(x))

• Uses non-standard operational semantics for the calls of T-
functions:
after the call of a T-function all results of this call are assigned with 

non-ready (non-evaluated) values and computation of the initial T-
function (caller) can be continued. So in the example above 
functions F, G, H and the caller of the function F (4 functions total) 
can be under the process of computation in parallel up to the 
moment when the value of any variable that is still non-ready will 
be really needed for the computations (not for assignments)
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• Allows the bodies of T-functions be programmed in 
traditional imperative style (in particular, calls to a usual 
C functions are can be used). But several restrictions 
are applied to not permit the side effects get out of the 
T-function borders to influence the other calls

• The information is supplied to a call of a T-Function only 
via its arguments

• Each of the results can be returned by a T-Function call 
only via special primitive (SEND)

• Special flavor of variables (the T-variables) are 
introduced to hold non-ready values
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• In the course of parallel execution 
of a program each of the 
performed calls of a T-function 
becomes a lightweight thread of 
control (so called T-process) 

• T-processes and the T-System 
data together form a network that 
is being self-transformed during 
the execution of T-processes

• The process of execution of an 
application in the whole starts with 
the T-function named TMain

A sample network of a T-System 
processes and data
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The compilation and transformation framework for 
the T-System programs

• Is intended for to allow to analyze the T-System 
programs and execute optimizing transformations of their 
intermediate representation

• The input language is an extended restriction of the C 
programming language (the cT)

• The development is still not completed
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Architecture
• Main components: front end, a set of 

transform passes, and back end
• Front end transforms the program module 

from an input language into an intermediate 
representation (IR).  After the transformation 
is complete, the IR obtained as a result is 
stored in a separate file or special program 
library.

• Each transform pass is able to transfer IR 
from the file or program library into RAM and 
somehow modify it. After that, a new version 
of IR is stored back on the external storage. 
Since  IR of all application modules is 
potentially available to the transform pass, 
the performed transformations have a 
possibility to rely on the use of complete 
information about the application code as a 
whole

1. Source code
2. The library of intermediate 

representations
3. The output (assembler, C etc.) 

file

(continued on the next slide …)
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Architecture (continued)

• Back end reads IR from the file or program library and forms the resulting 
assembly (or C) code for further transformation into an executable program

• There also exists a compiler driver – a control program, which is needed for 
to call all the passes described above in the proper order and with the proper 
arguments

(continued on the next slide …)

A similar structure of compiling systems is used in a number of program 
transformation systems, such as SUIF, LLVM, OPS, etc.
The ACCT implementation is heavily based on the C front end of the GCC
compiler.
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Sample massively parallel problem

Light source

Scene objects

Image (to build)

Eye of the observer
(or camera)

The rays are backward-traced

• The elementary problem is to find R,G,B values 
for a pixel

• The massively parallel problem is to find the R, G, B values for all the pixels of the image
• The elementary problems in the massively parallel one differs only in coordinates of the 

pixels on the image plane

Image plane
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The implementation may  be represented as the following three functions:

•The render_scene function (which is a C function) is destined for filling 
small rectangles with the RGB intensity values for each point of the fragment 
contained within such a rectangle
•The render_scene_ut T-function recursively bisects the rendering area. It 
also calls the render_scene function – in case the size limit of the area is 
reached (that is the base case)
•The TMain. The launch of the T-process of the TMain function starts the 
execution of any application written in cT. TMain reads the scene description 
from the file and then launches the T process with the first call to 
render_scene_ut. After that, TMain solves the problem of breadth-first 
traversal of the binary tree built by render_scene_ut and assembles a 
composite image from the fragments located inside the leaves of the tree, in 
parallel with the computation of individual fragments performed by 
render_scene_ut/render_scene calls
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01 [void safe * sh]
02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,
03                  int nx, ny,
04                  void safe * sh_scene) {
05    void safe * utsh_res;
06 

07    if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08      int ny1, ny2;
09 
10      ny1 = ny / 2;
11      ny2 = ny - ny1;
12      utsh_res = tnew (void safe * [2]);
13      utsh_res [0] =
14        render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,
15                         nx, ny1, sh_scene);
16      utsh_res [1] =
17        render_scene_ut (f_ulx,f_uly + f_stepy * ny1,
18                         f_stepx, f_stepy, nx, ny2,
19                         sh_scene);
20      sh <== utsh_res;

21    } else {
22      utsh_res =
23        tnew (char[sizeof (frag_dsc) +
24                   CHAR_PER_POINT * nx * ny] outer);
25      render_scene
26       (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27        ((char *) &(utsh_res->C)) + sizeof(frag_dsc));
28      sh <== utsh_res;
29    }
30 }

Recursive 
branch

Basis of 
recursion

render_scene_ut
function header & 

initial part
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01 [void safe * sh]
02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,
03                  int nx, ny,
04                  void safe * sh_scene) {
05    void safe * utsh_res;
06 

render_scene_ut function
header & initial part

List of results

Tree node holder

Holders – special kind of pointers
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07    if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08      int ny1, ny2;
09 
10      ny1 = ny / 2;
11      ny2 = ny - ny1;
12      utsh_res = tnew (void safe * [2]);
13      utsh_res [0] =
14        render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,
15                         nx, ny1, sh_scene);
16      utsh_res [1] =
17        render_scene_ut (f_ulx,f_uly + f_stepy * ny1,
18                         f_stepx, f_stepy, nx, ny2,
19                         sh_scene);
20      sh <== utsh_res;

Recursive branch
Condition

Allocation of a tree node

Starting T-processes for subbranches

Returning the result
(SEND)

Ray Tracing: Initial Program IV
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21    } else {
22      utsh_res =
23        tnew (char[sizeof (frag_dsc) +
24                   CHAR_PER_POINT * nx * ny] outer);
25      render_scene
26       (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27        ((char *) &(utsh_res->C)) + sizeof(frag_dsc));
28      sh <== utsh_res;
29    }
30 }

Basis of recursion

Returning the result
(SEND)

Allocation of a tree leaf
Direct computation

of a tree leaf

•The branch is entered in case the power of the set of jobs
(i.e. size of image fragment) is reasonably small

Ray Tracing: initial program V
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tree leaf

tree node

T-process
(call of T-function)

tree branch

• One T-process for each branch ==
one for each node

+ one for each leaf

• Problem:
a lot of T-processes – approximately a half
– are launched only to allocate a tree node 
and to start another (two) T-processes for  
subbranches , so they are too lightweight.

• Inefficiency is especially seen in case of 
running the program on a distributed-
memory multiprocessor (e. g. cluster)

Legend:
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tree leaf

tree node

T-process
(call of T-function)

tree branch

• One T-process for each leaf

• The number of T-processes 
reduced approximately in a half . 

Legend:

• No inefficiency: all processes 
have reasonable weight. 
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06 ...
07 if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08 int ny1, ny2;
09′ void safe * utsh_w;
10′
11′ ny1 = ny / 2;
12′ ny2 = ny - ny1;
13′ utsh_res = tnew (void safe * [2]);
14′ utsh_w = utsh_res;

15′ for (;;) {
16′ utsh_w [0] =
17′ render_scene_ut
18′ (f_ulx, f_uly, f_stepx, f_stepy,
19′ nx, ny1, sh_scene);
20′ f_uly = f_uly + f_stepy * ny1;
21′ if (nx * ny2 <= MIN_POINTS_PER_FRAG
22′ || ny2 < 2)
23′ break;
24′ ny1 = ny2 / 2;
25′ ny2 = ny2 - ny1;
26′ utsh_w [1] = tnew (void safe * [2]);
27′ utsh_w = utsh_w [1];
28′ }

29′ utsh_w [1] =
30′ tnew (char[sizeof (frag_dsc) +
31′ CHAR_PER_POINT * nx * ny2] outer);
32′ render_scene
33′ (f_ulx, f_uly, f_stepx, f_stepy, nx, ny2,
34′ ((char *) (utsh_w[1].C))+sizeof(frag_dsc));
35′ sh <== utsh_res;
21    } else {
22

Former recursive 
branch

Loop through 
subtree nodes

Building the 
final leaf

Loop exit

Returning the root of subtree

Initial part
Building the root of subtree
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15′ for (;;) {
16′ utsh_w [0] =
17′ render_scene_ut
18′ (f_ulx, f_uly, f_stepx, f_stepy,
19′ nx, ny1, sh_scene);
20′ f_uly = f_uly + f_stepy * ny1;
21′ if (nx * ny2 <= MIN_POINTS_PER_FRAG
22′ || ny2 < 2)
23′ break;
24′ ny1 = ny2 / 2;
25′ ny2 = ny2 - ny1;
26′ utsh_w [1] = tnew (void safe * [2]);
27′ utsh_w = utsh_w [1];
28′ }

(see next slide for the legend)
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Legend
(for previous slide)

•Starting a T-process for a left branch

•Loop exit

•Reinitialization

•Reinitialization: directly allocating 

the space for the subbranches of the 

right branch
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[void safe * sh]
compute_it_ut (ARGLIST) {
void safe * utsh_res;
Env A

Prep A
...
Prep Z

if (Cond) {
Env B

Prep BA
...
utsh_res = tnew (void safe * [2]);
...
Prep BM
utsh_res [0] = compute_it_ut (ARGS0(ARGLIST, Env A, Env 

B));
Prep BN
...
Prep BZ
utsh_res [1] = compute_it_ut (ARGS1(ARGLIST, Env A, Env 

B));
sh <== utsh_res;} else {
Env C

Prep CA
...
utsh_res =
tnew (char[sizeof (frag_dsc) + SIZE_of_SUBSET] outer);

...
Prep CZ
compute_it (ARGS(ARGLIST, Env A, Env C, & (utsh_res -> 

C)));
Postp C
sh <== utsh_res;

}
}

Recursive 
branch

Basis of 
recursion

compute_it_ut
function header & 

initial part

Initial program
wire-frame
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The “wire-frame” is a program skeleton. To write an application on 
it’s basis the application programmer should provide some meat:

•The C function that solves the problem for some volume of 
variants of initial data;
•The way to compute the size of result data (for memory allocation)
•The algorithm to compute arguments to this C function
•The way to break the volume into two equal parts
•The condition when to stop breaking and proceed to the recursion
base



General Massively Parallel Task III
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The initial wire-frame 
as it is (simplified)

We should remember that we are working 
with the internal representation

This time this one is the form of AST 
(Abstract Syntax Trees). ASTs are more or 
less equivalent to source code (up to 
parenthesis etc.)

A member of a list of top-level definitions

List of statements

Set of definitions of names (environment)

Statements (consists of elementary 
operation nodes)
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The original version

• Tail recursion wasn’t revealed
• The best attempt: the “tail recursion modulo cons”

approach (by  David H. D. Warren)
• A problem when trying to apply “tail recursion modulo 

cons” approach:
need to use a side effect to assign the values to the 
externally allocated variables. This is incorrect and 
explicitly prohibited in the cT: assignments to 
variables that are “non-owned” by the function in the 
cT are possible only via value return (SEND) 
statements
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try to apply a sequence of transformations to 

reshape initial wire-frame of the general-case 

program in the same way as the ray-tracing 

program wire-frame was transformed

The idea of the approach used:
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Transformation implemented as a 
sequence of stages:

• Substitution

• Looping

• Final cleaning of variables and 

assignments



General Case Transformation IV
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• Substitution

here

The body of compute_it_ut 
function – realizing the 
recursion step – is substituted 
(inlined) instead of the second 
recursive call.

The return of the result (the 
SEND statements) in the 
inlined code is substituted with 
the usual assignments.

[void safe * sh]
compute_it_ut (ARGLIST) {
void safe * utsh_res;
Env A

Prep A
...
Prep Z

if (Cond) {
Env B

Prep BA
...
utsh_res = tnew (void safe * [2]);
...
Prep BM
utsh_res [0] = compute_it_ut (ARGS0(ARGLIST, Env A, Env 

B));
Prep BN
...
Prep BZ
utsh_res [1] = compute_it_ut (ARGS1(ARGLIST, Env A, Env 

B));
sh <== utsh_res;} else {
Env C

Prep CA
...
utsh_res =
tnew (char[sizeof (frag_dsc) + SIZE_of_SUBSET] outer);

...
Prep CZ
compute_it (ARGS(ARGLIST, Env A, Env C, & (utsh_res -> 

C)));
Postp C
sh <== utsh_res;

}
}
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• Looping (introducing the iteration)
The stage is executed in several 
steps. The execution of all the steps 
allows to considerably reduce the 
number of lightweight parallelism 
granules.

The two (of three) last recursive calls 
are completely eliminated at the 
looping stage. As a substitution to 
the eliminated recursive calls, the 
loop structure and the recursion 
base –– with the call to the 
compute_it C function –– is inserted 
into the recursive branch of the 
compute_it_ut function.

The resultant internal representation of former 
“recursive branch” after the looping stage



General Case Transformation VI
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• Cleaning

After mechanically implemented transformations, the recursive branch has a 
number of odd assignments and T-variables. We should “optimize” them.

Example. If we apply the above transformation steps to the 
render_scene_ut function, the result will contain the following definition:

void safe * sh_scene’; 

and a pair of assignments, such as

sh_scene’ = sh_scene; and   sh_scene = sh_scene’;

with no other assignments to these variables are performed (so we can 
substitute the sh_scene’ with the sh_scene one and remove the second 
assignment).



General Case Transformation ???

34Optimization of Imperative 
Functional Parallel ProgramsMETA 2012

Remarks

• The algorithm was based on “intuitive correctness”

• The were no room prepared for the “formally verifiable 
correctness”

• Great thanks to the reviewers



01 [void safe * sh]
02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,
03                  int nx, ny,
04                  void safe * sh_scene) {
05    void safe * utsh_res;
06   

07    if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08      int ny1, ny2;
09 
10      ny1 = ny / 2;
11      ny2 = ny - ny1;
12      utsh_res = tnew (void safe * [2]);
13      utsh_res [0] =
14        render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,
15                         nx, ny1, sh_scene);
16      utsh_res [1] =
17        render_scene_ut (f_ulx,f_uly + f_stepy * ny1,
18                         f_stepx, f_stepy, nx, ny2,
19                         sh_scene);
20      sh <== utsh_res;

21    } else {
22      utsh_res =
23        tnew (char[sizeof (frag_dsc) +
24                   CHAR_PER_POINT * nx * ny] outer);
25      render_scene
26       (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27        ((char *) &(utsh_res->C)) + sizeof(frag_dsc));
28      sh <== utsh_res;
29    }
30 }

01 [void safe * sh]
02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,
03                  int nx, ny,
04                  void safe * sh_scene) {
05    void safe * utsh_res;
06   

07    if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08      int ny1, ny2;
09 
10      ny1 = ny / 2;
11      ny2 = ny - ny1;
12      utsh_res = tnew (void safe * [2]);
13      utsh_res [0] =
14        render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,
15                         nx, ny1, sh_scene);
16      utsh_res [1] =
17        render_scene_ut (f_ulx,f_uly + f_stepy * ny1,
18                         f_stepx, f_stepy, nx, ny2,
19                         sh_scene);
20      sh <== utsh_res;

21    } else {
22      utsh_res =
23        tnew (char[sizeof (frag_dsc) +
24                   CHAR_PER_POINT * nx * ny] outer);
25      render_scene
26       (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27        ((char *) &(utsh_res->C)) + sizeof(frag_dsc));
28      sh <== utsh_res;
29    }
30 }

Ray Tracing: Initial Program
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Recursive 
branch

Basis of 
recursion

render_scene_ut
function header & 

initial part

(revisited for
reminder)
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Stage 1: compile the initial cT program
to the C one

• The meaning of the program is preserved:

comp cT comp C comp
•Mapping to the C programming language with 
standard sequential operational
semantics of cT as a functional language
is implemented by comp.
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01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {
05    tholder utsh_res_int;
06   

07    if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08      int ny1, ny2;
09
10      ny1 = ny / 2;
11      ny2 = ny - ny1;
12      utsh_res_int -> ptr = calloc (tholder [2]);
12b     utsh_res_int -> cnt = 2;
14      render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                           nx, ny1, sh_scene,
13                           utsh_res_int -> ptr);
17      render_scene_ut_int (f_ulx,f_uly + f_stepy * ny1,
18                           f_stepx, f_stepy, nx, ny2,
19                           sh_scene,
16                           (tholder *) utsh_res_int -> ptr + 1);
20      * sh_int_ret =  utsh_res_int;
20b     return;

21   } else {
22     utsh_res_int -> ptr =
23     calloc (TSIZE (sizeof (frag_dsc)
24                    + CHAR_PER_POINT*nx*ny)), 1);
24b    utsh_res_int -> cnt = 1;
24c    ((tholder *) utsh_res_int -> ptr) -> tag = TTAG_LCELL;
24d    ((tholder *) utsh_res_int -> ptr) -> len =
24d      TSIZE (sizeof (frag_dsc) + CHAR_PER_POINT*nx*ny);
25     render_scene
26      (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27       ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b      + sizeof(frag_dsc));
28     * sh_int_ret = utsh_res_int;
28     return;
29 }
30 }

Recursive 
branch

Basis of 
recursion

render_scene_ut_int
C function header

& initial part
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01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx,double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene_int,
04b                     tholder * sh_int_ret) {
05   tholder utsh_res_int;
06

render_scene_ut_int
C function 

header & initial part
void

result
tholder: a pair (ptr, cnt);
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07  if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {
08    int ny1, ny2;
09
10    ny1 = ny / 2;
11    ny2 = ny - ny1;
12    utsh_res_int -> ptr = calloc (tholder [2]);
12b   utsh_res_int -> cnt = 2;
14    render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                         nx, ny1, sh_scene,
13                         utsh_res_int -> ptr);
17    render_scene_ut_int (f_ulx,f_uly + f_stepy * ny1,
18                         f_stepx, f_stepy, nx, ny2,
19                         sh_scene,
16                         (tholder *) utsh_res_int -> ptr + 1);
20    * sh_int_ret =  utsh_res_int;
20b   return;

Recursive branch
Recursive calls

Allocation of the node

Ray Tracing: transformation'

Return of the
result
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21  } else {
22    utsh_res_int -> ptr =
23      calloc (TSIZE (sizeof (frag_dsc)
24                     + CHAR_PER_POINT*nx*ny)), 1);
24b   utsh_res_int -> cnt = 1;
24c   ((tholder *) utsh_res_int -> ptr) -> tag = TTAG_LCELL;
24d   ((tholder *) utsh_res_int -> ptr) -> len =
24d     TSIZE (sizeof (frag_dsc) + CHAR_PER_POINT*nx*ny);
25    render_scene
26      (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27       ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b      + sizeof(frag_dsc));
28    * sh_int_ret = utsh_res_int;
28    return;
29  }

Recursion basis branch
Calling the 
rendering
functionAllocation of the leaf

Ray Tracing: transformation'

Return of the
result



Ray Tracing: transformation' II
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Stage 2: reveal the tail recursion

• Take the recursive branch out of conditional
statement to the final part of the function

• Make the recursive call be placed at the very
end of the function
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01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {
05   tholder utsh_res_int;
06

08  int ny1, ny2;
09
10  ny1 = ny / 2;
11  ny2 = ny - ny1;
12  utsh_res_int -> ptr = calloc (tholder [2]);
12b utsh_res_int -> cnt = 2;
14  render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                       nx, ny1, sh_scene,
13                       utsh_res_int -> ptr);
17  render_scene_ut_int (f_ulx,f_uly + f_stepy * ny1,
18                       f_stepx, f_stepy, nx, ny2,
19                       sh_scene,
16                       (tholder *) utsh_res_int -> ptr + 1);
20  * sh_int_ret =  utsh_res_int;
20b return;
30 }

07  if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
22    utsh_res_int -> ptr =
23    calloc (TSIZE (sizeof (frag_dsc)
24                   + CHAR_PER_POINT*nx*ny)), 1);
24b   utsh_res_int -> cnt = 1;
24c   ((tholder *) utsh_res_int -> ptr) -> tag = TTAG_LCELL;
24d   ((tholder *) utsh_res_int -> ptr) -> len =
24d     TSIZE (sizeof (frag_dsc) + CHAR_PER_POINT*nx*ny);
25    render_scene
26      (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27       ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b      + sizeof(frag_dsc));
28    * sh_int_ret = utsh_res_int;
28    return;
29  }

Former
recursive 
branch

Basis of 
recursion

render_scene_ut_int
C function header

& initial part

1. Take the recursive 
branch out of the 

conditional  statement



1. Take the recursive branch out of the conditional  statement
…
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07  if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
22    utsh_res_int -> ptr =
...
28    * sh_int_ret = utsh_res_int;
28    return;
29  }

Inverted condition changes the order of branches
Basis of 

recursion

The branch ends with the return statement,
so configuration of the control is preserved



1. Take the recursive branch out of the conditional  statement
to the final part of the function
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08  int ny1, ny2;
09
...
17  render_scene_ut_int (f_ulx,f_uly + f_stepy * ny1,
18                       f_stepx, f_stepy, nx, ny2,
19                       sh_scene,
16                       (tholder *) utsh_res_int -> ptr + 1);
20  * sh_int_ret =  utsh_res_int;
20b return;
30 }

Still recursive call isn’t the last statement  of the function



2. Make the recursive call be placed at the very end of the function
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08  int ny1, ny2;
09
...
20  * sh_int_ret = utsh_res_int;
17  render_scene_ut_int (f_ulx,f_uly + f_stepy * ny1,
18                       f_stepx, f_stepy, nx, ny2,
19                       sh_scene,
16                       (tholder *) utsh_res_int -> ptr + 1);
20b return;
30 }

Return statement not needed at the very end of function that returns void

This statement moving is clear since the side effect (the assignment to the 
external memory) will became visible only after returning out of the function
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Stage 3: convert the tail recursion
into iteration

• All the function body statements go into
the body of “for(;;)” loop

• The last recursive call is substituted with
recalculation of the values stored in function
arguments – according to the argument list
of the call statement
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08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            utsh_res_int -> ptr);
20       * sh_int_ret =  utsh_res_int;

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_int_ret = utsh_res_int;
28         return;
29       }

Recalculation
of the arguments

Loop statement

Conversion of the
tail recursion into 

iteration
0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_int_ret = (tholder *) utsh_res_int -> ptr + 1; 

30 }

05       tholder utsh_res_int;
06

0x2   }

01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {
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Recalculation of the (different) arguments

Conversion of the tail recursion into iteration

0y1      ny = ny2;
0y2      sh_int_ret = (tholder *) utsh_res_int -> ptr + 1; 

• The place where the sample program can differ from           
the general case

• Only the arguments should be recalculated that differs
from upper-level call

• Recalculation order is regulated with the rules of 
calculation of the arguments

• In the general case we can create a temporary variable
for each value to be recalculated.
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The problem:

• We have a pure sequential function

written in C with some side effects

• We need a parallel-style function

written in cT without any side effect
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The route:
• Remove the side effects out of the loop

• Integrate the side effects to the structures

of that style into which the cT- function value

return was mapped

• Convert the C function back into the cT one

(“parallelize” it)
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Stage 4: remove the side effects out of the 
loop

* sh_int_ret = utsh_res_int;

• All the side effects in the function body looks like that:

sh_int_ret = (tholder *) utsh_res_int -> ptr + 1;

• After recalculation sh_int_ret points to the newly
allocated “own” data:

• That means that “side effects” exists only on the first 
iteration, when sh_int_ret points to the external data
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08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            utsh_res_int -> ptr);
20       * sh_int_ret =  utsh_res_int;

12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
20       * sh_int_ret =  utsh_res_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            utsh_res_int -> ptr);

The code motions that evidently doesn’t change the semantics 

The result of the 
conversion of the

rest of former
“recursive branch”

Grouping the
“wireframe”
sentences
together

The rest of former
“recursive branch”
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07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_int_ret = utsh_res_int;
28         return;
29       }The loop body after 

the code motions

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_int_ret = (tholder *) utsh_res_int -> ptr + 1; 

05       tholder utsh_res_int;
06

0x2   }

12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
20       * sh_int_ret =  utsh_res_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            utsh_res_int -> ptr);

B

A

C

D

E

Partial unwinding of the loop

In the absence of the
break statements and gotos
for (;;) {A; B; C; D; E;} == A; B; C; for (;;) {D; E; B; C;}



Ray Tracing: transformation' IV

54Optimization of Imperative 
Functional Parallel ProgramsMETA 2012

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_int_ret = utsh_res_int;
28         return;
29       }

The loop preamble after 
the partial unwinding

05       tholder utsh_res_int;
06

12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
20       * sh_int_ret =  utsh_res_int;

Partial unwinding of the loop

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_int_ret = utsh_res_int;
28b         return;
29       }

The loop after the 
partial unwinding

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_int_ret = (tholder *) utsh_res_int -> ptr + 1; 

0x2   }

12       utsh_res_int -> ptr = calloc (tholder [2]);
12b      utsh_res_int -> cnt = 2;
20       * sh_int_ret =  utsh_res_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            utsh_res_int -> ptr);
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Renaming of the “wireframe” pointers in the loop body

07     if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25       render_scene
26         (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27          ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b         + sizeof(frag_dsc));
28       * sh_int_ret = utsh_res_int;
28b      return;
29     }

The loop preamble after 
the renaming

05     tholder utsh_res_int;
0z1  tholder sh_u_int, * sh_w_intp;
06

12     utsh_res_int -> ptr = calloc (tholder [2]);
12b    utsh_res_int -> cnt = 2;
20 * sh_int_ret =  utsh_res_int;
0zz    sh_u_int = utsh_res_int;

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) sh_u_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_w_intp = sh_u_int;
28b        return;
29       }

The loop after the 
renaming

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_w_intp = (tholder *) sh_u_int -> ptr + 1; 

0x2   }

12       sh_u_int -> ptr = calloc (tholder [2]);
12b      sh_u_int -> cnt = 2;
20       * sh_w_intp =  sh_u_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            sh_u_int -> ptr);

utsh_res_int sh_u_int

sh_int_ret sh_w_int
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Stage 4: remove the side effects out of the 
loop

• Here it is:
there are no more references to the
externally allocated memory
in the loop body
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Stage 5: Integrate the side effects to the 
structures of that style into which the cT-
function value return was mapped

* sh_int_ret = utsh_res_int;
return;

sh <== utsh_res

in the cT

in the C

Preparing to the “back conversion” to the cT
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Preparing to the “back conversion” to the cT

07     if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25       render_scene
26         (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27          ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b         + sizeof(frag_dsc));
28       * sh_int_ret = utsh_res_int;
28b      return;
29     }

05     tholder utsh_res_int;
0z1  tholder sh_u_int, * sh_w_intp;
06

12     utsh_res_int -> ptr = calloc (tholder [2]);
12b    utsh_res_int -> cnt = 2;
20     * sh_int_ret =  utsh_res_int;
0zz    sh_u_int = utsh_res_int;

01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) sh_u_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_w_intp = sh_u_int;
20         * sh_int_ret =  utsh_res_int;
28b        return;
29       }

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_w_intp = (tholder *) sh_u_int -> ptr + 1; 

0x2   }

12       sh_u_int -> ptr = calloc (tholder [2]);
12b      sh_u_int -> cnt = 2;
20       * sh_w_intp =  sh_u_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            sh_u_int -> ptr);

30 }

Again, the code motion is legal, since:

• The sentence is executed only once
• The values were not accessed between the source and destination code positions
• The side effect will in both cases will be seen only after the return out of the function
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Ready to the “back conversion” to the cT

12     utsh_res_int -> ptr = calloc (tholder [2]);
12b    utsh_res_int -> cnt = 2;
0zz    sh_u_int = utsh_res_int;

07     if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25       render_scene
26         (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27          ((char *) utsh_res_int -> ptr) + SZ_THEAD
27b         + sizeof(frag_dsc));
28       * sh_int_ret = utsh_res_int;
28b      return;
29     }

05     tholder utsh_res_int;
0z1  tholder sh_u_int, * sh_w_intp;
06

01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
...
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) sh_u_int -> ptr) + SZ_THEAD
27b           + sizeof(frag_dsc));
28         * sh_w_intp = sh_u_int;
20         * sh_int_ret =  utsh_res_int;
28b        return;
29       }

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_w_intp = (tholder *) sh_u_int -> ptr + 1; 

0x2   }

12       sh_u_int -> ptr = calloc (tholder [2]);
12b      sh_u_int -> cnt = 2;
20       * sh_w_intp =  sh_u_int;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
14       render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                            nx, ny1, sh_scene,
13                            sh_u_int -> ptr);

30 }

“Surprisingly”, all the side
effects  are now in the correct
environments
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Stage 6: converting the C function back 
into the cT one (“parallelization”)

• The tholder C type to the “void safe *” cT one
• The header of the C function returning the “void”
to the cT-style header

• The “correctly-shaped” side effects to the cT “SEND”
sentences

• The recursive calls to the cT –style ones
• The C-style memory allocations to the cT-style ones
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Back to the cT (parallelization)

in the cT

01 void
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      tholder sh_scene,
04b                     tholder * sh_int_ret) {

Conversion of the function header

01 [void safe * sh]
02 render_scene_ut (double f_ulx, double f_uly,
02b                 double f_stepx, double f_stepy,
03                  int nx, int ny, 
04                  void safe * sh_scene) {

in the C
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Back to the cT (parallelization)
Conversion of the “tholder” type

and the side effects

* sh_int_ret = utsh_res_int;
return;

sh <== utsh_res

in the cT

in the C

tholder

safe void *
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Back to the cT (parallelization)

in the cT

14  render_scene_ut_int (f_ulx,f_uly,f_stepx,f_stepy,
15                       nx, ny1, sh_scene,
13                       sh_u_int -> ptr);

Conversion of the recursive function calls

13 sh = 
14     render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,
15                      nx, ny1, sh_scene);

in the C
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Back to the cT (parallelization)

in the cT

22   utsh_res_int =  
23     calloc (TSIZE (sizeof (frag_dsc)
24                    + CHAR_PER_POINT * nx * ny)), 1);
24b   utsh_res_int -> cnt = 1;
24c   ((tholder *) utsh_res_int -> ptr) -> tag = TTAG_LCELL;
24d   ((tholder *) utsh_res_int -> ptr) -> len =
24d     TSIZE (sizeof (frag_dsc) + CHAR_PER_POINT*nx*ny);

Conversion of the memory allocations

22       utsh_res = 
23         tnew (char[sizeof (frag_dsc) +
24                    CHAR_PER_POINT * nx * ny] outer);

in the C



Ray Tracing: transformation' VI

65Optimization of Imperative 
Functional Parallel ProgramsMETA 2012

12     utsh_res = tnew (void safe * [2]);
0zz    sh_u_int = utsh_res_int;

07     if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
22       utsh_res = 
23         tnew (char[sizeof (frag_dsc) +
24                    CHAR_PER_POINT * nx * ny] outer);
25       render_scene
26         (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27          ((char *) &(utsh_res->C))+sizeof(frag_dsc));
28       sh <==  utsh_res; 
29     }

05     void safe * utsh_res_int;
0z1  void safe * sh_u, sh_w;
06

01 [ void safe * sh]
02 render_scene_ut_int (double f_ulx, double f_uly,
02b                     double f_stepx, double f_stepy,
03                      int nx, int ny,
04                      void safe * sh_scene) {

07       if (!(nx * ny > MIN_POINTS_PER_FRAG && ny >= 2)) {
22         sh_u =
23           tnew (char[sizeof (frag_dsc) +
24                      CHAR_PER_POINT * nx * ny] outer);
25         render_scene
26           (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,
27            ((char *) &(utsh_res->C))+sizeof(frag_dsc));
28         * sh_w = sh_u;
20         sh <==  utsh_res;
29       }

0x1    for (;;) {

0y1      ny = ny2;
0y2      sh_w = sh_u + 1; 

0x2   }

12       sh_u = tnew (void safe * [2]);
20       * sh_w =  sh_u;

08       int ny1, ny2;
09
10       ny1 = ny / 2;
11       ny2 = ny - ny1;
13       sh =
14        render_scene_ut (f_ulx,f_uly, f_stepx,f _stepy,
15                         nx, ny1, sh_scene);

30 }

Back to the cT (parallelization): ENJOY
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Lessons
• The transformation is formally correct at each step, so the result 

program is formally equivalent to the initial one

• The transformation is not nearly the same as initially proposed
• Result program is the same as hand-crafted (modulo simple 

insignificant changes)
• Mostly wire-frame control and data structures are concerned. When 

application-specific structures are touched (as the recalculation of the 
arguments when converting recursive call to the iteration), the 
correctness is provided for the general case. So transformation can 
be applied for the solving of  any massively-parallel problem

• “Tail recursion modulo cons” rule has worked again, but now in a less 
usual way
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• Various local optimizations oriented on the T-System specific 
properties (e.g. code motion to the region before the possible T-
process suspending due to non-readiness of a T-variable)

• Code instrumentation for rapid in-line checking of the incoming 
messages (to improve reactivity of run-time support on distributed-
memory multiprocessors)

• The opportunity to use the specialization techniques (including 
some forms of program supercompilation or distillation)

The last entry was (and still is) the most inspiring in the course of the 
development.

(i.e. in addition to equalizing the granulation of the parallelism)
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• Background (the T-system)
• Review of the ACCT compiling and transformation toolchain
• Algorithm for optimization of general massively-parallel tasks (after all, 

obviously correct)

• Only a first effort in the direction of cT programs optimization
• Still a lot of things to do to complete the first version of the system
• Wary hope the toolset will be useful in the context of metacomputation 

technologies applications
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Questions
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? Internal representation suitable for meta-computations

? “Parallel computing with help of  metacomputations” or 
“metacomputations vs. parallel computing”

? Your questions


