
Optimization of Imperative Functional
Parallel Programs with Non-local

Program Transformations

Alexei Adamovich

Ailamazyan Program Systems Institute of Russian Academy of Sciences, RCMS,
Pereslavl-Zalessky, Russia

lexa@botik.ru

Abstract. Functional programming is among paradigms used for the
real-world parallel application development. PSI of RAS during a con-
siderable period of time develops the T-System approach based on func-
tional programming. This paper briefly describes the architecture of the
ACCT compiler system targeted at performing transformations of the T-
System programs. An algorithm for nonlocal optimizing transformation
of a typical parallel application solving massively parallel problem in the
T-System is presented. The author finally mentions several opportunities
of other possible applications of the proposed architecture.

Keywords: functional programming, parallel application development,
T-System, program transformation

1 Introduction

Advance in the field of parallel computations is one of the modern trends. The
advance is due not only to the implementation of supercomputers with over 10
PFlops of performance. A substantial reason is that multicore processor archi-
tecture has become the dominant on the desktop PCs.

The current state of software tools for parallel applications development im-
plies a coexistence of a number of paradigms. Specifically, the functional pro-
gramming paradigm is being developed as a base for implementing the real-world
parallel applications. In this paradigm, the possibility of automatic paralleliza-
tion and dynamic load balancing is very attractive.

From the first half of 90s, the Aylamazyan Program Systems Institute of the
Russian Academy of Sciences (PSI of RAS) develops an approach to parallel
program development based on the functional paradigm which is called now the
T-System [1]. Today, in PSI of RAS, there are made several different imple-
mentations of the T-System [2,3]. However, for all of the implementations one
common disadvantage is the lack of tools for deep analysis and transformation
of programs.

In the paper, the author presents general principles of the T-System. The
paper also describes the architecture of the compiler version for the T-System

12 A. Adamovich

(with a codename ACCT) being implemented in PSI of RAS. ACCT allows to
analyze programs given it at input and to execute their optimizing transforma-
tions. Then, the author outlines an algorithm for non-local transformations of a
typical parallel application solving massively parallel problems in the T-System.
The paper further gives several examples of other possible applications of the
proposed architecture for increasing the efficiency of parallel applications.

2 Compiler Design

2.1 Basic Properties of the Input Language and the Model of
Computation

For ACCT, the input language is an extended restriction of the C programming
language (cT) [4]. Function bodies are written with a conventional imperative
style. Function interaction is possible only within the framework of the functional
programming paradigm, without the side effects: the information from outside
can only be received via function arguments, and the transfer of information
outwards is performed by sending function results (there may be a number of
results).

When the T-function is called a T-process is created – which is a user-level
thread. A new started T-process is potentially capable of being executed in
parallel with the initial T-process. For enabling a parallel execution at the T-
process launch, the variables that are receiving their values as a result of the
functional call take special values – so called “non-ready values”. A non-ready
value is replaced with normal (ready) one after the T-process completed sending
a corresponding result of the T-function call.

Non-ready values are located in special variables (outer variables). A non-
ready value may easily participate in assignment of a value of one outer variable
to another outer variable of the same type. If the T-process needs an outer
variable value for executing a nontrivial operation (such as computation of the
result of an arithmetic operation or transformation of an integral value into a
float point value), the execution of such a T-process will be suspended until the
outer variable takes a ready value.

It must be noted that T-function bodies may contain the calls of conventional
functions (C functions), which requires to limit the effect of such a call by the
T-process on the background of which the call is executed (there should be no
side effects as far as other T-processes are concerned).

2.2 Compiler Architecture

The compiler consists of the following main components: front end, a set of
transform passes, and back end.

Front end transforms the program module from an input language into an
intermediate representation (IR). After the transformation is complete, the inter-
mediate representation obtained as a result is stored in a separate file or special
program library.

Optimization of Imperative Functional Parallel Programs 13

Each transform pass is able to transfer IR from the file or program library
into RAM and somehow modify it. After that, a new version of IR is stored
back on the external storage. Since all application modules are available to the
transform pass, the performed transformations have a potential possibility to
rely on the use of complete information about the application code as a whole.

The compiler back end reads IR from the file or program library and forms
the resulting assembly (or C) code for further transformation into an executable
program.

There also exists a compiler driver – a control program, which is needed for
to call all the passes described above in the proper order.

A similar structure of compiling systems is used in a number of program
transformation systems, such as SUIF [5], LLVM [6], OPS [7], etc. The ACCT
implementation is heavily based on the C front end of the GCC compiler.

Hereinafter, we’ll give an example of a non-local transformation of an appli-
cation program. Such transformation may be implemented with the proposed
program architecture.

3 Example of Program Transformation

3.1 Initial Problem

The proposed program transformation is suitable for the applications solving
massively parallel problems. As an example of a program being transformed, we
use a special modification of a standard iterative ray tracing algorithm. In case
of ray tracing, a variable parameter in a massively parallel problem is a pair of
coordinates of a point on the image plane.

The upper level of the modified algorithm implies a bisection of the rect-
angular part of the image plane containing the image. The division recursively
proceeds until, after some step in the recursion, the resulting rectangles become
sufficiently small. Thereafter, each of the resulting small rectangles is filled with
image pixels by means of a standard tracing algorithm. Such small rectangular
fragments are then assembled into a composite image.

Each small image fragment may be built independently of the others, which
allows a parallel implementation of the problem. The recursive method of image
fragmenting permits to bypass (e.g. executing the task on a cluster) the compu-
tation sequence which is typical for the so-called “task farm” paradigm and to
avoid the appropriate performance penalties.

The implementation of the algorithm on cT may be represented as the fol-
lowing three functions:

1. The render scene function (which is a C function) is destined for filling
small rectangles with the RGB intensity values for each point of the fragment
contained within such a rectangle.

2. The render scene ut T-function recursively bisects the rendering area. It
also calls the render scene function – in case the size limit of the area is
reached (that is the base case).

14 A. Adamovich

3. Tmain. The launch of the T-process of the TMain function starts the execution
of any application written in cT. TMain reads the scene description from the
file and then launches the T-process with the first call to render scene ut.
After that, TMain solves the problem of breadth-first traversal of the binary
tree built by render scene ut and assembles a composite image from the
fragments located inside the leaves of the tree, in parallel with the computa-
tion of individual fragments performed by render scene ut/render scene

calls.

In this paper, we’ll consider the render scene ut T-function. The code of
the function is as follows:

01 [void safe * sh]

02 render_scene_ut (double f_ulx,f_uly,f_stepx,f_stepy,

03 int nx, ny, 04 void safe * sh_scene) {

05 void safe * utsh_res;

06

07 if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {

08 int ny1, ny2;

09

10 ny1 = ny / 2;

11 ny2 = ny - ny1;

12 utsh_res = tnew (void safe * [2]);

13 utsh_res [0] =

14 render_scene_ut (f_ulx,f_uly,f_stepx,f_stepy,

15 nx, ny1, sh_scene);

16 utsh_res [1] =

17 render_scene_ut (f_ulx,f_uly + f_stepy * ny1,

18 f_stepx, f_stepy, nx, ny2,

19 sh_scene);

20 sh <== utsh_res;

21 } else {

22 utsh_res =

23 tnew (char[sizeof (frag_dsc) +

24 CHAR_PER_POINT * nx * ny] outer);

25 render_scene

26 (f_ulx, f_uly, f_stepx, f_stepy, nx, ny,

27 ((char *) &(utsh_res.C)) + sizeof(frag_dsc));

28 sh <== utsh_res;

29 }

30 }

The function arguments are the parameters of the image fragments on the
plane (the coordinates of upper left vertex of the rectangle, step size for each
axis, the numbers of steps) and the scene description. As a result, the function
returns a special-kind pointer called holder.

Optimization of Imperative Functional Parallel Programs 15

The line 7 of the function code above checks whether the bisection of the
fragment must be continued. If bisection must be performed the resulting holder
being returned (line 20) keeps (points to) a pair of similar holders (with initially
non-ready values) returned in their turn by the recursive calls (lines 12 through
19). Otherwise, the function will return the holder (line 28) keeping the image
fragment calculated by render scene regular C call (lines 22 through 27).

Figure 1.a illustrates the sequence of the T-processes launched which starts
when the TMain function calls the render scene ut T-function. As the picture
indicates, the sufficient part of the T-processes recursively launches render sce-

ne ut and builds intermediate vertices of the binary tree fragments. The other
part (building the leaves of the tree) computes the image fragments and re-
turns them as the results. This means that almost a half of the T-processes are
lightweight and the multiprocessor resources are underused as a consequence.

Fig. 1. Building a data fragments tree by parallel T-function calls: a – initial imple-
mentation scheme; b – scheme of implementation after modification.

Figure 1.b represents another scheme of building the tree of image fragments.
On the 1.b scheme, each of the T-processes builds an image fragment located
inside the tree leaf. Also one or more intermediate nodes of the tree may probably
be built by the same T-process. This method of solving the problem permits to

16 A. Adamovich

avail the computational power of a multiprocessor efficiently since each of the
T-processes becomes rather heavy computationally.

It is possible to obtain such parallel implementation of an application by
changing the if-part of the conditional statement of the render scene ut func-
tion as follows:

06 ...

07 if (nx * ny > MIN_POINTS_PER_FRAG && ny >= 2) {

08 int ny1, ny2;

09’ void safe * utsh_w;

10’

11’ ny1 = ny / 2;

12’ ny2 = ny - ny1;

13’ utsh_res = tnew (void safe * [2]);

14’ utsh_w = utsh_res;

15’ for (;;) {

16’ utsh_w [0]

17’ = render_scene_ut

18’ (f_ulx, f_uly, f_stepx, f_stepy,

19’ nx, ny1, sh_scene);

20’ f_uly = f_uly + f_stepy * ny1;

21’ if (nx * ny2 <= MIN_POINTS_PER_FRAG

22’ || ny2 < 2)

23’ break;

24’ ny1 = ny2 / 2;

25’ ny2 = ny2 - ny1;

26’ utsh_w [1] = tnew (void safe * [2]);

27’ utsh_w = utsh_w [1];

28’ }

29’ utsh_w [1] =

30’ tnew (char[sizeof (frag_dsc) +

31’ CHAR_PER_POINT * nx * ny2] outer);

32’ render_scene

33’ (f_ulx, f_uly, f_stepx, f_stepy, nx, ny2,

34’ ((char *) (utsh_w[1].C))+sizeof(frag_dsc));

35’ sh <== utsh_res;

21 } else {

22 ...

The numbers of new (subject to changes) lines have a stroke. One can see
that one (the second) of the recursive calls has been removed from the if-part of
the conditional statement and the remaining (the first) call has been moved into
a loop (lines 16’ through 19’). This remaining call is responsible for launching
the building of the left-upper branch (in terms of Fig. 1) in each intermediate
node of the tree. All right-lower branches are computed by a single T-process
during the loop execution. As the function exits the loop, it builds a tree leaf
and returns the result (lines 29’ through 35’).

Optimization of Imperative Functional Parallel Programs 17

To find a way to generalize the mentioned transformation for solving an
arbitrary massively parallel task is the core of the problem.

3.2 Solution: Sequence of Stages

Figure 2 illustrates a simplified scheme of the internal representation of the
compute it ut function which implements the recursive part of the algorithm
solving generalized massively parallel problems. Transformations consist in a
partial replacement of recursion by iteration. Specifically, one of two recursive
calls in the upper-left branch of the final conditional statement is to be replaced
with iteration.

A transformation object is an inner representation of a given upper-left
branch of a conditional statement. A transformation algorithm consists of three
stages:

1. Substitution. The function body is subject to a special form of inlining – it
is substituted into the second recursive call of the compute it ut function
implementing the recursion step.

2. Looping. The looping stage is executed in several steps. The execution of
all the three steps allows to considerably reduce the number of lightweight
parallelism granules.

3. Final cleaning of variables and assignments.

Hereinafter, an overview of each step is presented.

Substitution. The second recursive function call – implementing the recursion
step – is substituted with a copy of the function inner representation. Such
substitution copies corresponding environments, including call arguments, and
also assigns corresponding initial values to them.

As a result of the substitution stage, the inner representation of a recursive
branch of the final conditional statement will contain three instead of two re-
cursive calls to the compute it ut function. After further transformation at the
looping stage, two of three recursive calls will be deleted but the remaining one
will be executed in the loop body.

Looping. The two (of three) last recursive calls are completely eliminated at the
looping stage. As a substitution to the eliminated recursive calls, the compute it

C function – loop structure and recursion base – is inserted into the recursive
branch of the compute it ut function. The given procedure may be implemented
as a following sequence of steps:

1. A working holder (”outer” pointer) with a unique name – indicated here as
utsh w’ – is introduced into the compute it ut T function environment:

void safe * utsh_w’;

18 A. Adamovich

Fig. 2. Scheme of the internal representation of the function implementing the recursive
part of the algorithm solving a generalized massively parallel problem

Optimization of Imperative Functional Parallel Programs 19

This holder will be used as leading and keep the current tree node – the node
which is built in the loop at a current iteration step). The built root of a
subtree returned as a result serves as an initial value of the leading pointer:

utsh_w’ = utsh_res;

All subsequent occurrences of the utsh res variable in the transformable
code, except for the result sending final statement, should be substituted
with occurrences of the utsh w’ variable.

2. The list of statements added at the substitution stage as a body of a substi-
tuted function is transformed into a loop statement body. The first recursive
call of the compute it ut T-function is also moved into the loop body as
the first statement.

3. After that, the nested (situated in the loop body) conditional statement
is transformed. The non-recursive branch (the else-part containing the re-
cursion base) is taken out of the loop body. The condition is reversed (the
initial condition is denied). The break statement is placed into the condi-
tional statement instead of the recursive branch. The recursive branch of the
conditional statement is placed into the list of statements immediately after
the conditional statement.

Two final recursive calls (added into the intermediate representation at the
substitution step) are then deleted from the loop body. Thus, one initial call
remains. A set of statements is added to the end of the loop, which – before
the next operation starts – brings the variable environment to a state which is
“equivalent” to the state it initially had after entering the called function and
before performing the initial recursive call. In other words, the variables of the
A+B (see Fig. 2) environment are reinitialized on the basis of variables of the
A’+B’ environment introduced during the substitution stage. The value transfer
from the A’+B’ environment to the A+B environment is made by reassignment;
for example:

f_ulx = f_ulx’; f_uly = f_uly’;

f_stepx = f_stepx’; f_stepy = f_stepy’;

To complete the reinitialization, a new value is assign to the leading index:

utsh_w’ = utsh_w’ [1];

As Figure 3 illustrates, after the looping stage, the resulting scheme of the
intermediate representation of the recursive branch is rather bulky. It should
be noted that the scheme contains some excessive assignments and even some
excessive variables that will be deleted at the following stage of transformation
– at the cleaning stage.

Cleaning. As stated above, after mechanically implemented transformations,
the intermediate representation of the recursive branch has a number of odd
assignments and T-variables. For example, if we apply the above transformation
steps to the render scene ut function, the result will contain the following
definition:

20 A. Adamovich

Fig. 3. Scheme of the intermediate representation of the recursive branch of the final
conditional statement of the compute it ut function after the looping stage

Optimization of Imperative Functional Parallel Programs 21

void safe * sh_scene’;

and a pair of assignments, such as

sh_scene’ = sh_scene;

and

sh_scene = sh_scene’;

with no other assignments to these variables are performed, which means thatthe
assignments and the sh scene’ variable itself may be removed from the interme-
diate representation with substituting its other occurrences with the sh scene

variable references.

The optimizations being performed on the cleaning stage we have just men-
tioned are rather simple. However, they will not be automatically performed by
the back-end since it merely converts outer variables and related actions into C
correspondent data structures. After conversion, the information about seman-
tics of outer variables will be lost.

4 Conclusion

Obviously, the transformation described above is not the only possible within
the framework of the proposed ACCT architecture. The author hopes to make
it possible to implement transformational passes based on more sophisticated
techniques developed in the realm of functional programming (partial evaluations
[8], supercompilation [9] etc.).

In addition, a set of transformational passes as tools for to support efficient
implementation of a T-System runtime could be of value.

The author also expresses hope that the implementation of ACCT will permit
to strengthen the position of the functional paradigm in the list of numerous
modern programming paradigms being used in the area of parallel program
development.

References

1. S. M. Abramov, A. I. Adamowitch, I. A. Nesterov, S. P. Pimenov, Y. V. Shevchuck.
Autotransformation of evaluation network as a basis for automatic dynamic paral-
lelizing, Proc. The 6th NATUG meeting, NATUG’1993 Spring Meeting “Transputer:
Research and Application”, May 10-11, 1993, IOS Press, Vancouver, Canada, pp.
333–344

2. S. M. Abramov, A. I. Adamovich, , and M. R. Kovalenko. T-System–Environment
Supporting Automatic Dynamic Parallelization of Programs: An Example of the
Implementation of an Image Rendering Algorithm Based on the Tracing Method,
Programmirovanie, 1999, no. 2, pp. 100–107 (in Russian)

22 A. Adamovich

3. Sergey Abramov, Alexei Adamovich, Alexander Inyukhin, Alexander Moskovsky,
Vladimir Roganov, Elena Shevchuk, Yuri Shevchuk, and Alexander Vodomerov.
OpenTS: An Outline of Dynamic Parallelization Approach. Parallel Comput-
ing Technologies: 8th International Conference, PaCT 2005, Krasnoyarsk, Russia,
September 5-9, 2005. Proceedings. Editors: Victor Malyshkin - Berlin etc. Springer,
2005. - Lecture Notes in Computer Science: Volume 3606, pp. 303–312

4. Alexey I. Adamovich. cT: An Imperative Language with Parallelizing Features Sup-
porting the Computation Model ”Autotransformation of the Evaluation Network”.
Proceedings of the 3rd International Conference on Parallel Computing Technologies
(PaCT ’95), St. Petersburg, Russia, September 1995, pp. 127–141

5. Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, Mon-
ica S. Lam. Interprocedural parallelization analysis in SUIF. Transactions on Pro-
gramming Languages and Systems (TOPLAS), Volume 27, Issue 4, July 2005, pp.
662–731

6. Chris Lattner, Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. Proc. of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto, California, Mar. 2004,
pp. 75–88

7. B. Steinberg, E. Alimova, A. Baglij, R. Morilev, Z. Nis, V. Petrenko, R. Steinberg.
The System for Automated Program Testing. / Proceedings of IEEE East-West
Design & Test Symposium (EWDTS’09). Moscow, Russia, September 18-21, 2009,
pp. 218–220

8. Neil D. Jones, Carsten K. Gomard, Peter Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall International Series in Computer Science,
Prentice-Hall, 1993, 400 pages.

9. Valentin F. Turchin. Program transformation by supercompilation. Ganzinger H.,
Jones N.D. (ed.), Programs as Data Objects (Copenhagen, Denmark). Lecture Notes
in Computer Science, Vol. 217, pp. 257–281, Springer-Verlag, 1986

	Introduction
	Compiler Design
	Basic Properties of the Input Language and the Model of Computation
	Compiler Architecture

	Example of Program Transformation
	Initial Problem
	Solution: Sequence of Stages
	Substitution.
	Looping.
	Cleaning.

	Conclusion

